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A stability-reversibility map unifies elasticity, plasticity,
yielding, and jamming in hard sphere glasses
Yuliang Jin1,2*, Pierfrancesco Urbani3, Francesco Zamponi4, Hajime Yoshino1,5*

Amorphous solids, such as glasses, have complex responses to deformations, with substantial consequences in
material design and applications. In this respect, two intertwined aspects are important: stability and reversibility. It
is crucial to understand, on the one hand, how a glass may become unstable due to increased plasticity under shear
deformations, and, on theother hand, towhat extent the response is reversible,meaning howmuch a system is able to
recover the original configuration once the perturbation is released. Here, we focus on assemblies of hard spheres as
the simplest model of amorphous solids such as colloidal glasses and granular matter. We prepare glass states
quenched from equilibrium supercooled liquid states, which are obtained by using the swap Monte Carlo algorithm
and correspond to a wide range of structural relaxation time scales. We exhaustively map out their stability and re-
versibility under volume and shear strains using extensive numerical simulations. The region on the volume-shear
strain phase diagram where the original glass state remains solid is bounded by the shear yielding and the shear
jamming lines that meet at a yielding-jamming crossover point. This solid phase can be further divided into two sub-
phases: the stable glass phase, where the system deforms purely elastically and is totally reversible, and the marginal
glass phase, where it experiences stochastic plastic deformations at mesoscopic scales and is partially irreversible. The
details of the stability-reversibilitymap depend strongly on the quality of annealing of the glass. This study provides a
unified framework for understanding elasticity, plasticity, yielding, and jamming in amorphous solids.
INTRODUCTION
Understanding the response of amorphousmaterials to deformations is
a central problem in condensed matter both from fundamental and
practical viewpoints. It is not only a way to probe the nature of amor-
phous solids and their properties but also crucial to understand a wide
range of phenomena from the fracture ofmetallic glasses to earthquakes
and landslides. Furthermore, it has important applications in material
design (1). Although many research efforts have focused on the mecha-
nisms leading to the formation of amorphous solids from liquids (2–5),
an orthogonal approach is to study these materials deep inside their
amorphous phase (6–8). In this work, we focus on this second strategy
by addressing the problem of understanding the nature of the response
of glasses to volume and shear strains.

To a first approximation, glasses are solids much like crystals: They
deform essentially elastically for small deformations but yield under
large enough shear strains and start to flow.However, glasses are funda-
mentally different from crystals, being out-of-equilibrium states of
matter. As a consequence, the properties of glasses strongly depend
on the details of the preparation protocol (3). As an example, the yielding
of glasses prepared via a fast quenchor very slowannealing is qualitatively
different (9). Thus, in sharp contrast to ordinary states of matter such as
gases, liquids, and crystals, the equationsof state (EOS), or the constitutive
laws, of glasses, which characterize their macroscopic properties, must
depend on the preparation protocol.Understanding themechanical prop-
erties of glasses fromaunifiedmicroscopic point of view thus emerges as a
challenging problem (10).
To this aim, a central question is to understand the degree of stability
of a glass, i.e., to what extent it can resist deformations. In isotropic
materials such as glasses, it is sufficient to consider two types of defor-
mations, namely, the volume strain, which changes the volume of the
system isotropically, and the shear strain, which preserves the volume
but changes the shape of the container. Under volume strains, glasses
melt by decompression, and in the presence of a hard-core repulsion, as
in granularmatter and in colloids, they exhibit jamming upon compres-
sion. The melting and the jamming transitions delimit the line where
the glass remains solid. Taking a glass on that line, one can probe its
stability along the other axis of deformation, i.e., shear strain. Typically,
the response of a glass to shear can be either (i) purely elastic and stable
(note that this does not mean that the response is purely affine, as elas-
ticity can emerge even in the presence of a nonaffine response), (ii) par-
tially plastic (6–8), which is accompanied by slip avalanches and might
be associated to the property of marginal stability (4, 11), or (iii) purely
plastic and unstable, once yielding takes place (7, 10, 12). Furthermore,
granular materials (13) and dense suspensions (14) may (iv) jam when
they are sheared.

A question related to stability is reversibility, i.e., to what extent a
glass can recover its initial configuration when the deformation is re-
leased. This question has been one of the key interests in cyclic shear
experiments of colloidal suspensions (15). In simulations of somemodel
glasses, it has been found that a reversible-irreversible transition accom-
panies the occurrence of yielding (16–18).

The purpose of this work was to study, through extensive numerical
simulations, the volume and shear strain phase diagramof amodel glass
former, hard spheres (HSs), to unify the abovementioned phenomena,
i.e., plasticity, yielding, compression and shear jamming, and the failure
of reversibility. Thanks to the swap algorithm, introducedbyKranendonk
and Frenkel (19) and recently adapted to simulate polydisperse HS sys-
tems with unprecedented efficiency (20), we are able to prepare initial
equilibrium supercooled liquid configurations up to high densities going
even beyond experimental limits (21). While the standard molecular dy-
namics (MD) algorithm mimics the real dynamics, the swap algorithm
1 of 12



SC I ENCE ADVANCES | R E S EARCH ART I C L E
accelerates the relaxation by introducing artificial exchanges of particles
at different positions. With this trick, a dense supercooled liquid state
with very large relaxation time can be prepared. Given such a system, by
turning off the swapmoves and switching to standardMD simulations,
the system is effectively confined in a glass state, because its relaxation
time is much larger than the achievable MD simulation time. By per-
turbing this initial equilibrium state with a given rate of compression,
decompression, or shear strain duringMD simulations, the system is
driven out of the original equilibrium supercooled liquid state. In
this way, we study the out-of-equilibrium response to these external
perturbations of the glass selected by the initial supercooled liquid
configuration, thus realizing what in (22) is called adiabatic state
following. Using this procedure, we completely map out the degree
of stability of the HS glasses corresponding to widely different prep-
aration protocols. We show that there is a unique mapping between
different types of stability and reversibility, that the stable and the mar-
ginally stable glass phases can be well separated by sensitive measure-
ment protocols (23, 24), and that marginality is manifested by a new
type of reversibility, which we denote as partial irreversibility.

