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Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and 

a growing number of other indications are investigated in clinical trials. To ensure optimal 

treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship 

between electrode location and clinical results, a precise reconstruction of electrode placement is 

required, posing specific challenges to the field of neuroimaging. Since 2014 the open source 

toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become 

a popular platform for DBS imaging. With support of a broad community of researchers 

worldwide, methods have been continuously updated and complemented by new tools for tasks 

such as multispectral nonlinear registration, structural / functional connectivity analyses, brain 

shift correction, reconstruction of microelectrode recordings and orientation detection of 

segmented DBS leads. The rapid development and emergence of these methods in DBS data 

analysis require us to revisit and revise the pipelines introduced in the original methods 

publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using 

a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort 

of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is 

co-registered using five algorithms and nonlinearly warped into template space using ten 

approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible 

using three methods and a specific refinement tool), the volume of tissue activated is calculated for 

two DBS settings using four distinct models and various parameters. Finally, four whole-brain 

tractography algorithms are applied to the patient’s preoperative diffusion MRI data and structural 

as well as functional connectivity between the stimulation volume and other brain areas are 

estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of 

selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the 

amount of variance in clinical improvement that can be explained by the computer model 

depending on the method of choice.

This work represents a multi-institutional collaborative effort to develop a comprehensive, open 

source pipeline for DBS imaging and connectomics, which has already empowered several studies, 

and may facilitate a variety of future studies in the field.

Introduction

In the field of deep brain stimulation (DBS), precise electrode placement is crucial for 

optimal treatment outcomes. Specifically, a direct relationship between electrode 

localization and clinical outcome has been shown in multiple studies (e.g. Butson et al., 

2011; Dembek et al., 2017; Eisenstein et al., 2014; Garcia-Garcia et al., 2016;Horn et al., 

2017c; Mosley et al., 2018b; also see fig. 1 A). To characterize this relationship in an 

objective manner, tools are required that facilitate the reconstruction of electrode placement 

such that comparisons between patients can be made. Group comparisons play a crucial role 

in identifying optimal electrode placement, providing both direct clinical and theoretical 

insights. Ideally, to fulfill reproducibility and transparency criteria needed for good scientific 

practice, these tools should be open source and publicly available. Finally, a specific 

challenge that differentiates the field of DBS imaging from most other neuroimaging 

domains is the need for absolute anatomical precision. A shift of two mm in electrode 
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placement may represent a major change in clinical outcome, while in conventional fMRI 

studies, a change of an activity peak by two mm has little if no impact at all (figure 1).

In 2014, the software toolbox Lead-DBS was published that aimed at reconstructing DBS 

electrode placement based on pre- and postoperative imaging (Horn and Kühn, 2015; 

www.lead-dbs.org; RRID:SCR_002915). Using the toolbox, electrodes may be localized in 

relationship to surrounding brain anatomy. Since its initial publication, development efforts 

have continued at multiple institutions. Thus, over the years, numerous progress has been 

made and better alternatives for most steps described in the original pipeline are now 

provided (Ewert et al., 2018a; 2018b; Horn et al., 2017a; 2017b; 2017c). Moreover, several 

novel features that were not mentioned (or available) in the original publication have 

recently become crucial components of DBS imaging. These have now been integrated in 

the latest release. While other tools with similar aims have been introduced after publication 

of Lead-DBS (Bonmassar et al., 2014; da Silva et al., 2015; D’Albis et al., 2014; Husch et 

al., 2017; 2018; Lauro et al., 2015), the tool was recently described as the most established 

toolbox for electrode localizations (Husch et al., 2017) with over 6600 downloads and 75 

citations. The aim of the project is to develop a scientific platform in a multi-institutional 

endeavor that is and remains available under an open license (GNU general public license v. 

3) to ensure reproducibility and version control.

The growing user base of Lead-DBS as an academic toolbox and the divergence of the 

current methods and those described in the initial publication raise the need of an updated 

methodological pipeline description. In addition, we also use the opportunity to emphasize 

the latest default analysis options, pitfalls and methods throughout the pipeline.

Given the complexity of multiple processing stages (see figure 2 & tables 1-4), a thorough 

empirical evaluation of each stage exceeds the scope of this work. For instance, it would 

represent a study in itself to empirically probe which normalization method, which 

stimulation volume model or which fiber tracking approach could yield best results. Such 

studies have been conducted (Åström et al., 2014; Dembek et al., 2017; Fillard et al., 2011; 

Klein et al., 2009; Maier-Hein et al., 2017; McIntyre et al., 2004) and are currently 

underway in context of the Lead-DBS environment, as well (Ewert et al., 2018a). Instead, 

the aim of the present article is to give an overview of methods available in Lead-DBS. To 

make the processing stages concrete, the pipeline is described using a single patient example 

with state-of-the art high-field (3T) imaging as well as a retrospective sample of 51 PD 

patients imaged at 1.5T. The result is a focus on the methods section and a descriptive results 

section covering co-registration, normalization, electrode localization, VTA estimation, and 

structural-functional connectivity analyses. Finally, we demonstrate that more variance in 

clinical outcome may be explained when using the default pipeline in comparison to a more 

“standard neuroimaging” approach. The manuscript has a narrative prose with the aim of 

maximizing understandability while omitting unnecessary details where possible. Moreover, 

while the manuscript is still structured into conventional sections, the methods descriptions 

exceed the actual processing of the study with the aim of illustrating the multiple approaches 

implemented in Lead-DBS and providing notes about motivation and potential limitations.
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Methods

Patient Characteristics, Surgery & Imaging

Example patient—A male patient (65y) suffering from Parkinson’s Disease received two 

octopolar segmented DBS leads (Boston Scientific Vercise; BSci, Marlborough, 

Massachusetts, United States) targeting the subthalamic nucleus (STN). Surgery was done 

under general anaesthesia with two wakeful phases in which microelectrode recordings were 

obtained using a Neuro Omega drive (Alpha Omega Engineering, Nazareth, Israel) with a 

45° rotated Ben Gun array. In the same session, test stimulations were performed. 

Recordings started 7.5 mm before reaching the target and were acquired in 15 consecutive 

steps of 0.5 mm. Recordings of cells with typical STN firing patterns were later transferred 

to the Lead-DBS session. Test stimulations were made at three mm dorsal to and at the 

surgical target. In a second surgery five days afterwards, a Boston Scientific Vercise Gevia 

Impulse Generator was implanted in the chest. Detailed imaging parameters can be found in 

supplementary material.

Retrospective patient cohort—Data from the patient described above embodies a state-

of-the-art example dataset acquired at 3T including a specialized basal ganglia MR sequence 

and patient-specific diffusion MRI. To further illustrate the impact that different processing 

streams may have on typical clinical MRI data, we included data from a priorly published 

retrospective cohort that is described in detail elsewhere (Berlin cohort in Horn et al., 

2017c). In brief, 51 patients received quadropolar electrodes (Medtronic type 3389) to the 

STN region to treat Parkinson’s Disease. Pre- and postoperative imaging was performed on a 

1.5T MRI and included a preoperative T1 and T2 sequence as well as postoperative axial, 

coronal and sagittal T2 slabs of the basal ganglia. Six of 51 patients received a postoperative 

CT instead (for detailed imaging parameters see supplementary material and Horn et al., 

2017c).

Linear (Within-Patient) Co-Registrations—When a patient folder is loaded in Lead-

DBS, a bias-field correction step based on the N4 algorithm is automatically applied to all 

pre-operative MRI sequences (Tustison et al., 2010). Based on configuration preferences, 

Lead-DBS chooses one of the preoperative sequences as the anchor modality, i.e. the 

stationary sequence to which all other (preoperative and postoperative volumes) sequences 

are co-registered. By default, the T1-weighted sequence is used or if unavailable the T2-

weighted sequence is substituted. This anchor modality is upsampled to isotropic 0.7 mm 

resolution to maintain high resolution in following steps. This step is common in similar 

pipelines (e.g. Gunalan et al., 2017). A reason is that (e.g. T2 weighted) acquisitions 

acquired in clinical routine often come in high in-plane resolution (e.g. 0.5 mm) but poor 

slice thickness (2-3 mm). If these images are resliced to a 1 mm isotropic MP-RAGE, much 

in-plane resolution is lost. Thus, our pipeline compromises on a 0.7 mm isotropic working 

space to which the anchor modality is resliced (images need to be resliced for multispectral 

normalizations). Several linear registration algorithms are included in Lead-DBS (see table 

1). In the present example patient and retrospective cohort, all available preoperative 

acquisitions (i.e. T2, PD, FGATIR as well as the FA volume derived from the dMRI scan) 

were co-registered and resliced to the upsampled T1 using SPM 12 (https://
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www.fil.ion.ucl.ac.uk/spm/software/spm12/). Similarly, the postoperative CT was co-

registered using Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/). Co-

registration results were then manually checked using built-in tools that facilitate visual 

inspection which may be enhanced by automatic edge detection based wire-frame generation 

of the anchor modality, and false-color overlays.

