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Introduction

Skin, as the outermost layer of the body, is constantly exposed to ultraviolet B (UVB) 

irradiation and other environmental pollutants. Due to increased exposure to these pollutants, 

the incidence of skin cancer is steadily increasing worldwide (1–3). In the United States, 

non-melanoma skin cancer is the most common type of cancer, with more than 1 million 

new cases per year. Natural phytochemicals have been widely used as potential 

chemopreventive agents against skin cancers (4–6). Earlier studies suggest that 

phytochemical supplements, including curcumin (7), green tea (8) and ursolic acid (9), are 

effective in blocking both chemical-induced and UVB-induced skin carcinogenesis. 

However, the exact mechanisms by which these chemopreventive agents shift the balance 

from reactive intermediates to protective mechanisms by promoting detoxification and 

radical scavenging reactions remain unclear (10, 11).
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Epigenomic alterations, including DNA methylation, histone modification, and miRNAs, are 

associated with skin cancer development. These alterations could be useful biomarkers and 

novel therapeutic targets for the prevention and treatment of skin cancer. For example, drugs 

that target histone deacetylases (HDACs) and DNA methyltransferase (DNMT) inhibitors 

have been approved by the FDA as chemotherapeutics, although their toxicity limits their 

applications (12, 13). Aberrant epigenetic alterations have been observed in the initiation 

and progression of skin cancers (14–17). Certain dietary phytochemicals that possess 

chemopreventive effects have been reported to prevent cancer by targeting epigenetic 

modifications (18, 19). For example, sulforaphane and phenethyl isothiocyanate, which are 

derived from cruciferous vegetables and allyl compounds in garlic, have been reported to be 

potent inhibitors of HDACs and DNMTs (20–24).

In addition, increasing evidence indicates that oxidative stress and chronic inflammatory 

disorders contribute to the increased risk of many diseases, including skin cancers (26–28). 

The nuclear factor erythroid-2-related factor-2 (Nrf2) -antioxidant response element (ARE)-

mediated anti-oxidative stress and anti-inflammatory pathways appear to play a major role in 

protection against carcinogenesis (29, 30). Nrf2, which is also termed NFE2L2, is a basic-

region leucine zipper (bZIP) transcription factor that regulates the expression of many phase 

II detoxifying enzymes, including glutathione S-transferases (GSTs). Thus, Nrf2 protects 

against oxidative stress and electrophilic challenges to maintain cellular chemical 

homeostasis (31). In the cytosol, Nrf2 binds to Kelch-like ECH-associating protein (Keap1), 

a substrate adaptor protein for a CUL3-containing E3 ubiquitin ligase (32). In vivo studies 

have shown that Nrf2-deficient mice exhibit significantly lower levels of cellular defense in 

various tissues, as summarized in reviews (33, 34), with an increased risk of developing 

carcinogen-induced colorectal (35) and skin cancers (5, 36–38). Early studies have reported 

that sulforaphane’s role in phase 2 enzyme inducing activities and disruption of the Nrf2-

keap1 interaction (39). However, recent reports have identified effects of Sulforaphane on 

DNA methylation of the Nrf2 gene promoter, HDACs and DNMTs (25).

Fucoxanthin (FX) and astaxanthin (AST) are two major xanthophyll carotenoids (Figure 1). 

FX has strong antioxidant properties against obesity and inflammation (40–42). FX reduces 

the levels of reactive oxygen species (ROS), damage and apoptosis (43). FX increases the 

level of glutathione (GSH) by inducing glutamate-cysteine ligase catalytic subunit (GCLC) 

and glutathione synthetase (GSS) expression via the Akt/Nrf2 pathway in human 

keratinocytes cells (44). Recent reports have shown the protective effects of FX against 

UVB-induced photoaging and sunburn on the skin in vivo (45, 46). Another important 

xanthophyll, AST, is well known to have anti-oxidative activities (47–50), antitumor effects 

(51–53), hepatoprotective effects (54), anti-diabetic effects (55) and anti-inflammatory 

properties (56). Both in vivo and in vitro studies suggest that AST has health-promoting 

activities and could potentially be used for the prevention of various diseases, including 

cancers (57) and Parkinson’s disease (58). AST and its analog AST esters show protective 

effects against UVB – 7,12-dimethylbenz(a)anthracene (DMBA)-induced skin cancer in rats 

(59). We have previously reported that AST shows synergistic antioxidant effects with 

Polyunsaturated fatty acids (PUFAs) at low concentrations via the Nrf2/ARE pathway (60) 

and that AST decreased the methylation of the glutathione S-transferase P (GSTP1) gene 

(61). Recently, it has been reported that AST increases chromosomal stability and 
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normalizes epigenetic modifications in oocyte maturation (62). AST inhibited HDAC-9 

expression and facilitated the inactivation of hepatic stellate cells, which are critical for liver 

fibrosis development (63).