The idea of establishing a phase diagram to unify the glass transition,
jamming, and yielding of amorphous solids was initially proposed by
Liu and Nagel (4, 25) and subsequently explored by others [e.g., see
(26, 27)]. Here, we explicitly construct such a phase diagram for HS
glasses, represented by a stability-reversibilitymap, which complements
the conjecture in (4) with new ingredients, namely, the existence of the
marginal glass phase and the dependence on the quality of annealing
(22, 28, 29). Our phase diagram is expected to be reproducible in
experiments on vibrated granular glasses (30, 31) and colloids (10),
while molecular glasses are usually described by soft potentials, for
which the phase diagram needs to be modified.

The plasticity of amorphous solids has been extensively studied in
both phenomenological (12, 32–34) and first principle (5, 29) theories.
According to the exact mean-field (MF) solution of the HS model in
infinite dimensions (29), the glass phase can be decomposed into stable
regions where plasticity is absent, andmarginally stable regions where it
is expected. The two phases are separated by a line where the so-called
Gardner transition takes place (5, 23, 24). Determiningwhether thisMF
Gardner transition is also present in three dimensions is an extremely
hard and currently open problem. Numerical simulations in three
dimensions have found consistent evidence that an HS glass changes
from a stable state to a marginally stable state across a certain threshold
density before reaching jamming (23, 24) but are not capable to deter-
mine whether such a change corresponds to a phase transition or a
crossover, because of the lack of a careful analysis of finite size effects.
Here, we relate the signatures of the Gardner transition/crossover to the
emergence of plastic behavior and avalanches (11, 35, 36), which can be
measured in simulations via the onset of partial plasticity and the emer-
gence of a protocol-dependent shear modulus (24, 37). The Gardner
threshold determined in this approach is consistent with an independent
estimate based on the growth of a spin glass–like susceptibility (23). Be-
cause the scope of our work is not to decide on the existence of a sharp
Gardner phase transition, here we keep the conventional use of the
terminology “Gardner transition” but do not exclude the possibility
that it may become a crossover in three dimensions. Moreover, it re-
mains an open question whether the Gardner transition and the as-
sociated marginality are of relevance to other systems. For example,
the absence of marginality has been reported in simulations of a three-
dimensional soft potential model (38) and a system of HSs confined
in a one-dimensional channel (39).While details may change among
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
various systems, the approach used in this study provides an example
of how to construct a stability-reversibility map for generic glasses.
RESULTS
Preparation of annealed glasses
We study a three-dimensional HS glass with continuous polydispersity,
identical to the one in (20) (see Materials and Methods). Note that for
HSs, the temperature is irrelevant: It only fixes the overall kinetic energy
of the system, which is related to the sphere velocities, and thus to the
unit of time. In our simulations, we set kBT to unity. The relevant con-
trol parameters in this study are the packing fraction φ and the shear
strain g. The reduced or dimensionless pressure p = P/(kBTr), with P
being the pressure and r the number density, can be determined
uniquely from the EOS for the given φ and g. Because the jamming
limit is the point where the reduced pressure of HSs diverges, it cor-
responds, for our system, to the infinite pressure limit for fixed tem-
perature or the zero-temperature limit for fixed pressure.

One can considerHSs as the limit of soft repulsive particles when the
interaction energy scale divided by kBT goes to infinity: Then, the HS
system formally corresponds to the zero-temperature limit of soft repul-
sive particles in the unjammed phase where particles do not overlap.
The jamming limit coincides in both systems, but the overjammed
phase is inaccessible by definition for HSs. As a consequence, one of
the axes (the temperature axis) in the Liu-Nagel phase diagram (4) will
be missing in our context. The HS phase diagram established here
should correspond to the zero-temperature plane of the Liu-Nagel
phase diagram without the overjammed part.

Our HSmodel is chosen in such a way that the particle swap moves
(19) can be used in combinationwith standard event-drivenMDto fully
equilibrate the system up to very high densities, covering a very wide
range of time scales for the standard MD without swap (20). Switching
off the swap movements at volume fraction φg and leaving only MD
acting on the particles, one gets effectively an HS amorphous solid,
corresponding to the glass that would be formed during an annealing
process that falls out of equilibrium at φg. Therefore, φg is the glass
transition density. Because the system is still in equilibrium at φg, its
reduced pressure pg follows the liquid EOS (L-EOS) pg = pliq(φg).

The possibility to explore a wide range of glass transition densities,
thanks to the swap algorithm, is crucial to ourwork. In the following, we
choose to work on three different values of φg, representing ascending
levels of annealing:

1) Weakly annealed case: φg = 0.609, corresponding to the pressure
pg = 25.9. Berthier et al. (21) fitted the data of a-relaxation time ta as a
function of p in liquids using the standard Vogel-Fulcher-Tammann
(VFT) form ta = t∞ exp[A/(pvft − p)], a generalized VFT form ta =
t∞ exp[A/(pvft − p)2], and the facilitation model (FM) form ta = t∞
exp[A(p − pfm)

2] [see (21) for details on the fitting]. We estimate that
the a-relaxation time corresponding to pg = 25.9 is about ta/t0 ~ 5 × 10

4

for all these forms, where t0 ~ 104 is the a-relaxation time at the onset
density φ0 ≈ 0.56 of glassy dynamics. Both VFT and FM forms give
consistent values of ta. The time scale ta/t0 ~ 5 × 104 corresponds to
a typical time scale measured experimentally in colloidal glasses
(ta/t0 ≲ 105 s and t0 ≈ 10−1 s).

2) Moderately annealed case: φg = 0.631 and pg = 30.9. At this den-
sity, the standard VFT fitting gives an estimated time scale ta/t0 ~ 3 ×
1010, the generalized VFT gives ta/t0 ~ 1010, and the FM fitting gives
ta/t0 ~ 109. These time scales are typically reachable in molecular
glass-forming liquids (ta/t0 ≲ 1013 s and t0 ≈ 10−10 s).
2 of 12
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3) Deeply annealed case: φg = 0.655 and pg = 40.0. At this density,
the relaxation time is enormously large, and both VFT and FM fittings
are unreliable. Fullerton and Berthier (40) measured the stability ratioS
(the ratio between themelting time and the equilibrium relaxation time
at themelting temperature) of this system.According to the data in (40),
the stability ratio at this density is around S e 103 � 105 (the value de-
pends on the melting pressure), which is comparable to experimental
scales S e 102 � 105 of vapor-deposited ultrastable glasses (41).