Co-registration is a crucial step to achieve precise results since the preoperative data is used 

to define anatomy and the postoperative to define electrode locations. Thus, imprecise 

registrations lead to erroneous results in the end. In clinical settings, especially on MRI, 

postoperative volumes are often slabs (i.e. don’t cover the whole brain). Accurately 

registering these to preoperative data is especially challenging for registration algorithms 

and at times, postoperative data must be registered manually (e.g. using tools as 3D Slicer; 

www.slicer.org).

Nonlinear (Patient-to-Template) Co-Registrations—To relate electrode placement to 

anatomy and to make them comparable across patients and centers, it is useful to register 

individual patient anatomy to a template space. These template spaces often allow the most 

likely location of anatomical structures to be better defined, and can then be used to project 

subcortical atlases (table 5) or whole-brain parcellations (table 6) onto regions of interest.

In the original Lead-DBS publication, all registrations between patient and template space 

were performed in a linear way following the approach introduced by Schönecker and 

colleagues (Schönecker et al., 2009). This approach was especially developed for DBS and 

followed a three-step registration with incremental focus on the subcortical region of 

interest. In the revised version of Lead-DBS, multiple nonlinear options have been added 

(table 2). Most of the included approaches were adapted with their parameters tuned for 

optimal results in the DBS context. Most refinements were performed based on experience 

in the daily use of the pipeline across multiple institutions. Recently, a study systematically 

analyzed results of various methods in which over 11,000 nonlinear deformations were 

solved and compared (Ewert et al., 2018a). Results of this study led to the present default 

presets implemented in Lead-DBS (figure 2). It is beyond the scope of the present work to 

describe every modification in each method in detail but the ability to explain clinical 

improvement using some examples was estimated for the retrospective cohort analyzed here 

and some details about modifications in regard to subcortical optimization are mentioned in 

the supplementary material.

Brain Shift Correction—During surgery, air may enter the skull after it is opened. This 

leads to a nonlinear deformation of the brain in relation to the bone which is called brain 

shift and typically pushes the forebrain into occipital direction (due to supine position of the 

patient). Especially when the pneumocephalus is still present during postoperative imaging, 

it introduces a bias between electrode (postoperative image) placement and anatomical 

structures on preoperative acquisitions. Whilst brain-shift introduces non-linear transforms, 

applying non-linear registration techniques to correct this would also deform the electrodes 

projections and corrupt the corresponding anatomical overlap. To avoid this, our brain-shift 

correction method uses the threefold linear registration described above (see Schönecker et 
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al., 2009 for validation), which is stored internally and applied to DBS electrode placement 

afterwards (figure S1).

Electrode Localization—In Lead-DBS, the process of reconstructing electrode 

placement is divided into an automated (“pre-localization”) and a manual (“localization”) 

step. A wide range of electrodes from five manufacturers are readily implemented in Lead-

DBS (table 7) and it is straight forward to implement custom models.

Automated pre-Localization: For the pre-localization part, four methods are available:

1. Manual click-and-point tool

2. Integration with 3D Slicer in which fiducial points are placed manually.

3. TRAC / CORE approach (Horn and Kühn, 2015)

4. The PaCER toolbox (https://adhusch.github.io/PaCER/; Husch et al., 2017).

In practice, PaCER usually requires very little to no manual refinement compared to the 

TRAC/CORE algorithm, but requires a postoperative CT acquisition in contrast to the other 

methods.

Manual Localization: The user-interface of this crucial processing step was specifically 

designed to allow for highly precise electrode reconstructions. At all times, the postoperative 

volume is visualized along planes that are cut orthogonally to the electrode (when moving 

the lead reconstruction in space, these cuts are updated in real time). A specialized “x-ray 

mode” can be activated in which the same view is enhanced by averaged stacks of 

orthogonal slices surrounding the lead. This visualization mode is helpful to reconstruct 

electrodes in poor resolution acquisitions where partial volume effects may blur or even shift 

the electrode artifact in space.

Estimating the Local Volume of Tissue Activated—The Volume of Tissue Activated 

(VTA) is a conceptual volume that is thought to elicit additional action potentials due to the 

electrical stimulations of axons (McIntyre and Grill, 2002). Much work has been done in 

this regard and models with increasing sophistication were introduced over the years (e.g. 

Åström et al., 2014; Butson and McIntyre, 2008; Chaturvedi et al., 2013). In contrast, some 

more clinically oriented papers aimed at finding fast heuristics to determine the rough extent 

of the VTA based on the stimulation parameters without actually creating a spatial model 

(Dembek et al., 2017; Kuncel et al., 2008; Lauro et al., 2015; Mädler and Coenen, 2012). 

Three such simple heuristic models are included in Lead-DBS (Dembek et al., 2017; Kuncel 

et al., 2008; Mädler and Coenen, 2012), and a more sophisticated, finite element method 

based approach was added in 2017 (Horn et al., 2017c; table 3). On a spectrum between 

simple heuristical and highly sophisticated models, it falls in the middle. This model was 

briefly described in the aforementioned publication and follows the overall concept 

described in (Åström et al., 2014). However, a full methods description of the specific model 

has not been published and can be found in the supplementary material.
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Connectivity Estimation—In the revised version of Lead-DBS, several possibilities to 

estimate structural and functional connectivity exist. These are accessible via the 

submodules Lead Connectome, Lead Group and Lead Connectome Mapper. Moreover, 

single-patient connectivity metrics may be visually explored in the general 3D viewer 

module of the software (EIVis).

Methods may be divided into approaches that utilize patient-specific vs. normative/group-

level resting-state functional MRI (rs-fMRI) or diffusion-weighted imaging based 

tractography (dMRI). Moreover, they can be subdivided in voxel-wise / data-driven or 

parcellation-/ROI-based methods.

Patient Specific Connectivity Estimates: A structural-functional processing pipeline was 

implemented into the Lead Connectome submodule based on the pipeline described in 

(Horn, 2015; Horn and Blankenburg, 2016; Horn et al., 2014). For rs-fMRI, the pipeline 

follows the recommendations given in (Weissenbacher et al., 2009). Briefly, this includes 

motion-correction (SPM based), detrending, regression of white matter and CSF-signals as 

well as motion parameters and bandpass-filtering (cutoff-values: 0.009-0.08 Hz) of time 

series. In dMRI, a Gibbs’ ringing removal step (Kellner et al., 2015) is performed before 

passing the diffusion data into either of four tools subsequently used to estimate a whole-

brain tractogram (for a list of fiber-tracking methods implemented in Lead-DBS, see table 

4). The Gibbs’ tracking algorithm was superior to nine competing algorithms in the 2009 

Fiber Cup (Fillard et al., 2011) and was added as the first method. Its successor, a model-

free version (Konopleva et al., 2018) of the Mesotracker algorithm (Reisert et al., 2014) was 

subsequently added to equally investigate mesoscopic properties of fiber tracts and support 

multi-shell diffusion data. Recently, the Generalized q-Sampling Imaging approach (Yeh et 

al., 2010) implemented in DSI Studio (http://dsi-studio.labsolver.org/) achieved the highest 

“valid connection” score in an open competition among 96 methods submitted from 20 

different research groups around the world (Maier-Hein et al., 2017). As a result, this 

method was included into Lead-DBS as well. Finally, a dated simple tensor based 

deterministic method is also available for debugging or testing purposes.

Normative or population based Connectomes: In the DBS field, large cohorts exist in 

which patient-specific connectivity data is lacking. In such datasets, a novel technique that 

combines normative group connectome data with single-patient imaging results may be 

used. These group connectomes were informed by large cohorts of subjects or patients (e.g. 

N = 1000 in case of the Yeo 2011 normative connectome) that were often acquired on 

specialized MR hardware (such as the human connectome scanner at the Athinoula A. 

Martinos Center, Boston, MA; Setsompop et al., 2013). The utility of such normative 

connectomes in a clinical context was first demonstrated by mapping various neurological or 

psychiatric symptoms to networks influenced by stroke lesions (Boes et al., 2015; Darby et 

al., 2016; 2017; Fasano et al., 2017; Fischer et al., 2016; Laganiere et al., 2016). Recently, 

the approach was adapted to the field of DBS in first studies (Horn et al., 2017c; 2017b; 

2017a) and, in order, to predict clinical outcome of transcranial magnetic stimulation 

treatment (Weigand et al., 2017).
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A natural limitation of the approach is that the normative connectome data does not account 

for patient-specific differences in brain connectivity. However, despite its potential 

shortcomings in individualized connectivity, the use of normative connectomes has a major 

practical advantage, since larger cohorts of DBS patients with individualized connectivity 

data are not available and connectivity sequences in DBS patients are difficult to acquire 

postoperatively. As such, this approach is able to utilize large DBS cohorts collected across 

different centers, while studies using patient-specific connectivity are based on small cohorts 

(typically N < 25; e.g. Accolla et al., 2016; Akram et al., 2017; Vanegas Arroyave et al., 

2016). Along the same lines, the approach may prove particularly valuable for emerging 

DBS indications in which only a limited number of patients are implanted world-wide. Thus, 

the ability to retrospectively analyze such DBS datasets despite the lack of patient-specific 

connectivity data represents a genuine window into understanding the role of brain 

connectivity in mediating DBS outcome.

