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Abstract

Many exciting discoveries have recently revealed the versatility of RNA and its importance in a 

variety of functions within the cell. Since the structural features of RNA are of major importance 

to their biological function, there is much interest in predicting RNA structure, either in free form 

or in interaction with various ligands, including proteins, metabolites and other molecules. In 

recent years, an increasing number of researchers have developed novel RNA algorithms for 

predicting RNA secondary and tertiary structures. In this review, we describe current experimental 

and computational advances and discuss recent ideas that are transforming the traditional view of 

RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we 

provide a comparative study in order to test the performance of available 3D structure prediction 

algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the 

algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; 

most predictions have very large root mean square deviations from the experimental structure. We 

conclude by outlining some suggestions for future RNA folding research.

1. Introduction

It is now widely recognized that RNA is a fundamental biological macromolecule with many 

biological functions at all stages of cellular life. Besides the well-accepted functional 

properties of messenger RNA, transfer RNA and ribosomal RNA, many new non-coding 

RNAs are now known to perform catalytic regulatory roles that are essential to an 

organism’s survival and evolution. Small interference RNAs (RNAis) have a remarkable role 

in gene silencing [1]; transfer-messenger RNAs (tmRNAs) direct the addition of tags to 

peptides on stalled ribosomes, thereby affecting protein stability and transport [2]; other 

small non-coding RNAs (ncRNAs) regulate messenger RNA stability and translation by base 

pairing at various positions with their target messenger RNAs [3, 4]; and recent findings 

indicate that microRNAs (miRNAs) can be associated with tumorigenesis by acting either as 

tumor suppressors [5–7] or oncogenes [8–11]. This astonishing versatility of RNA has also 

been exploited for nanodesign for biomedical and technological applications [12, 13]. For 

example, the mechanism of RNA interference (RNAi) to silence genes in a sequence specific 

manner is currently being exploited as a tool to design drugs and for antiviral therapy [14, 

15]. More interesting examples of RNA applications are described in table 1. Clearly, more 
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discoveries are yet to come, given the many novel non-protein-coding transcripts identified 

in the human genome [16]. Many of these RNAs have yet unknown functions, and new 

regulatory roles continue to emerge [17, 18].

The structural features of RNAs are of major importance to their biological functions 

because sequence alone does not provide sufficient functional information. Thus, one of the 

goals in RNA structural biology is to provide insights into how structure and dynamics lead 

to specific functions of RNA, either in free form or in interaction with various molecules, in 

the full cellular milieu.

Our focus in this article is on reviewing recent advances in RNA structure determination and 

assessing current 3D prediction methods. Section 2 reviews our basic understanding of RNA 

structure. Section 3 discusses new discoveries in RNA dynamics that are important for 

understanding RNA folding. Section 4 describes current advances and limitations in 

experimental techniques used to determine both secondary and tertiary structures. Section 5 

summarizes the recent approaches and trends in the structure determination of RNA 

secondary structure. Section 6 reviews computational methods for RNA 3D structure 

prediction, and section 7 evaluates some of the recent algorithms. We conclude with a 

perspective comparing performance of 3D structure prediction for a single representative 

RNA data set.

Developments in RNA structure prediction studies have been previously extensively 

reviewed. In RNA secondary-structure prediction advances, Gardner and Griegerich [26] 

compared secondary-structure prediction methods using multiple-sequence alignment, while 

Mathews and Turner [27] presented progress in free energy minimization algorithms using 

dynamic programming. Shapiro et al [28] provided a comprehensive review on RNA 

secondary-structure prediction with a focus on pseudoknots and RNA 3D structure advances 

with a focus on manual methods.

A more recent review by Capriotti and Marti-Renom [29] compiled current computational 

databases, algorithms, and computer programs that are available to the community for 

purposes ranging from sequence analysis to structure prediction and comparison. Schroeder 

[30] recently reviewed prediction progress on viral RNAs. Here we focus on exploring new 

ideas that could improve RNA prediction and suggest further improvements by comparing 

the capabilities of current 3D predictions programs.

2. RNA structure

Understanding RNA structure and function relies on our ability to identify RNA’s major 

structural components. RNA molecules can be studied extensively at the secondary-structure 
level, where building blocks include helical stems and single-stranded regions such as 

hairpins, internal loops, and junctions (figure 1(a)). Stems are formed by complementary 

canonical Watson and Crick base pairs GC and AU, along with the GU wobble base pair. A 

hairpin is a single-stranded region that folds back on itself via regions of complementary 

base pairs. The single-stranded region between two stems is known as an internal loop, 

while a junction can be defined as the point of connection between three or more helical 
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stems. Single-stranded regions can form pseudoknots when base pairs intertwine (figure 

1(b)). These basic secondary-structure elements are pieced together via tertiary interactions 

to form compact structures of active RNAs.

Structural and comparative studies have suggested that RNA structure is largely composed 

of repetitive modular building blocks or motifs. In particular, RNA tertiary motifs are 

conserved structural patterns formed by pairwise interactions between nucleotides. These 

include base pairing, base stacking, and base–phosphate interactions [31]. RNAs possess 

remarkable interaction attributes where base pair interactions can be classified into twelve 

geometric families in terms of pairs of interacting edges, which can be Watson and Crick 

(WC), Hoogsteen (H), Sugar (S), and glycosidic bond orientations cis and trans [32] (see 

figure 1(c)). Furthermore, base–phosphate interactions are also common and a recent 

classification model has been proposed [33].

Graph theory methods have also been developed to represent RNA secondary structures 

since the 1970s, with the pioneering work by Waterman [34], extended by others [35–37]. 

Recent structural or topological representations using graph representation (trees and dual 

graphs) of RNA secondary structures like RAG [38] constitute innovative methods from an 

allied field that can help RNA science [39].