While the time scales we can access correspond to different materials,
as discussed above, it is important to stress that molecular glass-forming
liquids and ultrastable glasses do not display a hard-core repulsion. The
repulsion between molecules in these systems is usually better described
by a Lennard-Jones–like soft potential. Therefore, some of the phenome-
na that we will describe in the following, which are strongly related to the
presence of a hard-core potential, will be absent in these materials. The
most important example is jamming, which is, by definition, not present
in Lennard-Jones–like soft potentials. The nature of the Gardner transi-
tion could also be markedly different in some soft materials (38), and the
applicability of someof our results on partial irreversibility should then be
checked. Yet, we believe that theHSmodel is a remarkable benchmark as
it displays many important instability mechanisms (melting, yielding,
compression and shear jamming, and the onset of marginal stability).
It thus allows us to study in full detail the interplay between these in-
stability mechanisms and their dependence on the quality of annealing.

Stability and reversibility
Starting from the equilibrated supercooled liquid configurations at φg,
we now turn off the swap moves. By doing this, the liquid relaxation
time goes beyond the time scale that we can access in our numerical
experiments, and the system is thus effectively trapped into a glass
state.We can then follow the quasi-static evolution of the system un-
der slow changes of the volume strain D = (φg − φ)/φ and the shear
strain g (seeMaterials andMethods) andmeasure the corresponding
evolution of the pressure and the shear stress. Although the system is
formally out of equilibrium (from the liquid point of view), one can
reach a perfectly stationary state on the time scale we explore, restricted
to the glass basin (22). The basin can then be followed in restricted
metastable “equilibrium.” We call the resulting trajectory in control
parameter space metastable EOS or glass EOS (G-EOS) to distinguish
it from the L-EOS. The G-EOS can be obtained by plotting the pressure
and stress as functions of the volume and shear strains.

The change of volume strain D can be converted to that of volume
fraction φ via the relationφ = φg/(1 + D). To achieve a change in volume
fraction, all particle diametersD are uniformly changedwith rate

:
D=D ¼

2� 10�4 for compression and
:
D=D ¼ �2� 10�4 for decompression.

The resulting rate of the change of volume strain is
:
D ¼ �3ð1þ DÞ

:
D
D .

The change of the shear strain is given at a rate
:
g ¼ 10�4. The cor-

responding time scales of these rates are in between the fast b- and
the a-relaxation times, in such a way that the glass is followed nearly
adiabatically, while the a-relaxation remains effectively frozen (23, 24).
The target strains (D, g) can be achieved starting from the initial point
(0, 0) following various paths in the volume-shear strain plane. For
example, one can apply first a shear strain followed by a volume
strain or vice versa. In the following, we specify explicitly the paths
that we follow and check the dependency of the final outcome on the
choices of paths.

Now, let us start our analysis by considering what happens fol-
lowing a simple cyclic deformation: First, the system is strained normally
(0, 0)→ (D, 0), then sheared (D, 0)→ (D, g), and lastly sheared back in the
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
reversed way (D, g) → (D, 0). The following three typical behaviors are
found: The response of the glass can be reversible, partially irreversible,
or totally irreversible, which signals stable, marginally stable, and un-
stable states of the glass. Typical examples of the stress-strain curves
are shown in Fig. 1.

(i) Reversible regime: For small g, the stress s increases smoothly
and monotonically with increasing g (green lines in Fig. 1, A and D).
To the first order, the stress is linear, ds = mdg, where m is the shear
modulus. If the strain is releasedwith� :

g, the stress-strain curve reverses
to the origin—this is a typical elastic response.

(ii) Partially irreversible regime: For larger g above a certain thresh-
old gG , the stress-strain curve becomes jerky, consisting of piecewise
linear elastic responses followed by small but abrupt stress drops (red
lines in Fig. 1, A andD). Each stress drop corresponds to a plastic event,
where some particles rearrange their positions. The glass in this regime
is marginally stable in the sense that a tiny dg could make the system
unstable by triggering these plastic events, but the particles immediately
find another stable configuration nearby, avoiding further failure of the
entire system. Although the stress-strain curve is locally irreversible for
small reversed strain, globally, it eventually returns to the origin when
the shear strain is released back to g = 0 (the red lines in Fig. 1, A andD,
merge with the green lines below gG). We call this behavior partial
irreversibility.

(iii) Limit of existence of the solid: For even larger g, the glass faces
two kinds of consequences depending on the volume strain D applied
before shearing.

• Yielding:At the yielding strain gY, a sudden andnotable stress drop
occurs. When this happens, the entire system breaks into two pieces
that can slide with respect to each other along a fracture. As shown
by the stress-strain curve (black line in Fig. 1A), yielding is ir-
reversible—once the glass is broken, it cannot be “repaired.” In a con-
stant volume protocol where we keep the total volume of the system
unchanged, yielding can be seen only if the system is not compressed
to too high packing fractions, i.e., for not too negative volume strain D.

• Shear jamming: The behavior changes markedly if the system is
compressed more before shearing. In this case, the system jams at the
shear jamming strain gJ, which is signaled by the divergence of the shear
stress (black line in Fig. 1D).

To examine the reversibility more carefully, we measure the relative
mean squared displacement Dr (see Materials and Methods for the
definition) between the initial state at g = 0 before the shear is applied
and the final state at g = 0 after a single cycle of shear is applied (Fig. 1, B
and E). If the initial and the final configurations are identical, Dr = 0;
otherwise, the more different they are, the larger Dr is. The value of
Dr returns to zero in the reversible and partially irreversible cases but
becomes nonzero in the irreversible case, being consistent with the
above analysis based on the stress-strain curves. Note that, here, we ne-
glect differences on the microscopic scale of vibrational cage size D ≲
0.01 (seeMaterials andMethods), i.e., a system is called irreversible only
if the difference on Dr between the initial and final configurations is
larger than D. We have also examined that the above behaviors persist
in multicycle shears (see fig. S2).

It is useful to understand our observations using a schematic picture
of the free-energy landscape. Each glass state is represented by a basin of
free-energy F(φg; D, g; N), which is distorted upon increasing shear
strain g (Fig. 1, C and F). The shear stress is nothing but the slope of

the free-energy sðφg; D; g;NÞ ¼ b
N

∂Fðφg ;D;g;NÞ
∂g , with b being the inverse

temperature. The associated shear modulus is obtained by taking one
3 of 12
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more derivative with respect to g, which gives nothing but the curvature
of the free-energy basin. In the stable regime, the basin is smooth; in the
marginally stable regime, the basin becomes rough, consisting of many
sub-basins with larger associated shear modulus, which results in the
failure of pure elasticity (33, 36, 37). In this state, the system can release
the stress via hopping between different sub-basins, corresponding to
plastic events, which leads to emergent slow relaxation of shear stress
(24, 37). For very large strains, the system either yields by escaping from
the glass basin (Fig. 1C) or jams by hitting the vertical wall due to the
hard-core constraint (Fig. 1F).