However, the effects of FX and AST on the reversal of abnormal epigenetic changes have 

not yet been clearly described in skin cells. The JB6 P+ is a promotion-sensitive and post-

initiated mouse epidermal cell line, an in vitro cell model for tumor promotion induced by 

tumor promoters such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth 

factor (64, 65). Human hepatoma HepG2 cells have been used as the model cell line for the 

study of phase II enzymes induction (66). We hypothesize that two important xanthophylls, 

FX and AST, inhibit the neoplastic transformation of mouse skin JB6 P+ cells induced by 

TPA. The molecular mechanism may be mediated by the activation of Nrf2-mediated 

pathways and epigenetic modification by targeting Nrf2 promoter demethylation by 

modulating the expression and activity of HDACs or DNMTs. Hence, we aimed to 

investigate the effects of AST and FX on the Nrf2-ARE signaling pathway and epigenetic 

modifications to elucidate the chemopreventive effects of AST and FX against skin cancers.

MATERIALS AND METHODS

Chemicals and reagents

FX and AST were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA). The MTS [3-

(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt)] test using the CellTiter 96® AQueous One Solution was purchased from 

Promega (Madison, WI, USA). 5-aza-deoxycytidine (5-aza, a DNMT inhibitor) and 

trichostatin A (TSA, an HDAC inhibitor) were obtained from Sigma-Aldrich. Fetal bovine 

serum (FBS), Dulbecco’s Modified Eagle’s Medium (DMEM), Minimum Essential Media 

(MEM) and trypsin-EDTA solution were purchased from Gibco Laboratories (Waltham, 

MA, USA). Penicillin G and streptomycin were obtained from Gibco Laboratories (Grand 

Island, NY, USA).

Cell culture and treatment

The human hepatocellular HepG2-C8 cell line was previously established by stable 

transfection with the pARE-TI-luciferase construct (provided by Dr. William Fahl, 

University of Wisconsin). Both the HepG2 immortalized human hepatoma cell line and 

mouse epidermal JB6 P+ cells were purchased from American Type Culture Collection. The 

HepG2-C8 cells were maintained in DMEM supplemented with 10% FBS. The JB6 P+ cells 

were maintained in MEM with 5% FBS. JB6 P+ cells stably transfected with shMock- and 

shNrf2-knockdown were established using virus-medidated short hairpin RNAs (shRNAs) 

maintained in MEM supplemented with 5% FBS and 2 ug/mL puromycin as previous 

described (25). Cells were treated with various concentrations of FX, AST or 5-aza in 

combination with TSA. The medium was changed every two days. 100 nM TSA was added 

to the medium with the 5-aza at 500 nM for another 18 hours before the cell harvest. All 

cells were maintained in the cell culture medium, which was supplemented with 10U/mL 

penicillin G and 100 μg/mL streptomycin at 37° C in a humidified 5% CO2 atmosphere. FX 
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and AST were dissolved in DMSO. DMSO was used as a vehicle in all experiments at a 

concentration of 0.1%.

Cell viability test – MTS assay

The JB6 P+ cells were seeded in a 96-well plate at a density of 5 × 103 cells/well for 24 

hours and were treated with DMSO 0.1%, FX, or AST at various concentrations for one day, 

three days or five days. The cell culture medium was changed every other day. The HepG2-

C8 cells were seeded in a 96-well plate at a density of 1 × 104 cells/well for 24 hours and 

then were treated with either DMSO 0.1% or various concentrations of FX for 24 hours in 

DMEM supplemented with 1% FBS. To determine cell viability, the CellTiter® 96 aqueous 

non-radioactive cell proliferation assay (Promega, Madison, WI, USA) was used according 

to the manufacturer’s instructions.