3. RNA folding: proteins, dynamics, pathways and pausing

Over the past decade, many experiments have unveiled new clues into the elegant 

complexity and dynamics of RNA folding. Besides forming intricate long-range RNA–RNA 

interactions to direct and stabilize the structure, the folding is strongly affected by the speed 

of elongation and site-specific pausing of the RNA polymerase, as well as interactions of the 

RNA molecule with proteins, solvent and small metabolites [40–42].

Our current understanding of how RNA folds is that it does so by a hierarchical process: 

helical elements in the secondary structure are formed, and then compact structures are 

formed using tertiary pairwise interactions and tertiary motifs [43]. However, further studies 

are suggesting that RNA folding is actually quasi-hierarchical [44–46], where 

rearrangements of secondary-structure elements caused by tertiary interactions can in turn 

trigger stable native folding.

The RNA folding pathway does not always proceed uniquely. Indeed, the free energy 

landscape of RNA folding is highly rugged, composed of different and even parallel 

trajectories where RNA chains can be easily kinetically trapped into intermediate metastable 

states. If the RNA falls into an intermediate structure state, folding can take longer because 

breaking the non-native base pairs is required to reach its native state [47]. Fortunately, long-

range tertiary contacts along with solvent (e.g., water, ions) interactions can guide RNA to 

the correct folding [48]. These tertiary interactions work cooperatively to direct folding to 

the native state [49].

It should be noted, however, that for some RNAs, intermediate or alternative states are 

functional, as for riboswitches (mentioned later) [50], and RNA regions in viruses [51–54]. 

For instance, there are structural domains in the hepatitis D (HDV) virus, where both 
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branched and unbranched conformations are formed for distinct functional roles [52]. In the 

turnip crinkle virus (TCV), different structural configurations control the processes of virus 

translation and replication [53].

In contrast to in vitro folding where unfolded RNA chains fold in the presence of 

magnesium ions (Mg2+), in the cellular context, nascent RNA molecules start to fold before 

transcription is complete. Thus, achieving the correct structure can depend on the speed of 

transcription. This presents a problem for helices composed of long-range strands such as 

helix H1 shown in figure 1(a). This is because, during transcription, the 5′-strand of H1 is 

transcribed first; thus, it needs to wait for the 3′-strand of H1 to be fully transcribed. During 

this time, alternative base pairs can form at the 5′-strand. To help minimize competition 

from alternative folds, RNA polymerase, the molecule in charge of RNA transcription, 

pauses to allow the formation of non-native temporary conformations that easily unfold 

when the 3′-strand becomes available. Such pausing prevents formation of super-stable non-

native structures and thus constitutes a general strategy for facilitating the folding of long-

range helices [55, 56].

In addition to tertiary interactions, solvent molecules such as water and cations (positive ions 

such as Mg2+ and K+) also help initiate and guide RNA folding into the native structure. 

Water molecules mediate coupled molecular motions throughout a folded RNA core, and 

non-canonical bifurcated base pairs are formed only in the presence of water [32, 57]. In 

addition, the high negative charge of an RNA molecule works against its folding into its 

native structure. Cations promote folding by reducing the repulsion between RNA 

phosphates. Thus, besides helping to stabilize tertiary interactions during folding, ion–RNA 

interactions influence stability, pathway diversity, and transition states. It has been 

emphasized [42, 58] that ions of at least two types modulate the electrostatic surface 

potential of the negatively charged RNA molecule: chelated ions which are held in direct 

contact with the RNA surface by electrostatic forces, and diffuse ions which accumulate near 

the RNA due to the RNA electrostatic field and remain largely hydrated.

Most RNAs within the cell are parts of RNA–protein complexes. Their binding can stabilize 

the RNA structure, induce conformational changes, and even act as RNA chaperones to 

guide folding. Large RNAs such as group I intron, RNase P, and the ribosomal RNA (rRNA) 

structure are often stabilized by RNA-binding proteins. For instance, a recent model for 

rRNA folding suggested that the rRNA tertiary structure is dynamic (flexible) in the absence 

of proteins and that alternative structural conformations can compete with each other. Thus, 

ribosomal proteins may not only stabilize rRNA tertiary interactions but might also change 

the path of assembly, avoiding RNA misfoldings [59]. Proteins also bind at different stages 

in the folding process, and a hierarchical protein binding is now recognized where primary 

binding proteins interact at an early stage, thus marking their importance in the assembly 

process. Other proteins bind at the end and are related more to functional roles.

Though RNA folding is a complex process, is sensitive to the environment, and possesses a 

network of folding transitions and pathways, many RNAs share a common organization of 

their helical elements. Indeed, analyses on current solved RNA 3D structures have shown 

that the majority of helical elements in junctions tend to arrange roughly in parallel and 
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perpendicular configurations. These arrangements are stabilized by both RNA–RNA 

interactions as well as RNA–protein interactions [60–62].

Finally, Nature exploits the potential of RNA sequences to form multiple alternative 

metastable structures for implementing highly sensitive molecule switches capable of 

controlling gene expression at the level of the mRNA. RNA riboswitches are RNAs found 

within some messenger RNA (mRNA) that can change conformation upon binding small 

metabolites and thus terminate transcription or block translation. The tertiary structure of the 

riboswitch binding pocket is stabilized only upon ligand binding. As mentioned earlier, RNA 

viruses make use of transitions between metastable structural domains for different 

functions. Thus, riboswitches and structural domains within viruses exemplify the dynamic 

properties of RNA molecules.