The plastic behavior appearing in the partially irreversible regime
takes place at mesoscopic scales, and it would be averaged out in amac-
roscopic system at large enough time scales (37). There is evidence
which shows that the minimum strain increment dgtrigger(N) to trigger
a plastic event vanishes in the thermodynamic limit N → ∞ (33, 42).
This implies that in a macroscopic system, any small but finite incre-
ment of strain would cause a nonzero number of mesoscopic plastic
events (11). Moreover, time-dependent aging effects associated to these
plastic events were observed in stress relaxations (24). Therefore, in
macroscopic systems at large enough time scales, the plasticity would
be averaged out, and one would observe just a renormalized “elastic”
response. The bare elastic response can only be seen within the piece-
wise linear mesoscopic response for dg < dgtrigger(N). This means that
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
two different shearmoduli can be defined: the bare one mbare = limN→ ∞

limdg → 0ds(φg; D, g; N)/dg that takes into account the piecewise elastic
behavior between two subsequent avalanches, and themacroscopic one
mmacro = limdg → 0limN → ∞ds(φg; D, g; N)/dg, which represent the av-
erage behavior and is smaller than the former (33, 37). Therefore, the
small strain dg→ 0 limit and the thermodynamics limit do not commute
in the marginal plastic phase (see text S1 for a detailed discussion).

Stability-reversibility map and G-EOS
These three different kinds of responses of the system to simple cyclic
shear, listed above as (i) to (iii), can be summarized by the stability-
reversibility map in the D − g plane, as shown in Fig. 2. There we also
show a typical plastic event in the marginal phase (Fig. 2B) and a
yielding event (Fig. 2C), which indicate two different mechanisms
that can cause a failure of stability. As long as the glass remains stable
or marginally stable, its macroscopic properties can be characterized by
the G-EOS for the pressure p = pglass(φg; D, g) and the shear stress s =
sglass(φg; D, g), as shown in Fig. 3 (A andB). The pressure p and the shear
stresss are derivatives of the glass free-energy− bF(φg; D, g) with respect
to D and g, respectively.

Along the g = 0 line, the evolution of the systemunder volume strain
D will eventually lead the system to either jamming after sufficient com-
pression D < 0 or melting after sufficient decompression D > 0. At
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Fig. 1. Reversibility, partial irreversiblity, and irreversiblity of the HS glass under simple shear. Here, we display typical behaviors of a glass sample obtained by annealing
up toϕg = 0.655. (A) Single-realization stress-strain curve of a glass at the fixed volume strain D=−0.0069 (ϕ= 0.66). The shear strain is reversed at g= 0.06 (green), 0.14 (red),
and 0.2 (black). The smooth and jerky regimes are separated by gG ~ 0.09. The yielding strain gY ~ 0.144 is also indicated. (B) Corresponding plot of the relativemean squared
displacementDr as a function of g. (C) Schematic illustration of the free-energy glass basin under shear. (D to F) The sameas (A) to (C) but at volume strain D =−0.029 (ϕ=0.675) for
which gG ~ 0.073 and gJ ~ 0.14. In the inset in (D), five different realizations for the same sample are plotted, showing that plastic avalanches only occur above gG. See fig. S1 for the
case D = 0.057 (ϕ = 0.62) for which the systemdoes not go through the partially irreversible regime under shear up to the yielding. The three cases (D = −0.0069, −0.029, 0.057) are
indicated by black arrows in the stability-reversibility map in Fig. 2.
4 of 12



SC I ENCE ADVANCES | R E S EARCH ART I C L E
jamming, particles form an isostatic rigid contact network such that no
further compression can be applied. Decompressing the system reduces
p, which eventuallymelts the system into a liquid state. The evolution of
the pressure p follows the zero–shear strain G-EOS p = pglass(φg; D, 0)
both upon compression and decompression. Obviously, s = sglass(φg; D,
0) = 0.

Applying a shear strain at any point on the g = 0 G-EOSs p =
pglass(φg; D, 0) and s = sglass(φg; D, 0) allows us to explore the volume
strain versus shear strain phase diagram, andwe can track both the pres-
sure p = pglass(φg; D, g) and the stress s = sglass(φg; D, g). Under shear, the
glass has two possible fates: either it yields across the shear yielding
line g = gY(φg; D) or it jams at the shear jamming line g = gJ(φg; D).
Yielding can be detected by analyzing the stress-strain curve, i.e.,
sglass(φg; D, g) versusg,while shear jamming is signaledby adivergenceof
both the pressure pglass(φg; D, g)→∞ and the stress sglass(φg; D, g)→∞
as g→ gJ(φg; D). The shear yielding and the shear jamming lines de-
fine the boundaries of the stability of the HS glass, beyond which the
glass is unstable or simply forbidden. The two lines meet at a yielding-
jamming crossover point [Dc(φg), gc(φg)] or [φc(φg), gc(φg)].

Within the boundary of the stability-reversibility map, there are two
phases: the stable (reversible) phase and the marginally stable (partially
irreversible) phase. We call the line that separates the two a Gardner
line. Across this line, the qualitative nature of the system’s response
to deformations changes: The stress-strain curve is smooth within the
stable (reversible) phase but jerky in the marginally stable (partially
irreversible) phase. The stability-reversibility map shown in Fig. 2 sug-
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
gests that if we choose an D such that the Gardner line is not crossed
along the path (D, 0)→ (D, gY), then no marginally stable region should
be observed. Figure S1 shows such a case (with D = 0.057) where we do
not observe partial irreversibility all the way up to yielding. The term
Gardner line is inferred from the MF glass theory (5, 29), in which a
continuous phase transition, the Gardner transition, occurs on this line.
However, whether it is a genuine transition line or a crossover line in
three dimensions is an open question, as we noted in the Introduction.
In the next subsection, wewill explain howwe estimate this line numer-
ically in the present system.