The methods utilizing normative connectomes are implemented in the Lead Connectome 

Mapper, Lead Group and ElVis tools (figure 2). For an overview of normative connectomes 

available within Lead-DBS, see table 8.

Explaining variance in clinical outcome within the retrospective 1.5T cohort

DBS-Electrodes of the retrospective cohort were localized using Lead-DBS (see fig. 2) after 

several normalization and registration strategies were performed. Specifically, preoperative 

acquisitions were registered into template space using the two default approaches (SPM 

New Segment and ANTs SyN) identified in (Ewert et al. 2018a). In addition, the ANTs SyN 

approach without the subcortical refinement step was applied. Finally, a T1-only 

monospectral approach (FSL FNIRT) was added to compare results with a more typical 

“standard procedure” used in the neuroimaging field. Electrode localizations (performed in 

native space) where then registered to template space using the deformation fields obtained 

by the various approaches and VTAs were calculated using default parameters in template 

space. Overlaps between VTAs and the subthalamic nucleus as defined by the DISTAL atlas 

(Ewert et al. 2018b) were calculated for both hemispheres and summed up. In addition, 

overlap between the E-field and the STN were calculated in a weighted fashion by 

multiplying the binary STN image with the non-binary E-Field and summing up voxels. 

Finally, streamlines were isolated from a priorly published normative connectome based on 

the Parkinson’s Progression Marker Inititative (PPMI) data (Marek et al. 2011; Ewert et al. 

2018) using the E-Field of the SPM New Segment method as a weighted seed.

These imaging based metrics (VTA-STN overlap, E-Field-STN weighted overlap, weighted 

streamlines seeding from E-Field connected to SMA) were correlated with empirical % 

improvement on the Unified Parkinson’s Disease Rating Scale (UPDRS) III. In a second 

step, they were fed into general linear models (GLM) that additionally included seven 

additional clinical covariates of the sample (age, sex, percent improvement in Levodopa 

response, disease duration until surgery, Levodopa Equivalent Daily Dosage (LEDD) ON 

and OFF DBS as well as %LEDD reduction by DBS). From these GLMs, root-mean-square 

error (RSME), R2-Statistic and p-value of the F-statistic as well as significance predictors 

are reported.
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Methods summary

A list of tools to which interfaces exist or that form a native (preinstalled) part of Lead-DBS 

is given in table 10. To make deliberate choices regarding which option to choose for each 

processing step, users require a high methodological level of understanding. To account for 

this, figure 2 gives an overview of the “default pathway” through Lead-DBS which is further 

demonstrated in detail in a walkthrough-video available online (http://www.lead-dbs.org/?

page_id=192).

Results

Patient Outcome

3T example patient: Before surgery, the 64 year male patient had an UPDRS-III score of 

64 points (OFF dopamine replacement therapy; Hoehn-Yahr stage IV). Seven days post-

surgery, the patient was discharged with an appreciable stun effect and a subjective 

improvement of gait. Stimulation was set to 0.5 mA bilateral on the lower segmented 

contacts (ring mode). Under stimulation and medication, a UPDRS-III of four points was 

taken. At the time of writing, no score under dopaminergic withdrawal and under stimulation 

is available but will be taken during the three-month postoperative visit.

Retrospective 1.5T cohort: The 51 (18 female) patients were 60 ± 7.9 years old at time 

of surgery and UPRDS-III improved by 45.3 ± 23.0% from a baseline points (postoperative 

OFF at 12 months) of 38.6 ± 12.9 to 21.1 ± 8.8 (DBS ON, Med OFF at same day). Disease 

duration at time of surgery was 10.4 ± 3.9 years and LEDD reduction was 52.8% (1072.72 

in baseline vs. 484.57 at 12 months post surgery).

Preoperative baseline of the sample had been 32 ± 11 UPRDS-III points in Med OFF vs. 12 

± 5 points in Med ON conditions (53.5 ± 17.2% percent improvement in levodopa response).

Image Registration

Co-registration results of T2- and if available PD- and FGATIR sequences as well as 

postoperative MR / CT to the anchor-modality (T1) were done using default presets (figure 

2) and were accurate upon visual inspection. Results of the 3T example patient are shown in 

figure 3A. Similarly, fractional anisotropy (FA) computed from the preoperative dMRI 

acquisition in the 3T example patient was registered to T1. All preoperative sequences 

(including FA if available) were used for nonlinear registrations to template space in the 

ANTs-based approaches (shown in rows 1-3 in figure 4 for the 3T example). In these 

multispectral warps, the T1-scan was mapped to the T1 template, T2 to T2, PD to PD (figure 

3B). The FA volume was instead paired with the FMRIB58 FA template (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) that had been registered to 2009b space using 

an MNI-152 6th-gen to 2009b space transform (Horn, 2016). Since no FGATIR-template 

exists in 2009b space, Lead-DBS automatically paired this scan with an aggregated PCA 

template (Horn, 2017). The linear three-step registration was included mainly for 

reproducibility purposes (Schönecker et al., 2009) but equally supports multispectral 

registrations. In the MAGeT Brain-like approaches (rows 4-5 in figure 4), only T1-, T2- and 

PD-weighted acquisitions were used given these sequences were available in the IXI 
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database of age-matched peer-brains (i.e. “templates” in MAGeT nomenclature). SPM-based 

approaches (rows 6-7 in figure 4) used all preoperative acquisitions except the FA volume. 

Here, volumes were not paired with a specific template as in the ANTs-based registrations. 

Instead, tissue priors were used to learn posterior segmentations using voxel intensities 

across image modalities (Ashburner and Friston, 2005). All methods except the FNIRT and 

Linear Three-Step registrations were able to precisely segment the STN target region based 

on manual inspection. Note that the FNIRT method does not support multispectral warps 

and estimated the warp based on the T1 volume only (on which the STN is not visible). This 

may explain the mismatch in template vs. subject STN target regions.

Finally, in the 3T example patient, brain shift correction led to a refined registration between 

postoperative CT and preoperative anchor modality (T1). A shift of 0.17 mm to the left, 0.9 

mm to anterior and 1.66 mm in dorsal direction was introduced (figure 5). In the present 

case, not much pneumocephalus was present and the example may rather demonstrate the 

introduction of higher robustness and precision with an additional subcortical refinement 

transform. An example of the tool in case of prevalent pneumocephalus may be seen in the 

methods figure S1.

Electrode Reconstructions

In the 3T example patient, the PaCER method found an optimal solution including location 

of electrode contacts in a fully automated manner whereas the TRAC/CORE method 

robustly reconstructed the trajectory but contacts had to be adjusted manually. Final fully 

automatic PaCER reconstruction is shown in figure 6. In the subsequent step, orientation of 

the segmented electrode was reconstructed using the Directional Orientation Detection 

(DiODe) algorithm, an updated version of the approach described in (Sitz et al., 2017). 

Relative to a marker position pointing strictly to anterior, rotation of the electrodes was 

corrected by 65° (right lead) and 30° (left lead) clockwise as seen from the tip, respectively. 

Final MNI coordinates of planning (lowermost) contacts were x = 11.6, y = −16.2, z = −9.1 

on the right and x = −12.7, y = −15.1, z = −10.7 mm on the left. Relative to the 

midcommissural point, in stereotactic coordinates, these corresponded to x = 11.5, y = −4.4, 

z = −5.9 (right) and x = −12.7, y = −3.9, z = −7.0 mm (left).

Microelectrode Recordings

After electrode reconstruction, classifications (no cell activity, unspecific cell activity, clear 

STN typic activity pattern) recorded in the 3T patient were mapped to the subcortex and are 

shown in figure 7 for the right hemisphere. On both sides, boundaries of firing patterns on 

the top and bottom of the STN corresponded well to the atlas-/imaging-defined STN. For 

instance, in the left lateral trajectory, no clear STN activity was reported and in agreement to 

that, the trajectory traverses outside (lateral) to the imaging-defined STN throughout its 

whole course.

VTA Calculation

Stimulation parameters of 2 mA on the planning contact (ventral segmented level in ring 

mode) were calculated using the FEM-model and standard vs. frequency adapted 

conductivity values (figure 8 A, B). Here, the “heuristic” electric-field (E-field) threshold of 
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0.2 V/mm was used. The E-Field is the first derivative of the voltage distribution across the 

tissue surrounding the electrode. To demonstrate the possibilities of segmented electrodes, 

an additional unidirectional setting was calculated (figure 8 C, F). Finally, to allow for 

comparison with heuristic VTA models implemented in Lead-DBS, 2 V estimates on a ring 

electrode (Medtronic model 3389) are shown in figure 8 D, E using the Mädler or Kuncel 

models, respectively.