4. RNA structure determination

Since the ‘Era of RNA awakening’ began [63], the erroneous perception of RNA as a simple 

molecule has dramatically changed, due in part to advances in RNA structure determination 

techniques. In the early 1970s, the first full RNA structure, the transfer RNA (tRNA), was 

obtained by crystallization techniques [64], providing many clues to RNA’s helical 

organization. A decade later, the discovery of catalytic RNAs revolutionized our 

understanding of RNA’s complex cellular roles. Indeed, the ligand-dependent conformations 

of riboswitches have shown that even small RNAs are structurally and functionally complex 

[50]. Similarly, the initial identification of the P4–P6 fragment of the group I intron, and 

later the larger domain P1–P9 and the group II intron, have unraveled the intricacies of long-

range RNA–RNA interaction motifs such as the tetraloop receptor, ribose zipper, A-minor 

and other intriguing motifs. An important milestone was reached with high resolution 

structures of three ribosomal RNA (rRNA) subunits, including the 23S rRNA subunit, which 

is the largest RNA structure solved thus far [65–67]; these structures revealed arrays of 

RNA–RNA and RNA–protein interactions, which in turn can form higher order interaction 

patterns [49]. These pioneering and far-reaching works on the ribosome structure by A E 

Yonath, V Ramakrishnan, T A Steitz, and others were recognized in the 2009 Nobel Prize in 

Chemistry. These remarkable breakthroughs, however, also demand atomic-level structural 

and dynamic information for understanding RNA function.

4.1. Experimental techniques

Structural information has been determined from RNA molecules using numerous 

experimental strategies. Many of these experimental approaches have been complemented 

by computational approaches, resulting in important improvements on both the 

computational and experimental fronts. Below, we describe some of the experimental 

methods for RNA structure determination. For a more detailed review, see [68].

Fluorescence resonance energy transfer (FRET) is a method often used to analyze the global 

structure and even dynamics of RNA elements such as junctions [69, 70]. The strength of 

FRET is that it allows detecting when two elements in the structure are in close proximity 

(10–100 Å), thus helping to determine RNA’s global helical organization.
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The 2′-hydroxyl acylation RNA (SHAPE) chemistry approach is an important probing 

technique recently developed by the Weeks group [71, 72]. The protocol exploits the 

nucleophilic reactivity of the ribose-2′-hydroxyl position, which strongly correlates with the 

nucleotide flexibility. Nucleotides in single-stranded regions are seen as flexible, while 

nucleotides involved in base pairs are more rigid. The main advantage is that the method is 

simple and there is no limit on the size of the RNA molecule. A few secondary- and tertiary-

structure prediction programs have incorporated data from RNA SHAPE to improve the 

prediction accuracy [73–75].

Other structure-specific probe methods such as using dimethyl sulfate (DMS) [143], which 

can focus on certain nucleotides (e.g., adenines), or hydroxyl radical footprinting [77], 

which can explore the solvent accessibility to the RNA backbone, are also used to deduce 

RNA structured features. Both methods can be powerful but are laborious. Another approach 

is the use of microarrays for chemical mapping [78]. This method has been combined with 

dynamic programming algorithms for predicting RNA secondary structure, replacing other 

labor intensive approaches such as chemical mapping and enzymatic cleavage.

NMR spectroscopy is the well-known technique that exploits the magnetic properties of 

certain nuclei. NMR spectroscopy is an important tool for probing the structure and 

dynamics of RNA [79, 80]. In addition, NMR relaxation methods can be used to obtain 

dynamic data on timescales ranging from picoseconds to seconds. The main limitation on 

NMR is molecular size (~20 kDa). However, novel methods like that reported combining 

small-angle scattering (SAXS) and NMR techniques [63] can be used to predict larger 

RNAs, as applied recently for the 100 nt TCV RNA virus [81].

Of course, x-ray crystallography analysis, based on the growth of single well-ordered 

crystals, remains another invaluable method for detailed structural resolution. Well-ordered 

single crystals are required for structural studies by x-ray diffraction methods, and obtaining 

them is often the most difficult step of the structure determination process [82]. Most RNAs 

exist naturally as protein–RNA complexes, and the crystallization of these complexes has 

several advantages over the crystallization of RNA alone. X-ray crystallography has been 

successful in determining the largest RNA molecules so far, such as the large ribosomal 

subunits [65–67]. Nevertheless, technical difficulties still remain, such as the availability of 

many conformations and transitional states for RNAs. The dynamical nature of RNA 

molecules also complicates matters.

Other experimental techniques such as cryo-electron microscopy (cryo-EM) have recently 

undergone tremendous advances, such as those reported in the study of IRES virus domains 

[83]. Contrary to the crystallography case, there is no size limitation and the molecule does 

not need to be ordered or isolated from its complex. However, due to the difficulty of 

accurate image reconstruction, the resolution is still limited to 10 Å at best.

4.2. Current advances in RNA structure data

Advances in sequencing technology have made available a growing amount of RNA 

sequence information (figure 2), but the challenge of how to interpret these data remains 

unmet. The RNA secondary-structure and statistics database (RNA STRAND) [144] 
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contains, as of May 2010, 4666 secondary structures. Furthermore, Rfam, a database of 

sequence and secondary-structure information from several RNA families, has recorded 

1446 RNA families since its last update in January 2010 [85]. Each family can contain many 

thousands of RNA sequences (e.g., the 5S rRNA family has 57 054 sequences).

The structures of a large majority of RNA molecules remain to be solved. Despite many 

advances in RNA crystallography, NMR, and chemical modification, RNA structure 

determination is a difficult task. This makes the need for accurate prediction using 

computational methods especially urgent.

5. RNA secondary-structure prediction approaches

Predicting RNA secondary structures refers to the task of determining, given a single RNA 

sequence or multiple RNA sequences, the set of complementary canonical Watson and Crick 

GC, AU, and GU wobble base pairs that define helical stems, as well as the single-stranded 

regions such as hairpins, internal loops, and junctions (see section 2). Many computational 

programs designed for predicting RNA secondary structures have been developed over the 

past three decades. Approaches vary widely, including free energy minimization using 

thermodynamic parameters [76, 86, 87], knowledge-based predictions based on known RNA 

structures [88–90], comparative sequence alignment algorithms [76, 91–96], combinations 

of these, and others. Below we describe some of the current prediction programs. More 

examples are listed in table 2. Other reviews on specific approaches are also available [26, 

28, 97–99].