We made the choice in Fig. 2 to represent the stability-reversibility
map in terms of strains (volume and shear). In fig. S3A, we plot it in
terms of volume fraction φ and shear strain g, which can be directly
compared with the theoretical prediction in (29). In some experiments,
the shear stress is controlled instead of the shear strain, and in that case,
it is customary to represent the phase diagram in the density-stress
plane. Such a figure is reported in fig. S3B, which is directly comparable
to the phase diagram reported in the granular experiment of (30).

The stability-reversibility map and the G-EOS depend on the prep-
aration density φg of the glass, which represents the depth of annealing.
As shown in Fig. 3C, where the G-EOS and L-EOS are displayed
together, the g = 0 G-EOS and the L-EOS intersect at the point (φ, g) =
(φg, 0), which shows the intrinsic connection betweenG-EOS and L-EOS.
The initial unperturbed glass is located at (D, g) = (0, 0) in the stability-
reversibility map.

Marginal stability and partial irreversibility
Having presented above our most important results, in the following,
we show more details on how the stability-reversibility map and the
G-EOS are obtained in our numerical experiments. To this end, at
each φg, we prepare Ns = 100 independent equilibrium supercooled
liquid configurations by the swap algorithm, which have different equi-
librium positions of particles and are called samples. By switching off
the swap, they become glasses. For each sample of glass, we repeat Nr ~
50 − 200 realizations of a given protocol, which is a combination of com-
pression (or decompression) and simple shear. Each realization starts
from statistically independent initial particle velocities drawn from the
Maxwell-Boltzmann distribution at φg.

TheGardner transitionmarks the point where the elastic behavior is
replaced by a partially plastic one. Avalanches and plasticity are ex-
tremely marked in finite size systems, while they are averaged out on
macroscopic length and time scales. Furthermore, in finite size systems,
even though each individual stress-strain curve is jerky in the marginal
phase as shown in Fig. 1, the average over different samples and realiza-
tions washes out all the sudden drops, giving rise to a smooth profile.
Therefore, macroscopic G-EOSs by themselves do not allow the de-
tection of the marginally stable phase (see text S1 and fig. S4 for a
detailed discussion). To precisely locate the onset of plasticity and the
marginal phase, we will examine the hysteretic response to very small
shear increments.

Inspired from spin glass experiments (43), we compare the shear
stressmeasured by two different protocols, the so-called zero-field com-
pression (ZFC) and the field compression (FC) protocols (24). Within
the FC protocol, one first compresses the system and then shears it. In
the ZFC, one instead reverses the order (see Materials andMethods for
more details). The FC stresssFC can be considered as the large time limit
of sZFC, as long as the yielding and the a-relaxation do not occur (24, 37).
For elastic solids such as crystals, the two stresses are identical. For
marginally stable glasses, however, sFC is lower than sZFC, because of
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the stress relaxation associated to the plastic events happening at me-
soscopic scales. The origin of two responses can be attributed to the
organization of free-energy landscape shown schematically in Fig. 1 (C
and F). Roughly speaking, the ZFC stress sZFC is dominated by the
short time response within the small sub-basins, while the FC stress
sFC reflects the renormalized, long time response within the big en-
velope of sub-basins. The bifurcation point between the two stresses
determines the Gardner point. Note that this criterion to determine
the Gardner point is the same as the one used in (24). Figure 4A shows
the data used to obtain the Gardner points DG(φg; g) for a few different
values of g. Connecting theGardner points gives theGardner line g = gG
(φg; D) in Fig. 2. See fig. S5 for the same results obtained for other
values of φg.

Alternatively, one may look at caging order parameters such as the
mean squared displacement D and the typical separation between two
replicas DAB (23) (see Materials and Methods for more precise defini-
tions). The two replicas are generated from the same initial sample in
two independent realizations. They are first compressed to a target D
under zero shear strain and then sheared to the target shear strain g
under the fixed D. When the Gardner point gG(φg; D) is crossed over,
D andDAB should also separate.However, this is a sign of critical behavior

only if the corresponding susceptibility cAB ¼ N 〈D2
AB〉�〈DAB〉

2

〈DAB〉2
grows (39).

Here, 〈… 〉 represents the average over both samples and realizations.cAB
is a spin glass–like susceptibility whose growth suggests the increase of
heterogeneity and cooperativity in the system, as suggested by the MF
theory (5). The behavior of cAB can be inferred from Fig. 1B, where we
plot the probability distribution P(DAB) of DAB. We see a Gaussian-like
behavior below the Gardner threshold, fat tailed around it, and double
peaked above it. The Gardner point inferred in this way gG(φg = 0.655;
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
D = −0.036) ≈ 0.06 is consistent with the determination from ZFC-FC
protocols DG(φg = 0.655; g = 0.06) ≈ −0.036.

This result provides a strong evidence that partial irreversibility and
plasticity in Fig. 1 are essentially related to emerging marginal stability.
We perform the following test to examine their connections more di-
rectly. Starting from a compressed glass at (D, g = 0), we first shear the
glass to a target shear strain at (D, g − dg) under constant volume and
then apply an additional cycle of small shear strain dg = 0.004, following
the path (D, g − dg)→ (D, g) → (D, g − dg). If the system is reversible,
then the difference between the stresses before and after the single cyclic
shear, dŝ1 ¼ ðsbefore � safterÞ=sbefore, should be zero, otherwise not.
Figure 4C confirms that dŝ1ðgÞ begins to grow around the gG esti-
mated from the other two approaches described before (Fig. 4, A and
B). However, this kind of irreversibility is only partial because the sys-
tem is reversible under a circle of shear with larger strain. Systems fol-
lowing the path (D, dg)→ (D, g)→ (D, dg), where dg = 0.004 is fixed and
g is varying, show that the stress difference dŝ2 is nearly zero for any g.

Last, it is important to stress that in our three-dimensional numer-
ical simulations, as in previous ones (23, 24), we cannot decide on
whether the separation between the stable and marginally stable phase
corresponds to a true phase transition. This would require, for instance,
a careful study of finite size effects on cAB to extract the behavior for
N→∞, which is very difficult already in much simpler models such
as spin glasses. The focus of our work is on relating the Gardner line,
which is only a (quite sharp) crossover in our simulations, to the
onset of partial irreversibility.

Shear yielding and shear jamming
Up to now we have investigated the interior of the stability-reversibility
map. Next, we turn to explore the boundaries of the stability-reversibility
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map by analyzing the G-EOSs both in pressure and shear stress. From
now on, all data presented are averaged over different samples and real-
izations. Therefore, even with a finite size system, the individual plastic
events will be averaged out. Furthermore, we will plot the G-EOSs on a
phase diagramusing 1/φ (instead of, equivalently, D) and g to better show
their relations to L-EOS.

