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Abstract

IL-6 is implicated in the development and progression of autoimmune diseases in part by 

influencing CD4 T cell lineage and regulation. Elevated IL-6 levels drive inflammation in a wide 

range of autoimmune diseases, some of which are also characterized by enhanced T cell responses 

to IL-6. Notably, the impact of IL-6 on inflammation is contextual in nature and dependent on the 

cell type, cytokine milieu and tissue. Targeting the IL-6/IL-6R axis in humans has been shown to 

successfully ameliorate a subset of autoimmune conditions. In this review, we discuss recent 

studies investigating how IL-6 regulates the CD4 T cell response in the context of autoimmune 

disease and highlight how blocking different aspects of the IL-6 pathway is advantageous in the 

treatment of disease.

Introduction

Interleukin-6 (IL-6) is a pleiotropic cytokine involved in chronic inflammation, autoantibody 

production, vascular permeability as well as tissue regeneration, metabolism and 

hematopoiesis. IL-6 is produced by stromal cells, monocytes and lymphocytes, and its 

expression is increased by IL-1β, TNF-α, as well as stimulation of Toll-like receptors and 

additional stress response proteins [1]. Elevated IL-6 serum and tissue concentrations are a 

hallmark of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and relapsing-

remitting multiple sclerosis (MS), often correlating with disease activity [2–4]. IL-6 signals 

via three mechanisms: classic, trans- and cluster signaling, each of which lead to distinct 

immune outcomes. The role of IL-6 in the adaptive immune response is diverse, providing 

both proinflammatory and immunoregulatory signals based on the cell type, cytokine milieu 

and the manner through which it is sensed [5]. In this review, we will discuss how the IL-6 

signaling pathway influences the adaptive immune response, promotes autoimmunity and 

how blocking different aspects of this pathway is advantageous in the treatment of disease.
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IL-6 promotes Th17 and Tfh cell development while suppressing Treg 

induction

IL-6 contributes to the development of autoreactive proinflammatory CD4 T cell responses 

by promoting Th17 cell lineage and function, and by inhibiting the induction of regulatory T 

cells (Treg) (Figure 1). Th17 cells have been implicated in the pathogenesis of RA, MS, type 

1 diabetes (T1D) and SLE [6,7]. IL-6 in combination with TGF-β promotes the development 

and function of Th17 cells [8], and in mice, IL-6 promotes the expansion of Th17 cells [9]. 

In addition, a recent study by Zhao et al reports that IL-6 stimulation inhibits expression of 

RFX1, a transcriptional repressor of IL-17A production in CD4+ T cells [10]. IL-6 also 

influences Th17 cells via regulation of microRNAs; IL-6 induces miR-183c, which 

promotes Th17 pathogenicity via upregulation of IL-1R1 [11].

IL-6 is implicated in the regulation of T cell responses both by inhibiting the generation of 

Foxp3+ Tregs and promoting effector CD4 T cells (Teff) resistant to suppression [8,12–14]. 

IL-6R is highly expressed on Tregs; it has been proposed that the suppressive capacity of a 

Foxp3+ TIGIT- IL-6Rhi Treg population could be ‘disarmed’ in the presence of IL-6-

associated inflammation, allowing for the activation of effector functions and tissue damage 

[15]. Foxp3+ Treg can also convert to Th17 upon exposure to IL-6 [16]. This is regulated in 

part by miR-125a, which reduces IL6R making Treg less sensitive to IL-6 and able to retain 

regulatory features [17]. Exposure of Teff cells to IL-6 is known to bolster their resistance to 

suppression by Tregs; Teff resistance has been previously established in T1D, MS, juvenile 

idiopathic arthritis (JIA), SLE and psoriasis [14,18–21]. STAT3 appears to play a central role 

in the resistance of Teff to Treg. Studies in MS demonstrated the ability to revert Teff 

resistance in vitro through the use of a STAT3 inhibitor [14]; more recently Ihantola et al. 
found Teff resistance was STAT3-dependent in T1D [20].

A recent study shows an influence of IL-6 on naïve T cell activation via TCR, which may 

have broad implications with respect to the activation and development of autoreactive T 

cells. Tu et al. demonstrate that TβR1 expression regulates T cell responsiveness in naïve T 

cells [22]. TGF-β blunts the response to TCR stimulation, enforcing a quiescent state. The 

response to TGF-β in naïve T cells is regulated through the expression of cell surface TβR1. 

Strong stimuli overcome the suppression of T cell activation by reducing TβR1 and allowing 

cells to become activated and mature. IL-6 blocks TβR1 upregulation, allowing for increased 

T cell activation, a diminished naïve T cell population and the potential to promote the 

activation of low affinity T cells; this may be a mechanism through which IL-6 could 

promote Teff resistance [22].

In the context of humoral immunity, IL-6 functions as a central link between T cell and B 

cell responses. IL-6 promotes the survival, expansion, and maturation of B cells and 

plasmablasts, in part by promoting the development of T follicular helper (Tfh) cells [5,23]. 