Connectivity from VTA to other Brain Regions

Top row of figure 9 shows results of the (3T patient’s) patient-specific deterministic DTI 

tractography, Gibbs’-tracking (GT), Mesotracking (MF-GT) and Generalized Q-sampling 

Imaging (GQI) approaches (whole connectome) as well as Human Connectome Project 

(HCP; Setsompop et al., 2013; Horn et al., 2017a) and PPMI (Marek et al. 2011; Ewert et al. 

2017) based normative connectomes. In the bottom row of figure 9, fiber tracts running 

through the VTA defined in figure 8A and C are shown. Figure 10 shows connectivity 

profiles from the VTA defined in figure 8A projected to the cortex using various structural 

and functional connectomes.

Explaining clinical improvement in retrospective cohort

Results are summarized in table 9. Briefly, volumes of overlap correlated significantly with 

the empirical clinical outcome (FSL FNIRT: R = 0.38 at p = 0.007, ANTs SyN without / 

with subcortical refinement: R = 0.47 / 0.49 at p < 0.001; SPM New Segment: R = 0.52 at p 

< 0.001). Weighted overlaps between E-Field and STN correlated higher with clinical 

improvement for all normalization methods (FSL FNIRT: R = 0.46 at p < 0.001, ANTs SyN 

without / with subcortical refinement: R = 0.47 / 0.52 at p < 0.001 / < 10−4, SPM New 

Segment: R = 0.54 at p < 10−4). Mid column of figure 11 summarizes these findings. When 

adding additional clinical co-variates to a GLM to explain motor improvement (right column 

in figure 11), RMSE was comparable between methods (~14-16%) but explained variance 

was 8% higher between best (SPM New Segment with E-Field) vs. worst (FSL FNIRT with 

binary VTA) methods (table 9).

Panel A of figure 11 shows the FNIRT method (which does not work multispectrally and 

had only T1 MRIs as input, thus has poor if any information on the STN location) in 

combination with a binarized VTA. This approach could be seen as a “common 

neuroimaging” approach since most fMRI studies use T1 weighted images in their 

normalization step and binarized VTAs are common in the field. Panels B and C show the 

two multispectral Lead-DBS default pathways identified in (Ewert et al. 2018a) and apply a 

weighted VTA (E-Field magnitude). Both yield a similar outcome of ~R = 0.5, increasing 

the amount of variance explained by imaging alone from ~14% (FNIRT T1) to ~26% (Lead-

DBS defaults). Their connectivity strength (number of weighted streamlines to the SMA as 

defined by the 6ma entry – the medial and anterior parcel of sensorimotor numbered results 

– of the Glasser et al. 2016 parcellation) was calculated using Lead Connectome Mapper. 

Resulting values were equally correlated with empirical motor improvement scores (fig. 11 

panel D).
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Discussion

We present a comprehensive and advanced processing pipeline to reconstruct, visualize and 

analyze DBS electrode placement based on neuroimaging data. Specific strengths in 

comparison to other tools are a seamless integration with a wide array of neuroimaging tools 

(table 11), a strong focus on precise spatial normalization and connection to a structural and 

functional connectome pipeline that facilitates connectivity analyses within the DBS context 

(figs. 9 & 10).

Contributions of the present paper are three-fold. First, an overview is provided regarding 

the novel neuroimaging methods that were added or updated over the course of four years 

since the initial publication of Lead-DBS. Second, a default pathway navigating through the 

multiple options in both DBS and connectome pipelines is outlined (figure 2). This pathway 

is motivated by both empirical data (Ewert et al., 2018a; Fillard et al., 2011; Klein et al., 

2009; Maier-Hein et al., 2017) and by the experience of the Berlin DBS center where Lead-

DBS or similar applications were used to localize roughly three thousand DBS electrodes 

since 2008. Third, results of various processing steps are visualized for a single patient and 

quantitatively analyzed in a retrospective analysis of 51 patients. In the latter, we do not only 

demonstrate that overlap between stimulation volumes and the subthalamic nucleus may 

explain clinical motor improvement, but we also show that the amount of variance explained 

may depend on the applied preprocessing strategy. Specifically, in the cohort investigated 

here, the advanced multispectral normalization pipelines implemented as defaults in Lead-

DBS are able to explain more variance in clinical outcome than a “typical neuroimaging” 

pipeline.

In total, Lead-DBS includes five methods for linear co-registrations (table 1), ten 

normalization approaches (table 3), four approaches for electrode reconstructions, four VTA 

models (table 4) and four whole-brain tractography pipelines (table 6). Twenty-four 

subcortical atlases (table 2) and 17 brain parcellations (table 7) are pre-installed. Finally, two 

functional and four structural connectomes were converted into a format suitable for use in 

Lead-DBS (table 8). Taken together, these resources build a comprehensive toolbox for DBS 

electrode localization and the analysis of local (coordinate- or VTA-based) and global 

(structural and functional connectivity) features. While the number of these methods may 

introduce complexity, a user-friendly “default pathway” (figure 2) was established which 

works robustly and well for most applications. This pathway was established while working 

on several studies that were empowered by Lead-DBS with a variety of clinical and 

scientific aims. Some of these used Lead-DBS to integrate population based neural activity 

with anatomical structures (“Subcortical Electrophysiology Mapping” approach; Accolla et 

al., 2017; Geng et al., 2018; Horn et al., 2017b; Lofredi et al., 2018; Neumann et al., 2017; 

van Wijk et al., 2017). Other studies used connectivity profiles from DBS electrodes to 

predict clinical outcome (Horn et al., 2017c) or combined electrophysiological measures 

with DBS contact connectivity profiles (Accolla et al., 2016). In an effort to improve the 

safety profile of DBS implantations, some aimed at determining the relationship between 

electrode positions and clinical side effects or non-motor symptoms (Mosley et al., 2018b; 

2018a). Finally, in other publications, the main aim was to ensure that the analyzed 

electrodes were indeed placed within the target region (Barow et al., 2014; Brücke et al., 
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2014; Ehlen et al., 2017; Hohlefeld et al., 2015; 2017; 2013; Krause et al., 2015; 2016; 

Kroneberg et al., 2017; Merkl et al., 2016; Neumann et al., 2015; 2016; Schroll et al., 2015; 

Tiedt et al., 2016).

The precision of Lead-DBS

Quantifying the precision of the processing pipeline is a difficult task but a frequently asked 

question and crucial to the widespread use of the tool. Unfortunately, without postmortem 

histological examination, no real ground truth exists. However, some indirect measures may 

help to address the question. First, it should be mentioned that errors may originate from 

several sources including i) MR-distortion artifacts, ii) within-patient co-registration 

including brain shift, iii) patient-to-template normalization and iv) electrode localization. 

Quantifying the first source falls under the domain of MR physics research and goes beyond 

the present scope. Still, it is advisable to apply distortion correction steps in each MR 

sequence if possible – even more so when high field magnets are involved. Second, errors in 

linear co-registration can be minimized by care- and skillful inspection of the data. The 

check co-registation and brain shift correction modules were specifically designed for the 

task at hand and iteratively improved to suit the needs and precision of DBS imaging. For 

instance, the brain shift correction step often sensibly corrects registrations on a 

submillimeter scale (figs 5 and S1). Normalization procedures were recently addressed in a 

comparative study (Ewert et al., 2018a). The study defined the default normalization 

pipeline which, depending on data quality, resulted in an average surface distance of 

STN/GPi boundaries between 0.38 and 0.75 mm, while inter-rater distance was between 

0.41 and 0.82 mm. Based on these results, the pipeline is able to segment STN and GPi 

nuclei equally well as human experts. In this context, an anteroposterior iron gradient in the 

STN poses an additional problem for this specific target. The posterolateral sensorimotor 

part of the nucleus that is targeted to treat movement disorders contains less iron than its 

anteriomedial parts, often rendering it smaller on MRI than it actually is (Dormont et al. 

2004, Richter et al. 2004, Schäfer et al. 2011, de Hollander et al. 2014, Massey et. al 2012). 