First of all, starting froman equilibriumconfiguration at (φ, g) = (φg, 0)
or (D, g) = (0, 0), the system melts under decompression for sufficiently
large D. We define the melting point as the crossover point between
the g = 0 G-EOS for the pressure and the L-EOS (see Figs. 3C and 5G).
Themelting point sets the upper bound of the stability-reversibilitymap
along the g = 0 line.

To systematically explore the stability-reversibility map, we design
three specific protocols combining compression/decompression and
shear, namely, CP-S, CV-S, and CS-C/D (see Materials and Methods
for details). These protocols can be realized also in experiments. In prin-
ciple, the EOS should not be protocol dependent, but whether it is also
the case for G-EOS is not so obvious.

In the CP-S protocol, for any fixed pressure p, the specific volume
1/φ (or volume strain D) evolves with shear strain g, which defines a
G-EOS for the pressure. Figure 5A shows theG-EOSs for a few different
pressures p in a g − 1/φ plot. Such a plot is essentially the projection of
the three-dimensional plot of theG-EOSs for the pressure p= p(φg; D, g)
in Fig. 3C onto the g − 1/φ plane. The data show that the specific volume
1/φ expands as strain g is increased, known as the dilatancy effect. The
dilatancy is stronger for better annealed glasses, as observed previously
in (24), and at lower pressure for a fixed quality of annealing, as shown
here. Both observations are consistent with theoretical predictions [ Fig. 2
in (22) and Fig. 2A in (29), respectively]. Note that this dilatancy effect
shall be distinguished from the one discussed in the context of steady
flow,which is necessarily correlated to friction, as shown in (44). At high
pressures, the isobaric lines are nearly parallel to the shear jamming line,
which corresponds to the p = ∞ isobaric line by the definition of jam-
ming. On the other hand, the average stress s shown in Fig. 5B initially
increases with the shear strain, but it eventually approaches a plateau
after a big drop corresponding to yielding.We define the yielding point
as the peak of the stress susceptibility cs = N(〈s2〉 − 〈s〉2) (see Fig. 5C).
The yielding point is approximately at the middle of the drop on the
stress-strain curve, corresponding to the steepest decrease of stress.
After yielding, the shear stress generally remains nonzero, indicating
that the glass is not completely fluidized. Real-space visualization shows
that the glass breaks into two pieces sliding against each other (see
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
Fig. 2C). However, near themelting point, such a picturemight change,
because melting could mix with yielding, giving rise to a hybrid be-
havior. We will not discuss this situation in detail here. By connecting
the yielding strains obtained at different p, we obtain the yielding line.
We notice that for a certain range of pressure p near pg of the initial
glass, the yielding strain g*Y ≈ 0:118 is nearly independent of p.

In Fig. 5 (D and E), we show how the inverse pressure 1/p and shear
stress s evolve with g for various φ in the CV-S protocol. We find a
threshold density φc (see fig. S6 for how φc is determined), which
separates the shear yielding and shear jamming cases. If φ < φc, the sys-
tem generally yields at large g; otherwise, both pressure and shear stress
diverge as g is increased, indicating shear jamming. In this protocol, the
yielding point can be determined again from the peak of the stress sus-
ceptibility (see Fig. 5F). In the shear jamming case, the pressure and shear
stress both follow the free-volume scaling laws: p ~ (gJ − g)−1 and s ~
(gJ − g)−1 (see fig. S7). The shear jamming is a natural consequence of
the dilatancy effect (i.e., p increases with g for fixed φ), as long as the
system does not yield. Thus, φc results from the competition between
the dilatancy effect and the tendency to break the system at large strains.
We have checked that all the shear-jammed packings that we create
satisfy the isostatic condition (45), i.e., the average coordination number
Z = 6, once the ratters (particles that have less than four contacts) are
excluded, and that the shear jamming transition falls in the same uni-
versality class of the usual jamming transition in the absence of shear.

Figure 5 (G and H) shows the constant-g EOSs of the pressure and
shear stress for a few different g in the CS-C/D protocol. For small shear
strains, g < g*Y, the system jams at a g-dependent jamming density φJ
under compression. For shear strains larger than the yielding straing >
g*Y, however, the G-EOSs for pressure collapse onto the same curve, and
consequently, the jamming density φJ also does not change with g
anymore. This observation is consistentwith our interpretation of yielded
states: The glass just breaks into two pieces of solids at g*Y by forming a
planar fracture. These planar structures should haveminor effect on bulk
properties like the pressure. On the other hand, the glass always melts
under decompression, for any g. We find that the melting point is
independent of g, both below and above g*Y. The stress susceptibility
cs displays a peak upon decompression, which reveals the vestige of
yielding, and therefore can be used to define the yielding point in the
CS-C/D protocol (Fig. 5I). For g < g*Y, the yielding density φ increases
with g; for g > g*Y, the peak does not exist anymore, and the yielding
point cannot be defined as expected. In addition, we show and discuss
the behavior of the pressure susceptibility cp in fig. S8.
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Dependence on protocols and system sizes
Let us discuss how the stability-reversibility map and G-EOSs depend
on protocols. There are two important sources of protocol dependences.
First, the stability-reversibilitymap and theG-EOSs depend on the glass
transition point φg, and φg itself depends on the protocol parameters
such as the compression rate in a standard compression annealing
protocol (here, it is a function of where we stop swap moves). Figure 6A
shows the stability-reversibility maps for three different φg, correspond-
ing to three typical experimental time scales as discussed previously (see
fig. S9A for the three-dimensional representations). They share com-
mon qualitative features in general. The stable regime expands with
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
φg, as one would naturally expect that more deeply annealed glasses
should be more stable. The shear jamming line becomes more vertical
with decreasingφg. This trend is consistent with previous numerical ob-
servations, which show that, in the thermodynamical limit, the shear
jamming line is completely vertical for infinitely rapidly quenched
systems (46).Moreover, we point out that the Gardner transition points
cannot be determined unambiguously using our approaches for the less
annealed systems φg = 0.631, g > 0.06 and φg = 0.609, g > 0 (see fig. S5)
because different activated dynamics, such as plastic rearrangements,
formation of fractured structures, and a-relaxations cannot be well
separated.
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Second, we show in Fig. 6B how the stability-reversibility map and
also the G-EOSs for the pressure depend on the exploration pro-
tocols (CP-S, CV-S, and CS-C/D); see fig. S9 (B and C) for the three-
dimensional representations. We find a protocol-independent regime
ðD < D*; g < g*YÞ, where all three protocols give the same pressure.
The part of the stability-reversibility map above g*Y cannot be accessed
by the CS-C/D protocol. For D > D*, the yielding line bends down dif-
ferently, depending on the protocol. The system yieldsmost easily in the
CV-S protocol, presumably because the liquid bubbles formed around
melting are easier to expand in a volume-controlled protocol (40).