Luciferase reporter activity assay

Stably transfected HepG2-C8 cells were used to study the effects of FX on the Nrf2-ARE 

pathway. The HepG2-C8 cells were seeded at a density of 1×105 cells/well in 12-well plates 

for 24 hours. The cells were treated with vehicle or various concentrations of FX in DMEM 

supplemented with 1% FBS for 24 hours. ARE-luciferase activity was determined using the 

luciferase activity assay kit (Promega, Madison, WI, USA) according to the manufacturer’s 

instructions. The cells were lysed by the reporter lysis buffer in each well, and 10 μl of the 

cell lysate supernatant were analyzed for Nrf2-ARE activity using a Sirius luminometer 

(Berthold Detection System GmbH, Pforzheim, Germany). The results were normalized 

against the protein concentration in each sample as determined by a BCA protein assay 

(Pierce Biotech, Rockford, IL, USA). The results are expressed as an inducible fold change 

compared with the vehicle control (0.1% DMSO) from three independent replicates.

RNA extraction and quantitative real-time polymerase chain reaction

HepG2-C8 cells were seeded in 6-well plates at a density of 3 × 105 cells/well and then 

treated with vehicle or FX at various concentrations for another 6 hours. JB6 P+ cells were 

seeded in 6-well plates at a density of 1 × 104 cells/dish for 3 hours, 6 hours or 24 hours and 

then treated with the vehicle control, FX or AST at various concentrations for three days or 

as indicated in the figures. Total RNA was extracted using an RNeasy Micro Kit (Qiagen, 

Valencia, CA, USA), according to the manufacturer’s protocol. In total, 1 µg of RNA from 

each sample was used to synthesize the first-strand cDNA by the SuperScript III First-Strand 

cDNA Synthesis System (Invitrogen, Grand Island, NY, USA). The mRNA expression of 

Nrf2 and the Nrf2 downstream genes was determined using the Applied Biosystems 7900HT 

Fast Real-Time PCR System and compared with the vehicle control (0.1% DMSO). The 

primer pairs used were as previously described (25, 67).

Preparation of protein lysis and western blotting

The protein concentrations of the cleared lysates were determined using the BCA method 

(Pierce, Rockford, IL); 25 µg of the total protein was resolved by 4% to 15% SDS-PAGE 

(Bio-Rad, Hercules, CA). After electrophoresis, the proteins were electrotransferred to a 

polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford, MA). The PVDF 
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membrane was then blocked with 5% BSA in PBS-0.1% Tween 20 and then sequentially 

incubated with specific primary antibodies and horseradish peroxidase (HRP)-conjugated 

secondary antibodies. The blots were visualized by the Super Signal enhanced 

chemiluminescence detection system and documented using the Gel Documentation 2000 

system (Bio-Rad, Hercules, CA). The anti-Nrf2, anti-NQO1, anti-HO1, anti-SOD, and anti-

β-ACTIN antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA).

Anchorage-independent cell neoplastic transformation assay

JB6 P+ cells were used in the TPA-induced neoplastic transformation assay as previously 

described (25, 68). Cells were transferred to 1 mL of Basal Medium Eagle medium with 

0.33% agar over 3 mL of BME medium with 0.5% agar supplemented with 10% FBS in 6-

well plates. These cells were treated with 0.1% DMSO, TPA (20 ng/mL) alone, or TPA in 

combination with FX or AST. The colonies formed from the transformed cells were 

photographed using a computerized microscope system with the Nikon ACT-1 program 

(Version 2.20, LEAD Technologies, Charlotte, NC) and counted using the ImageJ program 

(Version 1.40g, National Institutes of Health).