5.1. Secondary-structure prediction using a single sequence

It is believed that the native RNA structure corresponds to a global minimum of the relevant 

free energy function. Therefore prediction programs focus on determining the free energy 

for a secondary structure. One of the first programs developed for predicting RNA secondary 

structures using a single sequence, called Mfold, was developed by Zuker and Stiegler [87] 

in 1981. It aims to find the set of base pairs that yields the minimum free energy using 

dynamic programming methods. Mfold uses thermodynamic parameters obtained from 

experiments near 37°C, the human body temperature, to estimate different base pairing and 

base stacking forces [100–102]. The thermodynamic parameters are then used in a potential 

function that approximates the overall energy as a sum of independent terms for different 

loops and base pair interactions.

Because thermodynamic parameters are measured experimentally, they are incomplete or 

subject to inaccuracies, and thus a great number of alternative suboptimal structures can fall 

near the predicted global energy minimum. Therefore, Mfold and other current free energy 

minimization programs such as RNAfold [86], which is part of the Vienna package, consider 

a sample of structures near the optimal free energy conformation. In addition, RNAstructure 

[103] is a another program based on thermodynamic parameters which can improve 

prediction by incorporating constraints from experimental data using 2′-hydroxyl acylation 

RNA (SHAPE) chemistry (described in section 4.1).
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Parameter calculation from known RNA structures is another useful approach to RNA 

secondary-structure prediction. Programs like Contrafold [89] use statistical data and 

Bayesian approaches to train the algorithm on a large set of known secondary structures 

using base pair probabilities. Sfold [104] uses statistical sampling methods and a Boltzmann 

assemble to calculate a set of representative candidates for RNA secondary structure. 

Similarly, RNAShapes [105, 106] performs an abstract search over all predicted RNA shapes 

to produce a sample of the folding space.

A recent heuristic program called Kinwalker [107] is based on a kinetic folding algorithm 

that simulates the dynamic properties of RNA folding during the co-transcriptional process. 

The algorithm constructs the secondary structure by a stepwise combination of building 

blocks corresponding to subsequences and their thermodynamic near optimal structures. 

Kinwalker can be used to fold RNA up to 1500 nucleotides long. Similarly, MPGAfold 

[108] is a massively parallel genetic algorithm that predicts possible folding pathways and 

functional intermediates using parallel computing [109].

The case for RNA structure prediction with pseudoknots has been shown to be a non-

polynomial (NP) complex problem [110]. However, special cases have been explored. 

Programs like Pknots [111] use dynamics programs with added approximations to 

thermodynamic parameters needed for pseudoknot calculations. Cao and Chen [145] 

recently developed a predictive model for pseudoknots with inter-helix loops. The model 

gives conformational entropy, stabilities and free energy landscapes from RNA sequences, 

on the basis of a model that includes volume exclusion. Kinefold [112, 113] uses a long-

time-scale stochastic folding simulation approach where RNA helices are closed and opened 

in a stochastic process, and pseudoknots are predicted using topological and geometrical 

constraints.

5.2. Multiple-sequence alignment

With the steady increase in RNA sequence data, secondary-structure prediction for RNA has 

also been achieved by aligning multiple sequences [91, 117–119]. Comparative sequence 

analysis consists of aligning many RNA sequences and looking for patterns of sequence 

variability between two or more nucleotides. Sequence variability (i.e., covariation) can be 

observed because, in contrast to nucleotides that vary randomly, base pairs that are 

conserved by evolution vary by compensatory changes (e.g., a GC pair in one sequence can 

change into an AU in another sequence). These covariations make it possible to detect the 

base pairs that form the helical stems, and consequently predict a secondary-structure model. 

Alignments of RNA sequences also allow identifying functionally important regions that are 

often conserved.

Several approaches for comparative sequence analysis have been developed [26]. One 

approach consists of aligning the sequences and then folding them on the basis of that 

alignment. Examples include RNAalifold [94] and ILM [95] which can predict pseudoknots. 

Another approach that involves simultaneous alignment, folding, and inference of structure 

from a set of homologous sequences is present in Dynalign [76, 115, 116] and Carnac [96] 

are examples of this approach. Both programs combine free energy minimization and 

comparative sequence analysis. If no meaningful sequence conservation is encountered 
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during the alignment, an alternative method is used, consisting of simultaneous folding and 

aligning. RNAforester [93] is such an example. Alignment prediction methods for 

pseudoknots are more reliable on multiple sequences. KNetfold [88] is an example of a 

consensus prediction method based on a multiple-sequence alignment.

Successful examples include the structure models for the 5S, 16S and 23S ribosomal RNAs 

solved by the Gutell’s lab using alignments from hundreds of sequences [91]. These models 

predict base pairs in very good agreement with experimental data [92]. Similarly, the 

Westhof group predicted models for the group I intron [117, 118] and the ribonuclease P 

RNA [119] using similar methods.

Resources available to the community at large for such alignments include Gutell’s lab 

database (www.rna.ccbb.utexas.edu/) of aligned sequences, secondary structures, and 

phylogenetic information for various RNA molecules [91]. The Rfam database also contains 

multiple-sequence alignments and consensus secondary structures for several RNAs [85].

5.3. Advances in and limitations to RNA secondary-structure prediction

Free energy minimization methods are based on a number of thermodynamic parameters for 

base pairing, base stacking, loop lengths and other motifs. Although expansions and 

recalculations of the parameters are now available [84, 100, 101, 120], thermodynamic 

approaches are still limited in terms of accuracy of the parameters and the incompleteness of 

the thermodynamic rules used. Alternately, analyzing suboptimal states of RNA structures in 

addition to the free energy minimum has been valuable. However, it has been reported that 

about 73% of known canonical base pairs are predicted by free energy minimization for 

sequences with less than 700 nucleotides [76]. Similarly, parameter calculation methods are 

limited to the availability of structural data. While kinetic folding algorithms such as 

Kinwalker, Kinefold, and MPGAfold that incorporate RNA dynamics are very promising 

because they simulate the dynamics of co-transcriptional folding (RNA folding with 

sequence elongation), they are still at an early stage.