Last, we discuss briefly how the stability-reversibility maps depend
on the system size N in fig. S10. We do not observe appreciable finite
size effects on the shear jamming line. On the other hand, the yielding
line exhibits strong finite size effects, but we expect it to converge at
larger sizes, based on the recent results of (9). Using the presentmethods,
we also do not find strongN dependence on the Gardner line, consistent
with the data in (24). However, we stress that based on available nu-
merical results, we cannot conclude on the thermodynamic behavior
of the Gardner transition. Understanding whether it is a sharp transition
or a crossover is an active and hot topic in the field, through numerical
(23), experimental (31), and theoretical analyses (39, 47–49). While the
finite size analysis presented here shall not be considered conclusive, we
leave a more detailed finite size study on yielding, shear jamming, and
the Gardner transition for future work.
DISCUSSION
Here, we investigate the stability and the reversibility of polydisperseHS
glasses under volume and shear strains. We prepare equilibrium super-
cooled liquid states, with different degrees of stability ranging froma fast
quench to an extremely slow annealing, corresponding to ultrastable
configurations. Each configuration corresponds to a glass within a time
scale that is shorter than the structural relaxation time. We study the
stability of the glass under volume and shear strains and find that the
region of stability is delimited by lines where the system can either yield
or jam.We also find that within the region of stability, the system can be
either a normal solid, which essentially responds elastically and re-
versibly to perturbations, or a marginally stable solid, which responds
plastically and in a partially irreversible way. More precisely, the main
outcomes of our analysis are the following:

1) Response. The response of the system to a shear strain is either
purely elastic, partially plastic, or fully plastic (yielding), depending on
Jin et al., Sci. Adv. 2018;4 : eaat6387 7 December 2018
the quality of annealing and the amount of volume and shear strains
imposed to it.

2) Failure. Well-annealed glasses (large φg), when sheared at suffi-
ciently low densities (large volume strain D), behave purely elastically up
to yielding, which is an abrupt process where a fracture is formed and
the glass fails. At higher densities, they display a partial plastic phase
before yielding is reached. At even higher densities, they display shear
jamming (under constant volume shear). The shear yielding and shear
jamming lines delimit the region of existence of the HS amorphous solid.

3) Marginality. Along the solid part of the stress-strain curves, the
partial plastic behavior is well separated from the purely elastic one by
the Gardner point. The onset of partial plasticity is accompanied by the
emergence of critical behavior andmarginal stability. Beyond theGardner
point, the shearmodulus of the systembecomes history dependent. At the
same time, a growing spin glass–like susceptibility is observed.

4) Reversibility. The purely elastic phase is globally reversible: Once
the shear is released, the system gets back to the original configuration.
The partially plastic marginal glass phase is partially irreversible: Upon
releasing the deformation by a small amount, the system is not able to
get back to the previous state, while upon complete release, the system is
able to get back to the original configuration. Yielding corresponds to
complete irreversibility: Once broken, the system starts to flow, and it is
not able to get back to the original configuration once the strain is com-
pletely released.

By collecting together the boundaries of the different regions, we ob-
tained a complete stability-reversibility map (phase diagram), reported
in Fig. 2. The stability-reversibilitymap obtained in the present study for
three-dimensional HS glasses can be compared with the one obtained
by the MF theory in the large dimensional limit (29). The most impor-
tant features, such as the presence of the shear jamming and the shear
yielding lines that delimit the stability region and the presence of the
Gardner line, are qualitatively in good agreement with the predictions
of the theory. There are, however, several important differences. (i) The
shear yielding line in the three-dimensional system is not a spinodal
line, as predicted by theMF theory (22). The abrupt formation of a frac-
ture is completelymissed by theMF theory, which does not describe the
spatial fluctuations of stress that accumulate around the fracture. (ii)
The point (Dc, gc) where the shear yielding and the shear jamming lines
meet is predicted to be a critical point in theMF theory, but it is rather a
crossover point in the three-dimensional system. (iii) The marginally
stable phase has larger gY than the stable phase. This suggests that
the plastic events in the marginal phase help the system to avoid total
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failure. In the theory, the shear yielding line bends down rather than
bends up near the point (Dc, gc) [see Fig. 3 of (29)].

Note that the MF predictions of (29) were obtained using the so-
called replica symmetric (RS) ansatz. To properly consider yielding in
the marginally stable phase, one should extend the computation to a
full-step RS breaking (fullRSB) ansatz (50). This might help in solving
some of the discrepancies between the analytical and the numerical
results. According to theRS theory, yielding is a spinodal transitionwith
disorder (22). However, it is not clear how this picture will be modified
by a fullRSB theory.

Our simulation results show that a well-annealed glass (φg well
above the MCT density φMCT) yields abruptly—it is brittle. However,
a poorly annealed glass (φg ~φMCT)may instead continuously yield into
a plastic flow state (10, 12)—it is more ductile. We expect that near the
melting point, even a well-annealed glass would behave similarly to a
poorly annealed one, as it would become much “softer” upon de-
compression. Nevertheless, the yielding point can be determined from
the peak of cs for both cases as shownhere.Our approach thus provides
a unified framework to study the transition between the two distinct
mechanisms of yielding. The possibility of two yielding mechanisms
ismissed by the currentMF theory. A dynamical extension ofMFmight
account for these effects. Understanding the nature of the yielding
transition (51–53) is a crucial problem that requires further analysis.

The plastic events we observe in the partially irreversible phase could
correspond to two different types of soft modes: collective modes, as-
sociated to a diverging length scale, as predicted by the MF theory in
the marginally stable phase (5, 11), or localized modes, such as the ones
that have been observed in numerical studies of low-dimensional
systems (54–56). In this study, we did not investigate systematically
the nature of the plastic events in our system, but the growth of the spin
glass–like susceptibility in our data suggests the presence, in our HS
model, of large-scale collective excitations. Note that the situation could
be radically different in soft potential models (38, 55, 56). We also stress
that while the existence of partial plasticity before yielding is well known
(6–8), our well-annealed systems provide an example where the pure
elasticity and partial plasticity regimes are well separated, allowing us
to define a line (the Gardner line) that separates them in the stability-
reversibility map.