DNA extraction and pyrosequencing

Genomic DNA was isolated from the treated JB6 P+ cells using the QIAamp DNA Mini Kit 

(Qiagen, Valencia, CA). The bisulfite conversion of the genomic DNA was performed using 

the EZ DNA Methylation Gold Kit (Zymo Research Corp, Irvine, CA) according to the 

manufacturer’s instructions as previously described (69). The converted DNA was amplified 

by PCR using the Platinum PCR SuperMix (Invitrogen, Carlsbad, CA) with primers 

designed for the Nrf2 gene promoter region that spanned the methylated CpG sites from 

−1226 to −1069, with the translational start site (TSS) referenced as +1, as previously 

described (70). The sequences of the primers were 5’- 

AGTAGTAAAAATATTTTTTTAGTTGGAGGT-3’ (sense), 5’ 

ATATAATCTCATAAAACCCCACCTCT-3’ (antisense), and 

ATTTTTTTAGTTGGAGGTTATT (sequencing). The following PCR amplification 

conditions were used: 3 minutes at 94°C; 30 seconds at 94°C, 45 seconds at 70/55°C and 1 

minute at 72°C for 15 cycles; 30 seconds at 94°C, 45 seconds at 60°C and 1 minute at 72°C 

for 25 cycles; and 5 minutes at 72°C for 1 cycle. The pyrosequencing was then carried out 

on the PCR products with a PyroMark Q 96 ID Sequencer from Qiagen (Valencia, CA, 

USA) using the pyrosequencing primers, enzymes and substrate (PyroMark Gold®Q96 

Reagents kit, Qiagen, CA, USA) per the manufacturer’s protocol.

DNMT and HDAC activity assays

The DNMT activity and HDAC activity assays were conducted using a DNMT Activity/

Inhibition Assay Kit (Epigentek, Farmingdale, NY) and an HDAC Activity/Inhibition Direct 

Assay Kit (Epigentek, Farmingdale, NY), respectively, following the manufacturer’s 

protocols. The nuclear protein fraction was extracted using the NEPER Nuclear and 

Cytoplasmic Protein Extraction Kit (Thermo Scientific, Pittsburgh, PA), and the relative 

DNMT activity was calculated based on the ratio of the treatment group to the control group 

after the normalization to the amount of protein.
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Data presentation and statistical analysis

At least three independent experiments were performed for each analysis. The results are 

presented as the mean ± standard error of the mean (SEM) of each group unless otherwise 

specified. The differences between the controls and the treated groups were evaluated using 

Student’s t-tests. Significance includes *, P < 0.05; **, P < 0.01; #, P < 0.001.

RESULTS

Cytotoxicity of FX and AST in JB6 P+ cells

The cell viability of the JB6 P+ cells was measured by the MTS assay as shown in Figure 2. 

The JB6 P+ cells were treated with various concentrations of FX or AST for one day, three 

days or five days to examine their cytotoxicity. Treatment with AST or FX showed time- and 

dose-dependent effects on the cell viability (Figure 2). The cell viability of JB6 P+ cells that 

were treated with 50 µM of AST was 91.4% after the 5-day treatment, which was much 

higher than the 23.5% cell viability after the 5-day treatment with 50 µM of FX. The cell 

viabilities following the AST (< 50 µM) and the FX (< 12.5 µM) treatments were greater 

than 50% after the 1-day, three-day and five-day treatments. These doses were used in the 

subsequent studies.

FX and AST inhibit the TPA-induced cell transformation of JB6 P+ cells

The effects of FX and AST treatment on the TPA-induced anchorage-independent growth of 

the JB6 P+ cells were examined in soft agar following a 14-day treatment (Figure 3). 

Compared with the TPA treatment alone, the FX and AST treatment, at various 

concentrations ranging from 6.25 µM to 25 µM, significantly decreased the number of JB6 P

+ transformed cell colonies in Figure 3. Representative figures were selected from three 

independent replicates and showed that the number and size of the JB6 P+ transformed cell 

colonies are smaller than those in the group treated with TPA alone in Figure 3A. Both FX 

and AST, at the selected doses, inhibited the TPA-induced JB6 P+ cell transformation with a 

relatively low toxicity, suggesting their potential to protect JB6 P+ cells against TPA-

induced carcinogenesis.