This makes the registration of this specific nucleus to a template space more error-prone 

than other targets and yet again raises the need for ultra high-field multispectral preoperative 

imaging (e.g. see Forstmann et al. 2017, Keuken et al. 2014). Fourth, in the electrode 

reconstruction step, prior studies have used phantoms to verify that electrode artifact centers 

in MRI (Pollo et al., 2004; Yelnik et al., 2003) and CT (Hemm et al., 2009; Husch et al., 

2017) indeed correspond to electrode centers in the brain. To this end, the PaCER algorithm 

as the default reconstruction algorithm for postoperative CT yielded an average 

reconstruction error below 0.2 mm – again depending on data quality. On the other end of 

the spectrum, the “x-ray mode” of Lead-DBS was specifically designed to reduce errors 

introduced by partial volume effects in imaging data of suboptimal resolution. In summary, 

all sources of error can be minimized by using high-quality imaging data, distortion 

correction and careful inspection or registration and localization results. Based on the 

retrospective cohort analysed in the present study, we demonstrate that the specialized and 

elaborate default pipeline of Lead-DBS may add to the amount of variance explained in 

DBS imaging data.
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Reproducibility, Open Science & Experimental Features—As stated above, a key 

mission of Lead-DBS development is to provide a platform for DBS imaging that is and 

remains i) free of use, ii) reproducible, open source & transparent, and iii) independent from 

commercial manufacturers. While this hinders the application in a clinical context (see 

below), within research, it has several advantages. First, the free software nature offers 

excellent worldwide accessibility, the possibility of fast skill dissemination in open 

workshops or courses within the academic field. Similarly, it is easy to script, automate and 

modify as permitted by the open source license while this is tedious or impossible in closed 

environments of clinical software. Second, transparent and open source code that is 

developed in a version controlled fashion (https://github.com/leaddbs/leaddbs) permits 

excellent reproducibility that is required for good scientific practice. In contrast, 

undocumented changes or discontinuity in the commercial applications may impose risks for 

producing consistent results. Discontinuation of commercial products has happened on 

multiple occasions in the field of DBS (table 10). Consequently, published studies that used 

discontinued software exist and are now hard if not impossible to reproduce. A slightly less 

obvious advantage of academic software is that its development is much more flexible. 

Commercial applications undergo highly involved and time-consuming certification 

processes to achieve CE-marks or FDA-approvals for safe use in clinical context. Needless 

to say, this is a great advantage or even requirement for clinicians but may drastically slow 

down software development. Furthermore, new research tools may not be easily integrated 

into commercial pipelines since these would require re-certification. In contrast, new tools 

can be integrated into academic software from idea and concept to end-user deployment 

within days. For instance, in 2009, the global fiber tracking approach (Reisert et al., 2011) 

won the Neurospin Fiber Cup evaluated as the best fiber tracking software compared to nine 

competitors (Fillard et al., 2011). With help from its developers, the Gibbs’ Tracker was 

integrated into the Lead Connectome pipeline within weeks. Recently, a newer comparative 

study found that the generalized q-sampling algorithm implemented in DSI studio yielded 

the highest "valid connection" score (Maier-Hein et al., 2017). Again, with kind support and 

permission of the developer, this method was integrated into Lead-DBS. A last example is 

the brain shift correction feature that was developed from idea to published code during a 

three day “brainhack global” event in 2017 at MIT (Craddock et al., 2016). Finally, a strong 

focus of clinical applications lies on their usability and processing speed. This is important 

since tools are used by medical personnel working under stressful circumstances where 

introduction into various complex software tools and long processing times are not tolerable. 

In contrast, in a research setting, search for innovative application, and development of new 

features outweighs the burden of computational time. Often, high performance compute 

clusters are available or jobs are run overnight. Thus, processes with high computational cost 

will be optimized for speed and standard applications in the former and for development and 

precision in the latter context. These thoughts illustrate that both types of tools – i.e. clinical 

vs. academic software – are needed. Given contradictory demands, a one-stop solution 

serving all purposes is hard if not impossible to create.

Limitations and Future Directions

In comparison to the first release, version 2 represents a major update and a drastically 

enhanced pipeline for DBS imaging. However, further development is planned to address 
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remaining limitations and further maximize precision of the pipeline. To this end, the 

pipeline and resulting models may be broken down into four layers, each of which could be 

further improved as technology and methodology advance (figure 12). First, an anatomy 

layer describes the local surroundings of the electrode and helps to define electrode 

placement initially. This layer is presently defined by imaging and brain atlases (of which 

some may be informed by histology or other sources of information, table 2). It was 

mentioned multiple times that naturally, overall precision drastically depends on imaging 

quality (Ewert et al., 2018a; Husch et al., 2017). Crucially, the MR protocol of the 3T 

example patient represents a state-of-the art pipeline achievable in typical hospital settings 

and comprises a specialized basal ganglia sequence (FGATIR; Sudhyadhom et al., 2009). 

However, the diffusion-MRI acquired here may not be optimally suited to investigate the 

fine and complex details around DBS targets but was possible to scan within clinical routine. 

An example of a more optimal scan protocol can be found in (Akram et al., 2017). 

Moreover, as discussed in our original article (Horn & Kühn 2015), the use of postoperative 

CT or MRI each has specific advantages (higher signal to noise of the electrode on CT but 

direct visibility of surrounding anatomical structures on MRI, no radiation). It is hard to tell 

on empirical grounds which is better but the visibility of structures on the MRI generates a 

strong argument in favor for postoperative MRI – with the possibility to much more 

deliberately control for accuracy of post- to pre-co-registration around the target region. 

Similarly specialized methods like quantitative susceptibility mapping (Wang and Liu, 2015) 

or the use of ultra-highfield MRI (Forstmann et al., 2017; 2014) are other potential ways of 

increasing anatomical precision. As figure 1 illustrates, DBS target regions are typically 

small in size and reside in complex surroundings with a multitude of fiber tracts and 

functional segregations. Thus, sources above and beyond MRI may be needed to refine 

definition on the anatomy layer. To this end, techniques like polarized light imaging (Axer et 

al., 2011) or anisotropic scattering imaging (Shin et al., 2014) as well as the registration of 

histological stacks into template space (Alho et al., 2017; Amunts et al., 2013; Chakravarty 

et al., 2006; Ewert et al., 2018b; Forstmann et al., 2016; Jakab et al., 2012; Yelnik et al., 

2007) are already applied increasingly.

The second layer deals with modeling the local stimulation effects which are often 

represented by an E-Field or VTA. The anatomy layer directly informs these computations 

given distinct and even anisotropic conductivity values present in gray or white matter 

(Butson et al., 2006; Horn et al., 2017c). As mentioned above, to this end, other groups have 

created much more elaborate models over the last twenty years. Among others, pioneering 

work by the McIntyre, Butson, Grill, van Rienen and Wårdell groups should be mentioned 

(e.g. Åström et al., 2014; 2009; Butson et al., 2006; Butson and McIntyre, 2008; Chaturvedi 

et al., 2013; Gunalan et al., 2017; Schmidt et al., 2013; Schmidt and van Rienen, 2012). A 

practical disadvantage of these models is that they require manual interventions at multiple 

stages and use of a multitude of software applications (some of which are expensive 

commercial solutions; e.g. see Gunalan et al., 2017). On the other end of the spectrum, even 

simpler models exist that were successfully employed in clinical context (Dembek et al., 

2017; Kuncel et al., 2008; Lauro et al., 2015; Mädler and Coenen, 2012; Vanegas Arroyave 

et al., 2016). Still, while it remains to be shown that more clinical variance may be explained 
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when applying more sophisticated models, the stimulation layer is definitely one where 

Lead-DBS has yet much room for improvement.

The third layer deals with the transition from a local VTA to a global volume of modulation 

by applying brain connectivity. Using tractography or functional connectivity to estimate 

which other brain areas could potentially be modulated by DBS is a powerful technique that 

was already used to predict clinical outcome in PD patients (Horn et al., 2017c). However, a 

big challenge is that both methods are highly indirect. As recently demonstrated, 

tractography results are dominated by false positive connections (Maier-Hein et al., 2017). 

On the other hand, resting-state functional MRI is only able to give rough statistical 

dependencies between an indirect measure of brain activity that operates on a very slow 

temporal scale. Thus, the conclusions drawn from these measures need careful interpretation 

and benefit from validation via anatomical or electrophysiological work. For instance, the 

use of combined LFP-MEG recordings (Litvak et al., 2011; Neumann et al., 2015; Oswal et 

al., 2016) may validate fMRI findings and vice versa, while animal, tracer or gross-

dissection studies may be used to interpret tractography results (e.g. Forel, 1877; Iwahori, 

1978; T. Kita and H. Kita, 2012; Marburg, 1904). With these limitations in mind, it should 

be mentioned that the two main tractography algorithms included in Lead-DBS were each 

best performers in large open competitions (Fillard et al., 2011; Maier-Hein et al., 2017) and 

a specific advantage of the GQI method in clinical context lies in its low false positive score 

(Maier-Hein et al., 2017).

Finally, a fourth layer could be seen as modeling dynamics or connectivity changes induced 

by DBS. This layer is not touched upon here, but computational modeling based on 

empirical data seems the only way to investigate how brain activity and connectivity 

responds to stimulation of a specific target. Already, Lead-DBS was used in such basal 

ganglia modeling studies (Schroll et al., 2015) and an aim of future versions is to incorporate 

or interface with modeling software – steadily working toward a “virtual patient” model that 

facilitates a better understanding of DBS.