Alignments of multiple RNA sequences present a challenge for two main reasons: (1) only 

four letters are used on the basis of sequence similarity, and (2) sequence alignment 

programs such as Blast [121] or Clustal [122] do not consider information from secondary-

structure conservation. Both are limitations because structure has evolved much more slowly 

than sequences, and compensatory mutations such as G–C by A–U, not considered in 

current sequence alignment approaches, frequently occur since they conserve the secondary 

structure.

Current rigorous alignments of distantly related RNA sequences typically require 

consideration of both sequence and secondary structure and are best performed manually. 

However, efforts are under way, with the new formation of the RNA Structure Alignment 

Ontology [123]. These new approaches intend to generalize sequence alignments as a set of 

‘correspondence’ relations between whole regions, rather than between individual 

nucleotides.
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Despite great advances in RNA secondary-structure prediction, many limitations remain. 

Most prediction programs cannot predict pseudoknots, nor the multiple configurations 

accessible to one sequence (e.g., for a riboswitch or domains within viruses). Pseudoknots 

are important, because their probability of occurrence increases sharply with RNA size 

[124]. Prediction also becomes less accurate as the RNA size increases, and there is 

currently no approach for quantifying the likelihood or error of a particular prediction. 

Nonetheless, as mentioned in section 4.1, many secondary-structure prediction programs are 

beginning to incorporate additional experimental data to improve the prediction accuracy. 

Such hybrid approaches like RNAstructure will indeed make advances on both experimental 

and computational fronts.

6. RNA tertiary-structure prediction programs

Even though determining the secondary structure provides a blueprint of the RNA molecule, 

it is the knowledge of the three-dimensional structure that allows us to understand its 

function, as well as the possible interactions with other molecules. However, in contrast to 

the advances achieved in protein folding programs, RNA structure prediction is still at an 

early stage. Current 3D RNA folding algorithms require either manual manipulation or are 

generally limited to simple structures. Below we describe some of the most recently 

developed programs. Table 3 provides more details.

FARNA is an energy-based program developed by Das and Baker [125] that predicts RNA 

3D structures from a sequence. It was inspired by the Rosetta low resolution protein 

structure prediction method [126]. To represent each base, FARNA’s model consists of a one 

bead of a coarse-grained model, using each base’s centroid as the bead origin. To capture 

local conformational correlations observed in solved RNAs, FARNA builds a 3D structure 

library consisting of 3-nt fragments taken from a large rRNA subunit, from which torsion 

angles and sugar puckering parameters are stored. Then a simulation using Monte Carlo 

methods is used to assemble fragments into native-like structures. The folding simulation is 

guided by a knowledge-based energy function that takes into account both backbone 

conformations and side-chain interaction preferences observed in solved structures. This 

function includes a term for the radius of gyration, a function to penalize steric clashes, and 

functions that favor base stacking and the planarity of both canonical and non-canonical base 

pairs. Knowledge from base pairs can also be incorporated. Constraints using structural 

inference of native RNAs have been used more recently through an experimental method 

called multiplexed hydroxyl radical (–OH) cleavage analysis (MOHCA) [127], to enable 

detection of tertiary contacts and improve FARNA’s prediction. For instance, when the 158-

nucleotide P4–P6 domain of the group I intron (PDB 1GID) is compared to the structure 

predicted from sequence alone, the root mean square deviation (RMSD) value is 35 Å. In 

contrast, prediction using secondary structure and data from MOHCA gives an RMSD value 

of 13 Å [127].

Parisien and Major [75] developed a method for modeling RNA 3D structures using energy 

minimization that builds upon earlier work using predicted cyclic building blocks [128, 

129]. The approach consists of a pipeline implementation of two programs: MC-Fold and 

MC-Sym. MC-Fold predicts RNA secondary structure using a free energy minimization 
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function, and the fragment insertion of nucleotide cyclic motifs formed by base pair and 

base stacking interactions. MC-Sym builds full-atom models of RNA structures using the 3D 

version of the nucleotide cyclic motif fragments. The nucleotide cyclic fragment library was 

built from a list of 531 RNA 3D structures. The fragment insertion simulation is performed 

using the Las Vegas algorithm [130], a Monte Carlo algorithm that either produces a correct 

result or reports that such an answer cannot be found. In the case of the MC-Sym fragment 

insertion simulation, the algorithm explores as many corresponding 3D fragments as 

possible in a given time, and all RNA 3D structures generated are consistent with the base 

pair and base stacking input constraints. MC-Fold can also incorporate experimental data in 

order to restrict the conformational space: input can be from RNA SHAPE chemistry, or 

dimethyl sulfate (DMS) data (mentioned in section 2).

The nucleic acid simulation tool or NAST [131] is a coarse-grained molecular dynamics 

simulation tool consisting of a knowledge-based statistical potential function. Each residue 

is represented as a single pseudo-atom centered at the C3′ atom. NAST requires secondary-

structure information and, if available, tertiary contacts to direct the folding. In addition, the 

knowledge-based function uses geometric distances, angles and dihedrals from the available 

ribosomal structures using C3′ atoms between two, three, and four sequential residues 

respectively. A repulsive term for non-bonded interactions based on the Lennard-Jones 

potential is also applied.

iFoldRNA [132] is a Web-based program designed by Dokholyan’s group for predicting 

RNA structures from sequence. It is based on discrete molecular dynamics (DMD) [133] and 

a tailored force field [134] algorithms for simulating RNA folding dynamics. The coarse-

grained model is composed of three beads for each nucleotide positioned at the center of 

mass of the phosphate group, sugar ring and six-atom ring in the base. The structure’s 

angles, dihedrals, and bonds are used to construct a stepwise potential function that accounts 

for base stacking, short-range phosphate–phosphate repulsion, and hydrophobic interactions. 