FX induces ARE-luciferase reporter activity in HepG2-C8 cells

To investigate the mechanism underlying these effects, we used HepG2-C8 cells that were 

stably transfected with the ARE-luciferase reporter vector. We have previously reported that 

AST, in concentrations ranging from 12.5 µM to 100 µM, significantly induced luciferase 

activity with a relatively low toxicity (60). In this study, HepG2-C8 cells were treated with 

100 µM of FX for 24 hours, and the cell viability was approximately 70% compared with 

that of the vehicle control, which was treated with 0.1% DMSO (Figure 4A). By comparing 

the cell viability of the FX-treated HepG2 cells with that of the JB6 P+ cells, it seems that 

the HepG2 cells are more resistant to the treatment toxicity of FX. FX significantly induced 

luciferase activity in a dose-dependent manner at concentrations ranging from 25 µM to 100 

µM (Figure 4B). However, 3.13 µM to 12.5 µM of FX did not significantly induce luciferase 

activity.
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FX increases the mRNA and protein expression levels of Nrf2 and downstream genes in 
HepG2-C8 cells

FX treatment increased the mRNA expression of Nrf2 (NFE2L2) at 50 µM significantly and 

SOD at dose-dependent manner in the HepG2-C8 cells. The mRNA expression levels of 

HO-1 and NQO1 were increased by FX treatment in a dose-dependent manner, but the 

increases were not significant (Figure 5A). The protein levels of Nrf2, NQO1, HO-1 and 

SOD were further evaluated in HepG2-C8 cells with various concentrations of FX by 

western blotting, as shown in Figure 5B and 5C. FX, in concentrations ranging from 3.13 

µM to 50 µM, increased the protein expression levels of Nrf2, NQO1, HO-1 and SOD in a 

concentration-dependent manner. These results suggest that FX has the potential to activate 

the Nrf2 pathway and, thus, antioxidant and detoxifying enzymes in HepG2-C8 cells.

FX increases the mRNA expression levels of Nrf2 and Nqo1

JB6 P+ cells were treated with FX or AST for 3 hours, 6 hours or 24 hours to investigate the 

dose-response and time course of the mRNA expression of Nrf2 (or Nfe2l2), Nqo1 (Figure 

6A) and Dnmts (Figure 6B). As shown in Figure 6A, 24-hour treatment with FX 

significantly increased the mRNA expression of Nrf2 by 2.8-fold at 12.5 µM (P = 0.012) and 

2.0-fold at 25 µM (P = 0.047). Additionally, 25 µM of FX significantly induced the mRNA 

expression of Nqo1 at all measured time points. Compared with FX, AST significantly 

increased Nrf2 mRNA expression from 6 hours and only decreased its expression at 25 µM 

with the 24-hour treatment. Regarding Nqo1, there was no significant change, but AST 

reduced the mRNA expression of Nqo1 by 0.82-fold at 6.25 µM (P = 0.04). As shown in 

Figure 6B, FX, at concentrations ranging from 6.25 µM to 25 µM, significantly reduced the 

mRNA expression of Dnmt1 after 24 hours of treatment. The protein expression of DNMT1 

was significantly reduced by the treatment of FX but not AST (Figure 6C). However, 12.5 

µM and 25 µM of FX induced the mRNA expression of Dnmt3b after the 24-hour and 3-

hour treatments, respectively. AST reduced the mRNA expression of Dnmt3a by 0.81-fold 

after the 3-hour treatment (P = 0.015) and 0.71-fold after the 24-hour treatment (P = 0.015). 

However, AST significantly increased the mRNA expression of Dnmt3b after the 6-hour 

treatment and decreased its expression at 6.25 µM after the 24-hour treatment, but no 

significant changes occurred with the other concentrations.

Knockdown of Nrf2 in TPA-induced JB6 P+ cell transformation in the treatment of FX and 
AST

The efficiency of shMock and shNrf2 in JB6 P+ cells was examined and the protein 

expression of Nrf2 was significantly reduced in shNrf2 JB6 P+ cells in Figure 7A (P < 0.01). 

Treatment of FX from 6.25 µM to 25 µM suppressed the colony number significantly in both 

shMock and shNrf2 JB6 P+ cells. Compared to FX, the treatment of AST at 25 µM 

significantly inhibited the TPA-induced anchorage-independent growth of the shMock JB6 P

+ cells but not in the shNrf2 JB6 P+ cells. The knockdown of Nrf2 in shNrf2 JB6 P+ cells 

showed significantly decreased resistance of the cells to TPA-induced cell transformation 

with the treatment of AST at 25 µM but not FX (Figure 7B&C). The protective role of AST 

at 25 µM in shNrf2 JB6 P+ cells was significantly reduced compared to shMock JB6 P+ 

cells. These results suggest preventive effects of AST and FX in TPA-induced JB6 P+ cell 
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transformation are not completely dependent on the Nrf2 on TPA-induced JB6 P+ cell 

transformation.