In conclusion, we present an updated, advanced and integrative platform for DBS imaging 

research that is openly available with the aim to further elucidate the mechanisms of DBS 

and improve therapeutic outcome for DBS patients worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of abbreviations

ANTs Advanced Normalization Tools, see http://stnava.github.io/

ANTs/

BSpline-SyN ANTs normalization method; Explicit B-spline 

regularization in symmetric diffeomorphic image 

registration

CORE Algorithm for “reconstruction of electrode contact 

positions” defined in Horn & Kühn 2014

DARTEL SPM normalization method; A fast diffeomorphic image 

registration algorithm.

DiODe Directional Orientation Detection (Sitz et al. 2017)

dMRI Diffusion-weighted MRI – in the context of diffusion-

imaging based tractography.

FA Fractional Anisotropy

FGATIR Fast Grey Matter Acquisition T1 Inversion Recovery

FLIRT FMRIB's Linear Image Registration Tool

FNIRT FSL normalization method; FMRIB's Nonlinear Image 

Registration Tool

FSL FMRIB Software Library, see https://fsl.fmrib.ox.ac.uk/

GNU Recursive acronym for “GNU's Not Unix.”; GNU GPL is a 

popular open license supported by the Free Software 

Foundation (see http://www.gnu.org). The Free Software 

Foundation (FSF) is a nonprofit with a worldwide mission 

to promote computer user freedom.

GPi internal segment of the globus pallidus

GPe external segment of the globus pallidus
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GQI Generalized q-sampling imaging, dMRI processing method 

implemented in DSI studio

HCP Human Connectome Project

LEDD Levodopa Equivalent Daily Dosage

MAGeT Brain Multiple Automatically Generated Templates brain 

segmentation algorithm, see https://github.com/CobraLab/

MAGeTbrain

PaCER Precise and Convenient Electrode Reconstruction for DBS, 

see https://adhusch.github.io/PaCER/

PCA Principal Component Analysis

PPMI Parkinson’s Disease Progression Marker Initiative

PPN Pedunculopontine nucleus

RN red nucleus

ROI Region of Interest

RSME Root-mean-square error

QSM Quantitative Susceptibility Mapping

rs-fMRI Resting-state functional MRI

SHOOT SPM normalization method; Diffeomorphic registration 

using geodesic shooting and Gauss–Newton optimisation

SPM Statistic Parametric Mapping, see http://

www.fil.ion.ucl.ac.uk/spm/software/spm12/

STN subthalamic nucleus

SyN ANTs normalization method; Symmetric diffeomorphic 

image registration / symmetric image normalization

TRAC Algorithm for “trajectory reconstruction” defined in Horn 

& Kühn 2014

UPDRS Unified Parkinson’s Disease Rating Scale

VTA Volume of Tissue Activated
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Figure 1: 
In DBS imaging, “millimeters matter”, which poses specific methodological challenges. A) 

Re-analysis of the Berlin cohort described in (Horn et al., 2017c) shows that proximity of 

active contact centers to an optimal target is predictive of %-UPDRS-III improvement (left). 

The target was defined in a meta-analysis (Caire et al., 2013) and transformed to MNI space 

in a probabilistic fashion (Horn et al., 2017a). Active contacts between electrodes of patients 

51 and 21 are a mere two mm away from each other, but result in largely different clinical 

results (right). The same distance (two mm) corresponds to the average image resolution of 

functional MRI for which many neuroimaging tools were initially developed. Thus, in the 

field of DBS imaging, the distance of two mm plays a crucial role, whereas it is often 

considered insignificant in common neuroimaging studies. B) Coronal polarized light 

imaging section of the human subthalamic nucleus with surrounding tracts. Image courtesy 

by Prof. Karl Zilles and Dr. Markus Axer, Forschungszentrum Jülich, INM-1. C) Coronal 

section of the BigBrain dataset (Amunts et al., 2013) as visualized in the microdraw online 

application (http://microdraw.pasteur.fr/). Cell sparser and denser subregions are discernible, 

potentially corresponding to functional zones of the nucleus (Marani et al., 2008). B) and C) 
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demonstrate the tightly-packed anatomical complexity of the STN-DBS target region that is 

similarly reflected in clinical outcome (A). Of note, only a subregion of this small nucleus is 

considered an optimal DBS target. The combination of such small and complex DBS targets 

with a potentially huge impact of small misplacements poses extreme challenges to the field 

of DBS imaging and raise the need for high-precision pipelines.
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Figure 2: 
A “default pathway” through Lead-DBS. Processing stages are visualized in consecutive 

order, general choices are displayed for each step while default selections are marked with 

red arrow and bold text. For the normalization step, a larger evaluation showed both the 

ANTs SyN and SPM Segment approaches to perform equally optimal (Ewert et al., 2018a). 

The DBS and connectome pipelines work in parallel but seamlessly integrate via the order 

marked by the blue dashed line. After calculating results with Lead Connectome Mapper 

(last box), results may be used to predict clinical outcome using the Lead Predict tool (not 

shown) based on a model described in (Horn et al.,2017c).
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Figure 3: 
A) Co-registration results of the 3T example patient. Lead-DBS linearly registers 

preoperative T2, PD, FGATIR and FA volumes to the T1 anchor modality (visualized as red 

edge contours) using SPM. Similarly, by default, postoperative CT is linearly mapped to T1 

using ANTs. A tone mapped version of the CT is shown (equally displaying brain- and 

bone-windows). B) In the following ANTs-based normalization step, the T1 volume will be 

registered to the T1-weighted MNI template (2009b NLIN Asym space; not shown). 

Likewise, T2 and PD volumes will be mapped to T2-/PD-templates. FGATIR volume by 

default is mapped to a synthetic PCA template while FA to a registered version of the 
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FMRIB58_FA template. These five transforms result in a joint nonlinear deformation field 

that is equally applied to pre- and postoperative acquisitions.
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Figure 4: 
Normalization results of the 3T example patient. Based on the preoperative multimodal MRI 

(T1, T2, PD, FGATIR) of the patient, individual anatomy was registered into ICBM 2009b 

NLIN Asym (“MNI”) space using various methods. Left column: MNI space (red 

wireframes) overlaid to normalized T1 acquisition. Right column: DISTAL atlas STN (red 

wireframes) overlaid to normalized T2 acquisition. Note that the SUIT registration uses 

SPM methods too, but is based on a toolbox focusing on brainstem and cerebellum anatomy. 

Thus, normalizing the STN region with this preset is not possible, the method is still 
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displayed for the sake of completeness. It is applicable for brainstem targets such as the 

Pedunculopontine Nucleus (PPN).
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Figure 5: 
Brain shift correction results of the 3T example patient. The approach serves as a refinement 

registration step between post- and preoperative acquisitions and is able to minimize 

nonlinear registration errors due to pneumocephalus (figure S1). In the present example, the 

postoperative CT was shifted by 1.66 mm in z-, 0.9 mm in y- and 0.17 mm in x-direction. A 

better registration can best be seen in the area of the ventricles (white arrow). Postoperative 

CT was tone mapped to show contrast in both brain and skull windows.
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Figure 6: 
Fully automated electrode reconstruction results (PaCER method contributed by Husch and 

colleagues) of the 3T example patient. Orientation of lead reconstructed using the method by 

Sitz and colleagues. A) Postoperative CT is shown orthogonal to reconstructed trajectory 

(right hemisphere, blue line) in anterior, lateral and dorsal views. Ventral- and dorsalmost 

contacts marked by red and green asterisks, respectively. Using this view, users can fine-tune 

electrode reconstructions in a very precise way. B) Final 3D rendering of results in synopsis 

with key structures defined by the DISTAL atlas. Both electrodes placed in dorsolateral STN 

which corresponds to the sensorimotor functional zone of the STN. Right lead resides 
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minimally more medial than left (in respect to atlas STN) which can be accounted for by 

field steering (figure 8).
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Figure 7: 
Left-Hemispheric microelectrode recording results of the 3T example patient. A) oblique 

view orthogonal to the lateral surface of the STN (white wireframes). B) view from posterior 

and C) dorsal. Markers in blue (no cell activity), yellow (cell activity), red (typical STN 

firing pattern) placed on 45° rotated Ben Gun (X-) array of microelectrodes between 7.5 and 

−1.5 mm distance to surgical target in 0.5 mm steps. Trajectories: central (red), lateral 

(magenta), medial (cyan), posterior (green) and anterior (yellow) trajectories.
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Figure 8: 
VTA modeling (right hemispheric lead) in the 3T example patient. Left two columns: several 

omnidirectional stimulations at the default contact. Top row demonstrates the strong impact 

on standard conductivities vs. frequency-adapted conductivities in the resulting FEM-based 

VTA. Bottom row shows two heuristic voltage driven models implemented in Lead-DBS. 

These models are not validated for directional leads, thus, a Medtronic 3389 electrode is 

visualized instead. Right column: The “optimal” segment on the top (K13) is used as 

cathode, steering the field anterolaterally to reach a good coverage of the dorsolateral STN. 