To explore the potential energy landscape of the molecular system, iFoldRNA uses multiple 

simulations or replicas of the same system performed in parallel at different temperatures. 

The discrete molecular dynamics algorithm is based on a stepwise potential function [133, 

135]. Like NAST and MC-Sym, iFoldRNA incorporates data from tertiary contacts based on 

experimental contacts from SHAPE chemistry [74] to overcome size limitations.

RNA2D3D [136] is a manual-input program that uses data from sequence and secondary 

structure to build a first-order approximation RNA 3D model. The program allows the user 

to manually add or remove base pairs and incorporate coaxial stacking interactions, useful 

for exploring diverse RNA conformations. ASSEMBLE is a similar tool created by Jossinet 

and Westhof (http://www.bioinformatics.org/assemble/). The program uses either secondary-

structure information or tertiary information from homologous RNAs to construct a 3D 

model manually. ASSEMBLE allows the manual insertion of base pairs and motifs, as well 

as torsion angle modifications, rotations, and translations of modular elements. While these 

user-input tools are useful, they rely on manual application of expert knowledge. 

Unfortunately, there are only a few of these experts.
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7. Comparison of automated RNA 3D folding algorithms

To evaluate the performance of some of the most recent 3D prediction programs, we provide 

an independent comparative study for RNAs in a high resolution data set represented by 

various RNA lengths and structural features. Because the programs we consider are recent, 

they are still under development and could be improved in the future. Therefore, our data 

reflect the state of the art in automatic prediction programs at the outset of 2010.

7.1. Methods

We consider the tertiary-structure prediction programs FARNA, iFoldRNA, and MC-

Fold/MC-Sym (MC for short) for prediction using sequence information only. In addition, a 

second comparison among FARNA, MC and NAST is considered for prediction based on 

secondary-structure data. Although NAST can accept input information from tertiary 

contacts, which can dramatically improve prediction accuracy, for the purpose of equal 

comparison, we only produce NAST structures using secondary-structure data. We did not 

explicitly evaluate computational efficiency; however, the general trend was that NAST is 

less CPU time intensive than iFoldRNA, FARNA and MC. Structures generated using NAST 

and FARNA were computed using a Linux Intel Xeon 3.0 GHz processor. Structures 

generated using iFoldRNA and MC were computed using their own Web servers. Most 

programs return results in less than a few hours. For instance, the calculation for predicting 

RNA 49-nt long takes about 4 min using NAST, 27 min using iFoldRNA, 31 min using MC-

Sym, and 37 min using FARNA.

Our RNA data set consists of 43 high resolution (3.4 Å or better) structures of diverse sizes 

and motifs (see table 4). Both secondary and tertiary structures have been experimentally 

determined for these RNAs. The length varies from 16 to 128 nucleotides, and the 

topologies range from hairpins to complex RNAs such as riboswitches, pseudoknots, and 

RNAs containing junctions. Figure 3 shows representative examples of our data set. As part 

of the pseudoknot category, we include RNA structures with Kissing hairpins, which are 

loop–loop interactions between two hairpins forming WC base pairs.

To evaluate prediction performance, we use the root mean square deviations (RMSD) from 

the reference known structure, as well as the deviation index (DI), which is a measure that 

accounts for base pair and base stacking interactions, and is defined as the quotient between 

the RMSD and the squared root of the specificity (PPV) times the sensitivity (STY) of base 

pair and base stacking interactions as defined in [137]. In brief, PPV represents the 

percentage of correctly predicted interactions that are in the crystal structure, while STY 

represents the percentage of interactions in the crystal structure predicted, without 

accounting for the false positives2. The smaller the DI value, the better the prediction. 

RMSD values were computed for the backbone using VMD [138]. Base pair and base 

stacking interactions were determined using FR3D [139]. An average of the RMSD and DI 

2PPV = TP/(TP + FP), STY = TP/(TP + FN), where TP = number of correctly predicted interactions found in the solved structure, FP 
= number of predicted interactions not found in the solved structure, and FN = number of interactions in the solved structure that are 
not predicted by the algorithm.
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values for structures that have the same number of nucleotides was considered. The accuracy 

measured with the PPV and STY values is presented in figure 4.

The MC and NAST programs failed to produce a folded structure in a few cases (see table 

4). MC was unable to predict some structures both from the sequence and the secondary 

structure, possibly due to the lack of a sufficient number of cyclic motif fragments to insert. 

Similarly, NAST failed in some cases, possibly due to the design of the fragment assembly 

algorithm. Both iFoldRNA and FARNA predicted a structure for every element in the data 

set.

To ensure a reliable predicted model in FARNA, we used 50 000 iteration cycles. Similarly, 

in NAST we consider one million steps3. In the MC-Fold/MC-Sym pipeline, when we 

predict the structure solely from the sequence, we consider the secondary structure that is 

ranked first by MC-Fold. For the 3D structure selection, we use the first-ranked structure 

according to the scoring function available on the MC-Sym analysis tool. Although in some 

programs better predictions might be possible by tuning many parameters, we used only the 

recommended values to make an unbiased comparison.

7.2. Tertiary-structure prediction results

Specificity (PPV) and sensitivity (STY) values describing the prediction accuracy for each 

program and system are shown in figure 4. Both PPV and STY take values between 0 and 1, 

where better predictions approach 1. Figure 4 shows that both PPV and STY values for MC 

are comparable and higher than those for the rest of the programs. This is due mostly to the 

library that MC uses that assembles nucleotide cyclic fragments by stacking base pairs. In 

contrast, FARNA, iFoldRNA, and NAST all have their PPV values higher than STY values. 

Thus, a smaller number of false interaction predictions are produced at the expense of a 

smaller number of correct predictions. An improvement in FARNA’s prediction is observed 

when the secondary-structure (base pair and base stacking) information is included, 

particularly in STY values where their average value increases from 0.37 to 0.63.