FX decreased the methylated CpG ratio in the Nrf2 gene promoter region by 
pyrosequencing

Furthermore, pyrosequencing was performed to determine the methylation status of the Nrf2 

promoter region (Figure 8). Hypermethylation in the first five CpG sites was observed, and, 

on average, 90.1% of these five CpG sites were in the Nrf2 promoter region, which is 

consistent with previous reports. We previously reported that 5-aza, a DNMT inhibitor, and 

TSA, an HDAC inhibitor, in combination decreased the CpG methylation levels in the Nrf2 

gene promoter region in murine prostate cancer TRAMP C1 cells and human prostate cancer 

LNCaP cells (69, 70).

HDAC and DNMT activity assays

AST (25 µM) significantly reduced the DNMT activity in the JB6 P+ cells after a three-day 

treatment (Figure 9A); however, the 3-day AST treatment did not have a significant effect on 

the HDAC activity (Figure 9B). Compared with AST, FX at a low dose of 6.25 µM 

significantly reduced the DNMT activity by 67.5% (P = 0.0051), but there was no significant 

change in the HDAC activity.

DISCUSSION

Oxidative stress occurs through free radicals that oxidize nucleic acids, proteins, and lipids, 

causing a gradual deterioration and leading to degenerative diseases, such as cancer and 

heart disease (71). The main characteristic of an antioxidant is its ability to induce enzymes 

that trap free radicals (72). Although the biochemical process by which chemoprotective 

agents protect against cancers that are caused by oxidative stress has not been fully 

discovered, phase II detoxifying/antioxidant enzymes clearly play a role in fighting oxidative 

stress and preventing cancers (30). These enzymes detoxify harmful substances by 

converting them into hydrophilic metabolites that can then be excreted from the human 

body. Studies have shown that the higher the presence of the phase II detoxifying/

antioxidant enzymes, such as NAD(P)H, NQO1, GSTM2, HO-1 and SOD, in the tissue, the 

less susceptible the tissue is to cancers. Nrf2 and its interaction with AREs increase the 

transcription of these phase II detoxifying/antioxidant enzymes (30). Our present study 

shows that FX increased the ARE-luciferase activity in HepG2-C8 cells transfected with the 

ARE-luciferase vector (Figure 4) and increased the mRNA and protein expression of Nrf2, 

NQO1, HO-1 and SOD in HepG2-C8 cells. In addition, FX increased the mRNA expression 

and proteins expression of Nrf2 after 24 hours treatment in JB6 P+ cells (Figure 6). 

However, the FX-mediate suppression of TPA-induce transformation is not completely 

dependent on Nrf2, because there was no significant difference between the shMock and 

shNrf2 JB6 P+ cells. It’s possible that the FX-mediated inhibition in TPA-induced 

transformation is through other mechanisms including P53-mediated apoptosis and 

disruption of Nrf2-Keap1 signaling pathway and Nrf2-downstream target genes.
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Another possible mechanism by which FX may prevent oxidative stress and, ultimately, 

cancer is through epigenetic alterations to Nrf2 DNA methylation, which cause changes in 

gene expression without altering the DNA composition itself. Epigenetic regulation, 

including DNA methylation and histone modification, is an important process in cancer 

development. The DNMT enzymes DNMT1, 3a and 3b are directly involved in transferring 

methyl groups to DNA cytosine. In this study, we observed that both FX and AST inhibited 

the activity of DNMTs, but there was no significant difference in the activity of HDACs 

(Figure 8). We found that FX decreased the mRNA and protein expression of DNMT1 

significantly, which may be one of the underlying mechanism for the FX-induced 

demethylation of Nrf2. For the Nrf2 expression, although there was no significant difference 

on Nrf2 mRNA expression with the treatment of FX at 6.25 µM (Figure 6A), the protein 

expression of Nrf2 was induced by FX at 6.25 µM significantly (Figure 6D). In addition, 

DNMT activity can be modulated by other molecular interactions, post-translational 

modifications and alternative splicing as summarized in review (6). It is possible that FX at 

higher concentrations may interact with other mechanisms to increase the activity of 

DNMTs (Figure 9A) to compensate the reduced DNMT1 protein expression (Figure 6C). In 

our previous study, the epigenetic reactivation of the Nrf2 pathway appeared to be an 

important mechanism for the inhibition of TPA-induced transformation of JB6 P+ cells (25). 