Simulations marked with Stim A and B are used as connectivity seeds in subsequent figures.
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Figure 9: 
Fiber tracking results of the 3T example patient. First four columns show results of the 

patient-specific DTI, Gibbs’-tracking, Modelfree Meso global tracker and GQI approaches 

(top: whole connectome, bottom, tracts seeding from STIM A & B; see figure 8). Last two 

columns show the same views on HCP and PPMI based normative connectomes.
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Figure 10: 
Connectivity from VTA defined by “STIM A” (figure 8) projected on the right hemispheric 

surface as defined by various connectomes. Top row: Patient specific structural connectivity 

using DTI, Gibbs’ Tracking and GQI methods. Mid row: Connections defined by the 

structural Gibbsconnectome, HCP Adult Diffusion and PPMI PD connectomes. Bottom row: 

Functional connectivity between VTA and other brain regions as defined by normative GSP 

1000 and PPMI 74 PD connectomes. This figure demonstrates a multitude of options to 

analyze VTA connectivity in Lead-DBS, but also highlights challenges of the process, since 

different methods/datasets yield different results.
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Figure 11: 
Amount of variance in clinical outcome explained when applying various preprocessing 

options (retrospective 1.5T cohort). A) an exemplary “standard neuroimaging” approach 

with a monospectral (T1 only) FSL FNIRT based registration and a binary VTA. B & C) 

Default pathways of Lead-DBS, registering preoperative data into template space in 

multispectral fashion according to the most optimal method as delineated in (Ewert et al. 

2018a). In these approaches, the overlap sum between the E-Field gradient magnitude inside 

the STN was calculated. D) Using results from C as weighted seeds to isolate fibers from the 
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normative PPMI connectome (table 8), correlating weighted numbers of streamlines to SMA 

to explain clinical motor improvement.

First column of scatterplots shows direct correlation between VTA-STN overlap (weighted 

E-field overlap or weighted streamlines to SMA) with clinical improvement. Second column 

shows GLM with additional clinical covariates. Table 9 shows results for additional 

preprocessing strategies.
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Figure 12: 
Four layers in a DBS imaging pipeline that may need continuous refinement as technology 

and methodology advance.
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Table 1:

Linear registration methods implemented in Lead-DBS.

Software / Method Name Used for MR to MR Used for CT to
MR

Publication(s)

ANTs Rigid / Affine + + Ashburner et al. 2007

BRAINSFIT + + Johnson et al. 2007

SPM Co-register + − Friston et al. 2004

FSL FLIRT + − Jenkinson et al. 2002

Hybrid SPM & ANTs,
Hybrid SPM & FSL,
Hybrid SPM & BRAINSFIT

+ − see above
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Table 2:

Normalization Methods implemented in Lead-DBS:

Software / Method Name Adaptations in Lead-DBS Supports
Multispectral
Warps

Publication(s)

Statistic Parametric Mapping (SPM)

Unified Segmentation Based on Tissue Probability Maps calculated from 
multispectral ICBM 2009b NLIN AsYM Space 
templates

+ Ashburner and Friston 
2005

DARTEL Pair-wise instead of group-wise workflow (mapping 
directly from patient into template space) based on 
similarly generated DARTEL templates

+ Ashburner et al. 2007

SHOOT See DARTEL + Ashburner and Friston 
2011

SUIT based DARTEL Specialized method if area of interest is in the 
brainstem (e.g. PPN); Use of SUIT Toolbox based 
registration to a brainstem/cerebellum template that 
was registered to ICBM 2009b

+ Diedrichsen et al. 2006, 
Ashburner et al. 2007

FMRIB Software Library (FSL)

FNIRT Standard presets − Andersson and Smith 2010

Advanced Normalization Tools (ANTs)

SyN Four-Stage preset with subcortical refinement, 
multiple presets developed for use in DBS

+ Avants et al. 2008

BSpline-SyN See SyN + Tustison & Avants 2013

Other / Specialized

Linear Three-Step Normalization Suited for use directly on postoperative MRI (or on 
preoperative MRI); Implemented using ANTs 
whereas original code was implemented with use of 
FSL

+ Schonecker et al. 2009

MAGeT Brain-like Segmentation / 
Normalization

Multi-Subject/Template implementation inspired by 
the MAGeT-Brain approach but with strong 
differences.

+ None / see Chakravarty et 
al. 2012 for MAGeT-Brain 
approach

MAGeT Brain-like Normalization Inversing the idea of MAGeT-Brain by directly 
averaging deformation fields learned from multiple 
indirect warps

+ None / see Chakravarty et 
al. 2012 for MAGeT-Brain 
approach
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Table 3:

VTA models included in Lead-DBS.

Method Publication Type

Horn et al. 2017 FEM Based, 4-Compartment Model, Tetrahedral Mesh

Mädler & Coenen 2012 Heuristic

Kuncel et al. 2008 Heuristic

Dembek et al. 2017 Heuristic
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Table 4:

Whole-Brain fiber tracking methods implemented in Lead-DBS. Of note, the tensor based method is 

implemented for debugging purposes and not recommended for actual use.

Tool name Software Approach Support of
Single/Multishell
Data

Publication(s)

Gibbs’ Tracker DTI & Fibertools 
for SPM

Global Tractography Single-Shell Kreher et al. 2008, 
Reisert et al. 2011

Model-Free Mesotracker DTI & Fibertools 
for SPM

Mesoscopic Global Tractography Both Reisert et al. 2014, 
Konopleva et al. 2018

Generalized q-Sampling Imaging DSI Studio Deterministic Tractography Both Yeh et al. 2010

DTI / FACT Tracking DTI & Fiber 
Tracking for 
Matlab

Tensor based Deterministic 
Tractography

Single-Shell Dirk-Jan Kroon / Matlab 
File Exchange
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Table 5:

Subcortical Atlases suitable for / available within Lead-DBS.

Atlas Name Pre-
installe
d in
Lead-
DBS

Source(s) of Information Structures of Focus /
Specialities

Publication(s)

“Made for” Lead-DBS

DISTAL Atlas + Histology, MRI, Tractography STN, GPi Ewert et al. 
2018,Chakravarty 
et al. 2006, 
Chakravarty et al. 
2008

Human Motor Thalamus + Histology Motor domains of thalamus, 
projection from Cb, SN, BG

Ilinsky et al. 
2018

Focus on DBS Relevant Structures

CIT168 Reinforcement Learning Atlas + MRI Based on High Precision 
MRI

Pauli et al. 2017

ATAG-Atlas + MRI 7T MRI based segmentations Keuken et al. 
2014

MNI PD25 Atlas + MRI, Histology Multimodal MR sequences, 
histology

Xiao et al. 2017, 
Chakravarty et al. 
2008, 
Chakravarty et al. 
2006

Ultra-high Field Atlas for DBS Planning + MRI 7T MRI based segmentations Wang et al. 2016

DBS targets Atlas + Literature results Literature informed DBS 
targets mapped to MNI space

Horn et al. 2017

BGHAT Atlas + MRI Basal Ganglia Segmentations Prodoehl et al. 
2008

Basal Ganglia Atlas − MRI Basal Ganglia Segmentations Ahsan et al. 2007

PPN Histological Atlas + Histology Definition of the PPN based 
on histology

Alho et al. 2017

GPi Probabilistic Parcellation Atlas + Tractography Tractography based 
parcellation of the GPi

da Silva et al. 
2016

Nigral Organization Atlas + Tractography, rs-fMRI Functional zones of 
substantia nigra segmented 
by connectivity

Zhang et al. 2017

STN Only

STN Functional Zones Atlas + Tractography Tractography-based 
segmentation of STN into 
functional zones

Accolla et al. 
2014

ATAG-Atlas: STN Young–Middle-Aged–Elderly + MRI 7T MRI based 
segmentations, Three age 
groups

Keuken et al. 
2013

Also see DISTAL, Human Motor Thalamus, CIT168, Ultra-High Field DBS, BGHAT & MNI PD25 atlases for definitions of the STN

Focus on Thalamus

Morel Atlas − Histology Precise histological atlas of 
the subcortex

Jakab et al. 2012, 
Krauth et al. 
2010, Morel et al. 
2013

Thalamic DBS Connectivity Atlas + Tractography Tractography based 
parcellation of the thalamus

Akram et al. 
2018

Oxford Thalamic Connectivity Atlas + Tractography Tractography based 
parcellation of the thalamus

Behrens et al. 
2003
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Atlas Name Pre-
installe
d in
Lead-
DBS

Source(s) of Information Structures of Focus /
Specialities

Publication(s)

Thalamic Connectivity Atlas + Tractography Tractography based 
parcellation of the thalamus

Horn & 
Blankenburg 
2016

Thalamic Connectivity Atlas + Tractography, rs-fMRI Structural-functional 
connectivity based 
parcellation of the thalamus

Zhang et al. 2008

Also see DISTAL, Human Motor Thalamus & MNI PD25 atlases for thalamic structures

Electrophysiological Data

Electrophysiological Atlas of STN Activity + Electrophysiology Beta Power mapped to STN Horn et al. 2017

Electrophysiological Atlas of GPi Activity + Electrophysiology Theta Power mapped to GPi Neumann et al. 
2017

Other / Brainstem

Brainstem Connectome + Tractography Population based fiber tracts 
of brainstem (HCP data)

Meola et al. 2016

Macroscale Human Connectome Atlas + Tractography Population based fiber tracts 
of the whole brain (HCP 
data)

Yeh et al. 2018

BigBrain − Histology Whole-Brain histological 
stacks registered to MNI 
space

Amunts et al. 
2013

Harvard Ascending Arousal Network Atlas + Tractography, MRI Atlas of Brainstem 
Structures

Edlow et al. 2012

Whole-Brain Parcellations with subcortical components useful for DBS

Functional Striatum Parcellation Atlas + rs-fMRI Parcellation of the Striatum 
into functional zones

Choi et al. 2012

AICHA subcortical regions + rs-fMRI Parcellation of the 
subcortical structures into 
functional zones

Joliot et al. 2015

Harvard-Oxford Atlas + MRI Whole-Brain Atlas with 
subcortical definitions

Frazier et al. 
2005

For a list of further whole-brain parcellations, see http://www.lead-dbs.org/?page_id=1004
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Table 6:

Brain parcellations (of use for connectomic analyses) suitable for / available within Lead-DBS.