A different representation of the accuracy of each program is given using the RMSD and DI 

values as shown in figure S1 (available at stacks.iop.org/JPhysCM/22/283101/mmedia). 

Dashed lines represent the linear approximation to the RMSD values, and solid lines 

approximate the DI values. As expected, both RMSD and DI values increase rapidly as the 

length of the molecules increases. The best values start around 6Å RMSD, considered poor 

for protein predictions. We see that the performance improves dramatically when secondary-

structure information is added (lower graph) as opposed to the case for prediction using the 

sequence only (upper graph), with the best predictions now starting around 4Å RMSD. 

Except for FARNA and iFoldRNA, the slopes of the lines (when scaling the RMSD to DI 

values) do not change drastically, reinforcing the independence of these values from RNA 

size.

The accuracy of each program varies from structure to structure. In general terms, MC 

performs better in both prediction experiments (figure 4). Program iFoldRNA performs 

3The PDB structure 1N32 (16S rRNA) was used for fragment samples during the all-atom model formation step.
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better than FARNA for small molecules, but FARNA improves as the length increases. 

FARNA performs slightly better than NAST, but the difference in DI values shows that 

FARNA makes better use of secondary-structure information. A difference is also noted in 

the slope between the lines that describe the RMSD and DI accuracy values for iFoldRNA 

(blue lines, upper graph of figure S1, available at stacks.iop.org/JPhysCM/22/283101/

mmedia). This implies that iFoldRNA’s accuracy in predicting local features such as base 

pair and base stacking interactions is poorer than that for global structure prediction.

For further analysis, we next separate the data by structural context (hairpins, pseudoknots 

and junctions). Hairpins are easiest to predict (top row of figure S2, available at 

stacks.iop.org/JPhysCM/22/283101/mmedia), with lowest DI values observed. Prediction 

using sequence show that, except for a few structures, iFoldRNA and MC perform similarly. 

In particular, the peak at length 23 corresponds to a hairpin with 15-nt in the single-stranded 

region, and because alternative secondary structures with more canonical base pairs are 

possible, predictions are more difficult. Similarly, peaks at length 26, 33 and 36 correspond 

to structures that are difficult to predict. The main reason is that for these cases (PDB 387D, 

2OZB, and 2HW8) the native structure includes proteins that have kinked internal loops, 

thus distorting the RNA structure (e.g., see 2OZB in figure 3). Prediction using secondary 

structure shows that NAST and FARNA have similar accuracies. In general, MC performs 

better due to the nature of its cyclic fragments model that includes hairpin loops (figure 

5(a)); however, many non-canonical base pair interactions in the loop regions are not 

predicted.

The performance for pseudoknots (middle row of figure S2, available at stacks.iop.org/

JPhysCM/22/283101/mmedia) shows that the accuracy of prediction of FARNA and 

iFoldRNA, and of FARNA and NAST are overall similar. MC performs better in both 

experiments but fails to produce a model for most of the pseudoknot structures predicted 

from secondary structure. Figures 5(b) and (c) shows the backbone conformation of the 

solved pseudoknot structure (PDB 1L2X) in orange with a yellow background, against the 

backbone of the predicted structures. Predictions from the sequence alone fail to produce a 

more compact structure (figure 5(b)). This is expected since in general prediction from the 

sequence of RNA structures with pseudoknots is difficult. In contrast, a great improvement 

occurs when the secondary-structure information is given (figure 5(c)).

Prediction results of structures containing a junction are shown in the last row of figure S2 

(available at stacks.iop.org/JPhysCM/22/283101/mmedia). Although MC often outperforms 

other programs, it could not predict a structure for most of the RNA junctions even when 

secondary-structure information is given. DI values for FARNA and iFoldRNA, and for 

FARNA and NAST are comparable. Like for pseudoknot prediction, if secondary-structure 

data are given, then the prediction performance improves considerably. However, the long-

range interactions that often stabilize helical elements are required to produce an accurate 

model, as observed in figure 5(d) for the models produced by NAST (cyan curve) and 

FARNA (green curve). Also, the peaks in DI values at lengths 65 and 79 shown in figure S2 

(available at stacks.iop.org/JPhysCM/22/283101/mmedia) (last row left) correspond to two 

riboswitches that are structurally complex.
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Structure prediction using MC regularly gives the most accurate model. However, this 

program often fails to predict a structure (see table 4), and while helical regions are well 

modeled, non-canonical base pairs occurring at the loop region are rarely predicted. 

Although iFoldRNA often outperforms FARNA on predicting hairpins, their performances 

are similar for predicting pseudoknots and junctions. Similarly, the NAST and FARNA 

accuracies of prediction of hairpins using secondary-structure data are comparable.

Both FARNA and MC allow prediction of multiple folds or suboptimal folds. Although in a 

true prediction context, one does not have knowledge of the correct structure, the study of 

such multiple folds helps determine the robustness in the prediction programs. We 

considered a group of four representative structures consisting of two hairpins and two 

junctions (see table 5), and predicted up to five multiple folds for each structure. In some 

cases, MC predicted fewer suboptimal folds. FARNA produced all five folds for each case. 

MC produces overall similar results for the 2D structure, since the best structures having 

PPV and STY values (0.8–0.9) are similar to the average. The RMSD values from the best 

performances are below 9.5 for hairpins, and below 18.5Å for junctions. Thus, as the degree 

of topological complexity increases, MC’s performance worsens. In FARNA, the STY 

values from the multiple folds are better for hairpins, but worse for junctions. The fact that 

similar 2D structures yield very different 3D folds underscores the central difficulty in 

tertiary RNA prediction.

Furthermore, we analyzed the prediction accuracy of MC and FARNA from multiple folds 

using only sequence information on a hairpin (PDB 1KXK) and a junction (PDB 2QUS) 

structure (see table S1 in the supplementary material, available at stacks.iop.org/JPhysCM/

22/283101/mmedia). MC predictions show a drop in PPV average values from 0.9 to 0.8. 