We observed that FX significantly reduced the methylation of the first CpG sites in the Nrf2 

promoter region, particularly the fourth CpG site (Figure 8), and expression of DNMT1 

(Figure 6C). Compared with FX, AST did not change the methylation of the CpG sites in the 

Nrf2 promoter region, but 5-aza+TSA, the positive control, significantly reduced all five 

CpG sites (Figure 8).These data suggest that, although AST and FX share similar structures, 

their underlying mechanisms of Nrf2 activation differ in their inhibition of the TPA-induced 

transformation of JB6 P+ cells. Further studies will be necessary to elucidate the effects of 

FX and AST on the expression and methylation other genes involved in the Nrf2-keap1 

signaling pathway.

FX and AST are both novel marine carotenoids with antioxidant properties that reduce 

oxidative stress markers. The protective effects of FX and AST have recently been 

identified, including the effects of FX against UVB-induced photoaging and sunburn on skin 

(45, 46) and the effects of AST against UVB-DMBA-induced skin cancer in rats (59). In a 

recent clinical report, AST helped reduce oxidative stress and free radical production in 

athletes and healthy subjects during physical exercise [31]. The health-promoting effects of 

FX and AST make them highly valuable carotenoids and potential dietary/topical treatments 

for various diseases; however, their effects and mechanisms in skin cancer prevention remain 

to be further elucidated.

CONCLUSION

In conclusion, our present study shows that FX activates the Nrf2 pathway, thereby 

contributing to the inhibition of the TPA-induced transformation of JB6 P+ cells. 

Furthermore, 6.25 µM of FX significantly decreased the DNMT activity, mRNA expression 

of Dnmt1 after a 24-hour treatment, and methylation of the Nrf2 methylation region. FX and 

AST activate the Nrf2 pathway, showing a potentially protective role in skin cancer 

prevention.
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ABBREVIATIONS

ARE anti-oxidant response element

AST astaxanthin

5-aza 5-aza-deoxycytidine

DNMT DNA methyltransferase

DNMT1 DNA methyltransferase 1

DNMT3a DNA methyltransferase 3a

DNMT3b DNA methyltransferase 3b

DMSO dimethyl sulfoxide

FBS fetal bovine serum

FX Fucoxanthin

GCLC Glutamate-Cysteine Ligase, Catalytic Subunit

GSH glutathione

GSS Glutathione synthetase

GST glutathione-S-transferases

GAPDH glyceraldehyde 3-phosphate dehydrogenase

HO-1 heme oxygenase-1

HDAC histone deacetylases

NQO1 NAD(P)H: quinone oxidoreductase 1

Nrf2 nuclear factor (erythroid-derived 2)-like 2, or NFE2L2

qRT–PCR quantitative reverse-transcriptase polymerase chain reaction

ROS Reactive oxygen species

SEM standard error of the mean
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Figure 1. 
Chemical structures of FX and AST.
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Figure 2. Cell viability of the JB6 P+ cells after treatment with FX or AST.
JB6 P+ cells were treated with various concentrations of FX or AST for one-, three- or five-

days as described in Materials and Methods. Cell viability was determined by the MTS 

assay. The data are presented as the means ± SEM.
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Figure 3. Inhibitory effects of AST and FX on the anchorage-independent colony formation of 
JB6 P+ cells.
The colonies that exhibited anchorage-independent growth were counted under a microscope 

using ImageJ software. (A) Representative images under a microscope; (B) The graphical 

data are presented as the means ± SEM of three independent replicates. **, P < 0.01 and 

***, P < 0.001, indicate significant differences between the treatment groups and TPA alone. 

Student’s t-test was used to calculate the significance of the differences.
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Figure 4. Cell viability and induction of ARE-luciferase activity by FX treatment in HepG2-C8 
cells transfected with the ARE-luciferase vector.
(A) Cell viability of the JB6 P+ cells after treatment with FX. Cells were treated with 

various concentrations of FX ranging from 3.13 µM to 100 µM for one day. Cell viability 

was determined by the MTS assay. The data are presented as the means ± SEM. (B) The 

luciferase activity was normalized based on the protein concentrations in the BCA protein 

assay. The data are presented as the means ± SEM of three independent experiments. **, P < 