Atlas Name Pre-
installed
in Lead-
DBS

Source(s) of
Information

Structures of Focus / 
Specialities

Publication(s)

Whole Brain

Harvard-Oxford cortical/subcortical atlases + Manual segmentations Whole Brain Makris et al. 2006, 
Frazier et al. 2005, 
Desikan et al. 2006, 
Goldstein et al. 2007

MICCAI 2012 Multi-Atlas Labeling 
Workshop and Challenge 
(Neuromorphometrics)

+ Manual segmentations Whole Brain neuromorphometrics.com

Brainnetome Atlas parcellation + fMRI, dMRI Whole Brain Fan et al. 2016

Automated Anatomical Labeling (v2) + MRI Whole Brain Tzourio-Mazoyer et al. 
2002

AICHA: An atlas of intrinsic connectivity 
of homotopic areas

+ fMRI Whole Brain Joliot et al. 2015

Hammers_mith Atlas + MRI Whole Brain, special focus 
on temporal lobe

Hammers et al. 2003, 
Gousias et al. 2008

PrAGMATiC − fMRI Functional atlas based on 
task fMRI

Huth et al. 2016, Huth et 
al. 2015

fMRI-based random parcellations + fMRI Fine-grained random 
parcellations informed by rs-
fMRI data

Craddock et al. 2012

Voxelwise parcellations + MRI Whole Brain Horn & Kühn 2015

Cortex Focus

Mindboggle 101 + Manual segmentations Cortex / Desikan protocol Klein et al. 2012

Yeo functional parcellations + fMRI Cortex Yeo et al. 2011

Local-Global Parcellation of the Human 
Cerebral Cortex

+ fMRI Cortex, refining Yeo 2011 
parcellations

Schaefer et al. 2017

Cortical Area Parcellation from Resting-
State Correlations

+ rs-fMRI Cortex Gordon et al. 2016

HCP MMP 1.0 − Multimodal Cortex, surface maps Glasser et al. 2016

Desikan-Killiany Atlas − Gyrification related ROI Cortex, surface maps Desikan et al. 2006

Destrieux Atlas − Gyrification related ROI Cortex, surface maps Destrieux et al. 2010, 
Fischl et al. 2004

MarsAtlas − Gyrification related ROI Cortex, surface maps Auzias et al. 2016, 
Auzias et al. 2013

Specific Subregions

JuBrain / Juelich histological atlas + Histology Specific regions Zilles et al. 2010, 
Amunts et al. 2007, 
Eickhoff et al. 2005, 
Eickhoff et al. 2010, 
Eickhoff et al. 2006bp

Human Motor Area Template + fMRI / Metaanalysis (Pre-) motor cortex Mayka et al. 2006

Sensorimotor Area Tract Template + dMRI Corticospinal tract subregions Archer et al. 2017

SUIT cerebellar parcellation + MRI Cerebellum Diedrichsen et al.
2006, Diedrichsen et al. 
2011
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Atlas Name Pre-
installed
in Lead-
DBS

Source(s) of
Information

Structures of Focus / 
Specialities

Publication(s)

Buckner functional cerebellar parcellation + fMRI Same networks as in Yeo 
2011 cortical parcellations 
defined in cerebellum

Buckner et al. 2011

Neuroimage. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Horn et al. Page 56

Table 7:

Electrode models included in Lead-DBS.

Manufacturer Type # Contacts Contact Spacing Omnidirectional/Segm
ented

DBS

Medtronic 3389 4 2 mm O

3387 4 3 mm O

3391 4 7 mm O

Boston Scientific Vercise 8 2 mm O

Vercise Directed 8 2 mm / Segmented S

Abbott / St. Jude Medical Active Tip 6146-6149 4 2 mm O

Active Tip 6142-6145 4 3 mm O

Infinity Directed 6172 8 2 mm / Segmented S

Infinity Directed 6173 8 2 mm / Segmented S

PINS Medical L301 4 2 mm O

L302 4 3 mm O

L303 4 6 mm O

iEEG

SDE 08 S8 8 3.5 mm O

08 S10 10 3.5 mm O

08 S12 12 3.5 mm O

08 S16 16 3.5 mm O

Neuroimage. Author manuscript; available in PMC 2020 January 01.
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Table 8:

Normative Connectomes available in Lead-DBS format.

Name Repository N Population Publication –
Dataset

Processing
Methods

Publication –
Processing

rs-fMRI based “functional connectivity”

Functional group 
connectome 1000 
healthy subjects 
GSP

Harvard Genomic 
Superstruct Project 
(GSP)

1000 Controls Yeo et al. 2011 Lead 
Connectome 
fMRI pipeline

Horn et al. 2017

Functional group 
connectome 74 
PPMI PD-patients, 
15 controls

Parkinson’s Disease 
Progression Marker 
Initiative (PPMI)

74 / 15 PD patients, controls Marek et al. 2011 Lead 
Connectome 
fMRI pipeline

Horn et al. 2017

dMRI based “structural connectivity”

Structural group 
connectome 20 
subjects Gibbs-
tracker

Horn 2014 study 20 Controls Horn et al. 2014 Lead 
Connectome, 
Gibbs’ tracker

Horn et al. 2014

Structural group 
connectome 169 
NKI subjects 
Gibbs-tracker

Horn 2016 study 169 Controls Nooner et al. 2012 Lead 
Connectome, 
Gibbs’ tracker

Horn et al. 2016

Structural group 
connectome 32 
Adult Diffusion 
HCP subjects GQI

HCP MGH Adult 
Diffusion dataset

30 Controls Setsompop etal. 2013 Lead 
Connectome, 
DSI Studio 
(GQI)

Horn et al. 2017

Structural group 
connectome 90 
PPMNI PD-
patients GQI

Parkinson’s Disease 
Progression Marker 
Initiative (PPMI)

90 PD patients Marek et al. 2011 Lead 
Connectome, 
DSI Studio 
(GQI)

Ewert et al. 2018

Neuroimage. Author manuscript; available in PMC 2020 January 01.
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Table 9:

Preprocessing strategies used to explain variance in 1.5T retrospective cohort.

VTA strategy MR volumes
used

Shown in
fig. 11

Correlation 
(image
metric vs. 
motor
improvement)

GLM (+ additional covariates)

Normalization strategy R p RSME [%] R2 Overall p Significant 
predictors (p < 
0.05)

Binary VTA overlap

Monospectral FSL FNIRT T1 Panel A 0.38 < 0.007 15.1 0.43 < 0.005 Sex

Multispectral ANTs SyN w/o subcortical refine T1 & T2 − 0.46 < 0.001 15.3 0.45 < 0.005 Sex

with subcortical refine T1 & T2 − 0.49 < 0.001 14.8 0.48 < 0.005 Sex, VTA overlap

Multispectral SPM New 
Segment

T1 & T2 − 0.51 < 10−4 14.7 0.49 < 0.001 Sex, VTA overlap

Weighted E-field VTA / STN overlap

Monospectral FSL FNIRT T1 − 0.46 < 0.001 15.1 0.46 < 0.005 Sex

Multispectral ANTs SyN w/o subcortical refine T1 & T2 − 0.47 < 0.001 15.3 0.46 < 0.005 Sex

with subcortical refine T1 & T2 Panel B 0.52 < 10−4 14.9 0.48 < 0.005 Sex, E-Field overlap

Multispectral SPM New 
Segment

T1 & T2 Panel C 0.54 < 10−4 14.5 0.51 < 0.001 Sex, E-Field overlap

Weighted streamline counts to SMA

Weighted streamline 
counts to SMA seeding 
from E-Field (based 
method one row above)

T1 & T2 Panel D 0.53 < 10−4 14.8 0.49 < 0.005 Sex, Streamlines to 
SMA
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