Interestingly, the average RMSD values are similar to the predictions using secondary-

structure information shown above; this suggests that information from secondary structure 

affects more local features in these cases. Improving tertiary interactions, however, depends 

on the accurate determination of long-range contacts to position the RNA’s helical elements. 

Prediction accuracy with FARNA using only sequence information reduces considerably 

both local (PPV and STY) as well as global (RMSD) features, showing that both secondary- 

and tertiary-contact information is required for accurate prediction in these cases.

8. Discussion

Significant advances have been made over the last decade in RNA modeling, along with 

increasing computational resources and technologies for RNA investigations. It is 

encouraging to see that many of these advances have been achieved with relatively simple 

models, which combine energy or statistical potentials and fragment assembly techniques. 

These likely are effective due to RNA’s modular architecture and structural hierarchy. Still, 

further developments and refinements of the existing models are needed.

One of the major challenges in RNA tertiary-structure prediction is the determination of 

long-range interactions. One possible avenue for determining tertiary contacts may come 

from studies using multiple-sequence analysis. By comparing instances of each recurrent 

base pair or a larger structural element such as an RNA motif, one can identify neutral 
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mutations that preserve its structure and function [32]. Programs like SHEVEK [140] and 

ISFOLD [141] that use multiple-sequence alignment approaches are a step in that direction.

Current algorithms have shown how the use of experimental data can dramatically improve 

the structure prediction [63, 73–75]. But data from experimental techniques such as RNA 

SHAPES chemistry can potentially provide more information than just canonical WC base 

pairs. To determine non-canonical base pairs and tertiary contacts, further refinements in 

order to better exploit this information should be considered. Similarly, a program for 

automatically restricting the structural conformation space of a model on the basis of low 

resolution cryo-EM data might be valuable.

Several programs have exploited the hierarchical properties of RNA molecules. For instance, 

part of MC-Sym protocol’s success rests on the use of cyclic motifs. Yet current automatic 

prediction methods cannot exploit the modular properties of the more complex tertiary 

motifs as is done in ASSEMBLE and RNA2D3D. Similarly, recent studies on base–

phosphate interactions [33] have shown that such interactions are sufficiently frequent to be 

considered in an energy function similar to FARNA’s base pairing and base stacking 

interaction functions.

The Rosetta method has proven successful for protein prediction. A successful companion 

method for RNA requires changes in both the energy function and fragment elements. For 

instance, in contrast to the compact globular shapes of proteins, rather compact prolate 

ellipsoidal shapes are favored by RNA molecules [65, 142]. Functions like the radius of 

gyration that reward globular molecular conformations might not suit RNA. In addition, 

studies have shown that junctions arrange their helical arms in parallel and perpendicular 

configurations [60, 61]. A new scoring function that encourages these conformations can be 

helpful.

While the use of scoring functions that describe RNA–ion interactions will certainly 

improve RNA structure prediction, the computational effort of such a task might not be 

feasible initially. Assembly from structure fragments already in the presence of cations can 

circumvent this limitation, as is done in NAST, FARNA, and MC. Similarly, the use of 

RNA–protein interaction prediction programs can help improve predictions of RNAs in the 

presence of proteins.

In general, the prediction accuracy improves with added knowledge from the secondary 

structure and tertiary contacts, but these interactions can be greatly affected by the presence 

of proteins. The lack of correct functions that favor compact RNA-like structure and the 

failure to detect the presence of long-range interaction contacts remain challenges.

However, with the increasing interest and creation of a community devoted to RNA 

bioinformatics [39], we can anticipate many exciting developments in automated RNA 

structure prediction approaches in the coming decade. The growing appreciation for the 

biological importance of RNA makes such efforts more essential than ever.
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Figure 1. 
(a) RNA secondary structure is composed of stems and loop regions. Stems are formed by 

canonical GC, AU and GU wobble WC base pairs. Loop regions are formed by hairpins, 

internal loops and junctions. (b) Loop regions can form long-range interactions as in 

pseudoknots, or by using non-canonical base pairs. (c) Non-canonical base pairs: A486 (blue 

on the left) forms a trans Watson–Watson base pair with A511 (purple on the right), a trans 
Hoogsteen–Sugar base pair with G482 (red on top), and a cis Sugar–Sugar base pair with 

C505 (green at the bottom). The base pair interactions occur in the H. marismortui 23S 

rRNA structure (PDB 1S72).
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Figure 2. 
Number of RNA structures deposited in the NDB nucleic acid database (http://

ndbserver.rutgers.edu/) as of December 2009.
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Figure 3. 
Examples of RNA structures considered for prediction. These RNAs vary in length and 

structural complexity, including hairpins (PDB: 2QUS, 2OZB), pseudoknots (PDB: 2AP5), 

and junctions (PDB: 2DU3, 1LNG).

Laing and Schlick Page 26

J Phys Condens Matter. Author manuscript; available in PMC 2018 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
RNA structure prediction analysis. Specificity (PPV) and sensitivity (STY) values are sorted 

by length and compared among different prediction programs on the basis of sequence 

(upper chart) or secondary-structure information (lower chart). The curves are presented 

using the moving average trend lines based on two preceding values for each point.
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Figure 5. 
Structural alignments show the accuracy of diverse prediction programs. (a) Hairpin 

structures predicted from sequences using FARNA (green middle), iFoldRNA (blue left) and 

MC-Fold/MC-Sym (magenta right) against the known structure (orange with yellow 

background). ((b), (c)) Pseudoknot structures are predicted both from the sequence (b) and 

from secondary structure for iFoldRNA, FARNA and MC, respectively in (b), and FARNA 

and NAST, respectively. NAST (cyan) in (c) is also included. (d) Three-way junction 

structure predictions using secondary structures are aligned against the solved structure 

(orange with yellow background), for MC, FARNA, and NAST.
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