0.01 and ***, P < 0.001 indicate significant differences between the treatment groups and 

the control group (DMSO 0.1% without FX). Student’s t-test was used to calculate the 

significance of the differences compared with the control.
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Figure 5. Effects of FX on the relative endogenous mRNA and protein expression of Nrf2 and 
downstream genes in HepG2-C8 cells.
(A) mRNA expression of Nrf2 (NFE2L2), NQO1, HO-1, and SOD. RNA was extracted 

from HepG2-C8 cells treated with various concentrations of FX for one day. The data are 

expressed as the means ± SEM of three independent replicates. β-Actin was used as an 

endogenous housekeeping gene. (B) Protein expression of Nrf2 (NFE2L2), NQO1, HO-1, 

and SOD. β-ACTIN was used as the housekeeping protein. (C) Quantification by 

densitometry from at least three independent experiments. The results are presented as the 

means ± SEM. Student’s t-test was used to calculate the significance of the differences 

compared with the control*, P < 0.05.
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Figure 6. Effects of FX and AST on the relative endogenous mRNA expression of Nrf2, Nqo1, 
and Dnmts and protein expression of Nrf2 and DNMT1 in JB6 P+ cells.
mRNA expression of Nrf2 (Nfe2l2), Nqo1(A), and Dnmts (B). RNA was extracted from JB6 

P+ cells treated with various concentrations of FX or AST for 3 hours, 6 hours or 24 hours. 

β-Actin was used as an endogenous housekeeping gene. Protein expression of Nrf2 (C) and 

DNMT1 (D) after 24 hours treatment of FX or AST. β-ACTIN was used as the 

housekeeping protein. The data are expressed as the means ± SEM of at least three 

independent replicates. Student’s t-test was used to calculate the significance of the 

differences compared with the control, *, P < 0.05, **, P < 0.01, and ***, P < 0.001.
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Figure 7. Inhibitory effects of AST and FX on the anchorage-independent colony formation of 
shNrf2 and shMock transfected JB6 P+ cells.
(A) Reduced Nrf2 protein expression in shNrf2 JB6 P+ cells with representative figure and 

quantification from three independent replicates. The colonies that exhibited anchorage-

independent growth were counted under a microscope and further analyzed using ImageJ 

software. (B) Representative images under a microscope; (C) The graphical data are 

presented as the means ± SEM of three independent replicates. **, P < 0.01 and ***, P < 

0.001, indicate significant differences between the treatment groups and TPA alone. 

Student’s t-test was used to calculate the significance of the differences.
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Figure 8. Effects of FX and AST on methylation alteration in the Nrf2 promoter regions in JB6 P
+ cells by pyrosequencing.
Cells were treated with various concentrations of FX, AST or 5-aza for three days. The 

medium was changed every two days. 100 nM TSA was added to the medium with the 5-aza 

at 500 nM for another 18 hours before the cell harvest. The methylation patterns of the first 

five CpG sites located at positions –1226 to –1086 from the TSS (defined as position 1) in 

the Nrf2 promoter were determined by pyrosequencing as described in the Materials and 
Methods section. (A) Methylation of the first five CpG sites from the Nrf2 promoter region. 

The data are presented as the means ± SEM of at least four independent replicates. *, P < 

0.05 and ***, P < 0.001 indicate significant differences between the treatment groups and 

the control group. Student’s t-test was used to calculate the significance of the differences 

compared with the control.
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Figure 9. Effects of FX and AST on the activities of DNMTs and HDACs.
JB6 P+ cells were treated with various concentrations of FX and AST for three days. The 

relative DNMT and HDAC activities were normalized to the protein amount of each group 

and were calculated based on the ratio of the FX and AST treatment groups to the control 

group following the manufacturer’s protocol. The results of (A) DNMT activity and (B) 

HDAC activity are presented as the means ± SEM. Student’s t-test was used to calculate the 

significance of the differences compared with the control. **, P < 0.01.
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