Last, concerning the reversibility, here we focus on the reversibility
with respect to just one cycle of simple shear (see fig. S2 for the results
under a few cycles). In cyclic shear protocols, a steady state can be reached
aftermany cycles (17, 57). Very complicated dynamics should be involved
in theseprocesses. Itwouldbe interesting to systematically extend thepres-
ent study to multiple cyclic shear to understand better these processes.
MATERIALS AND METHODS
Model
The system consists of N = 1000 (unless otherwise specified) HS parti-
cles with a diameter distribution P(D) ~D−3, forDmin≤D≤Dmin/0.45.
The continuous polydispersity was sufficient to suppress crystallization
even in deep annealing and optimized the efficiency of swap algorithm.
The volume fraction is φ ¼ rð4=3ÞpD3, where r = N/V is the number
density and V is the total volume. We define the reduced pressure p =
PV/NkBT and the reduced stress s = SV/NkBT, where P and S are the
pressure and the stress of the system, respectively. For simplicity, in the
rest of this paper, we refer as pressure and stress to p and s instead of P
and S. We set the Boltzmann constant kB, the temperature T, the mean
diameter �D, and the particle mass m to unity.
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Swap algorithm
At each dynamical step, the swap Monte Carlo algorithm attempts to
exchange the positions of two randomly picked particles as long as they
do not overlap with their new neighbors. These nonlocal Monte Carlo
moves eliminate the local confinement of particles in supercooled states,
which, combined with standard event-driven MD, substantially facili-
tates the equilibration procedure. It has been carefully examined that the
swap algorithm does not introduce crystalline order in the polydisperse
HS model studied here (20).

Compression/decompression algorithm
Weused the Lubachevsky-Stillinger algorithm (58) to compress and de-
compress the system. The particles were simulated by using event-
driven MD. The sphere diameters were increased/decreased with a

constant rate. The MD time was expressed in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=kBm�D2

q
.

Simple shear algorithm
At each step, we performedNcollision = 100 − 1000 collisions per particle
using the event-driven MD and then instantaneously increased the
shear strain by dg ¼ :

gdt, where dt is the time elapsed during the colli-
sions. The instantaneous shear shifts all particles by xi → xi + dgzi,
where xi and zi are the x − and z −coordinates of particle i. To remove
the possible overlappings introduced during this shift, we switched to a
harmonic interparticle potential and used the conjugated gradient (CG)
method to minimize the energy. The harmonic potential was switched
off after CG. The Lees-Edwards boundary conditions (59) were used
[see (24) for more details].

Protocols of ZFC and FC
In the ZFC protocol, starting from the initial equilibrium configuration
at (D, g) = (0, 0), we (i) sheared the system to a target shear strain at (0, g)
while keeping the volume strain unchanged, (ii) compressed it to a tar-
get volume strain at (D, g) while keeping the shear strain unchanged, (iii)
applied an additional small shear strain dg = 0.002, and (iv) measured
the stresssZFC at the state point (D, g + dg). In the FCprotocol, the order
of steps (ii) and (iii) was interchanged. The FC protocol therefore has
the path (0, 0) → (0, g)→ (0, g + dg)→ (D, g + dg). The target shear
strain was chosen such that it is below the yielding strain g < gY. Here,
the shear strain serves as an external "field" with respect to compression,
in analogy to the magnetic field in cooling experiments on spin glasses
(43). The stress was measured on a time scale t = 10≈ 10t0, where t0 is
the ballistic time. This choice ensures that the ZFC protocol measures
the short time response to shear, while the FC measurement
corresponds to the long time response because the shear strain g + dg
was reached before the volume strain was applied [see (24) for a detailed
analysis on the stress relaxation dynamics]. This protocol generalizes
the one used in (24), which corresponds to the case g = 0.

Protocols of CP-S, CV-S, and CS-C/D
In the CP-S protocol, the systemwas first compressed or decompressed
(depending on whether the target p is higher or lower than pg) from the
equilibrium state at (p, g) = (pg, 0) to the state at (p, 0). Then, simple
shear was applied under the constant-p condition, until the system
reached the target shear strain at (p, g). At each shear step, the particle
diameters were adjusted to keep p constant. In the CV-S protocol, the
system was first compressed or decompressed from φ = φg to the target
density φ, and then the simple shear was applied by keeping the volume
constant. In the CS-C/D protocol, the system was first sheared from
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(φ, g) = (φg, 0) to a target strain at (φg, g), and then compression or
decompression was applied while keeping the shear strain g constant.

Caging order parameters
Weconsidered two order parametersDr andDAB defined below to char-
acterize the glass state. The relative mean squared displacement is
defined as

Dr ¼ 1
N
∑
N

i¼1
ri � rri
�� ��2 ð1Þ

where {ri} and frrig are the particle coordinates of the target and
reference configurations. In Fig. 1, the target and reference are the con-
figurations after and before shear, respectively. The replica mean
squared displacement

DAB ¼ 1
N
∑
N

i¼1
rAi � r Bi
�� ��2 ð2Þ

measures the distance between two replicas of the same sample gener-
ated by two independent realizations.

One may also consider the time-dependent mean squared displace-
ment DðtÞ ¼ 1

N ∑
N
i¼1〈jriðtÞ � rið0Þj2〉, whose value at the ballistic time

scale t0 ~ 1 gives the typical vibrational cage size of particles. We found
that in our systems, D(t0) ≲ 0.01 [see (23)]. The cage size is nearly un-
changed under simple shear.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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Fig. S2. Multicycle stress-strain curves.
Fig. S3. Other representations of the stability-reversibility map.
Fig. S4. Rescaled stress-strain curves.
Fig. S5. Determination of the Gardner threshold for other φg.
Fig. S6. Determination of the yielding-jamming crossover point.
Fig. S7. Free-volume scalings in shear jamming.
Fig. S8. Pressure susceptibility in the CS-C/D protocol.
Fig. S9. Dependence of the stability-reversibility map on φg and protocols.
Fig. S10. Dependence of the stability-reversibility map on the system size.
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