The activation of STAT3 by IL-6 and IL-21 enhances expression of the transcriptional 

repressor, Bcl-6, and promotes commitment to the Tfh lineage. Tfh cells localize to B cell 

follicles where they promote B cell proliferation and immunoglobulin class switching [24]. 

B cells are also an important source of IL-6. B cell-derived IL-6 drives a murine model of 

MS by supporting the development of Th17 cells in the central nervous system [25]. B cell-
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derived IL-6 is required for spontaneous germinal center formation and development of 

murine lupus [26]. IL-6 produced by B cells promotes the development of Tfh cells [27].

The IL-6 pathway: Unique roles for classic, trans- and cluster signaling

As noted above IL-6 signals via three distinct mechanisms (Figure 2). Classic signaling is 

mediated by the membrane bound IL-6 receptor (mbIL-6R). IL-6 binds the mbIL-6R leading 

to recruitment of gp130, which then activates JAK1 and JAK2, leading to phosphorylation of 

the transcription factors, STAT1 and STAT3 [5]. Trans-signaling is mediated by the soluble 

IL-6 receptor (sIL-6R), instead of mbIL-6R. Here, IL-6 binds to sIL-6R then forms a 

complex with cell surface gp130, this allows IL-6 to act on cells that express gp130 but 

which lack mbIL-6R [28]. Notably gp130 is broadly expressed and soluble gp130 (sgp130) 

can act to block trans-signaling [29]. The expression of mbIL-6R and sIL-6R are central to 

the regulation of these signaling pathways. Two distinct mechanisms have been identified for 

the generation of sIL-6R: alternative splicing and shedding. In humans, a splice variant 

lacking the transmembrane domain leads to expression of sIL-6R [30]. Ectodomain 

shedding refers to proteolytic cleavage of the extracellular domain of IL-6R, which is tightly 

regulated and mediated by ADAMs (a disintegrin and metalloprotease). ADAM17 has been 

identified as the major protease involved in IL-6R shedding following TCR activation in 

human CD4 T cells [31].

Cluster signaling, a third form of IL-6 signaling, was described in 2017 by Heink et al. [16]. 

This IL-6 cluster signaling occurs in dendritic cells where IL-6 is complexed with the IL-6R 

in intracellular compartments before being transported to the membrane to activate gp130 in 

target cells. While sgp130 can interfere with IL-6 trans-signaling, it does not impact cluster 

signaling; this mode of IL-6 signaling contributes to the generation of Th17 cells via the 

induction of STAT3 and the upregulation of the IL-23R in the presence of TGF-β1 [8,32]. 

Importantly, cluster signaling induces faster and more robust activation of STAT3 compared 

to classic IL-6 signaling [16].

Both IL-6 trans-signaling and cluster signaling play more detrimental roles in adaptive 

immunity by regulating the differentiation of Th17 cells, suppressing Tregs and contributing 

to chronic inflammation [16,33,34]. This suggests that Th17 cell differentiation requires 

multiple IL-6 sources and signaling modes that function as a safeguard to minimize 

unwanted Th17 cell-dependent immunopathology [35]. IL-6 classic signaling suppresses the 

differentiation of Foxp3+ Tregs and plays a central role in the development of Tfh cells and 

germinal centers [5,34]. Blockade of IL-6 classic signaling, but not trans-signaling, 

alleviated multiorgan autoimmunity in a murine model of enhanced IL-6 expression in 

follicular B cells dependent on IL-6-driven Tfh [27].

The IL-6/IL-6R axis is dysregulated in autoimmunity

Significant differences in the expression of mbIL6R and sIL6R are found among individuals. 

Twin studies have demonstrated that up to 72% of these differences can be attributed to 

genetics with 51% linked to a single genetic variant the Asp358Ala (rs2228145) [36,37]. 

This genetic variant alters the amino acid in the ADAM17 cleavage site resulting in 
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increased shedding, increased sIL-6R in serum and decreased mbIL-6R levels on CD4 T 

cells [38,39]. Alterations in mbIL6R and sIL6R are associated with autoimmunity. The 

IL6R, Asp358Ala (rs2228145) genetic variant is associated with T1D and RA, where 

increased mbIL-6R expression could lead to higher IL-6 signaling capacity in CD4 effector 

T cells [39]. There is also a significant reduction in transcript and protein levels of ADAM17 

in T cells from subjects with T1D, which correlate with expression of mbIL-6R and suggests 

a role for ADAM17 in the mechanism of altered IL-6 signaling in T1D [40]. How cluster 

signaling may be implicated in autoimmunity is still under investigation.

Targeting the IL-6 pathway has proven to be therapeutic in autoimmunity

Anti-IL-6R antibodies

The first approved drug to block the IL-6 signaling pathway in autoimmunity was a 

humanized anti-IL-6R monoclonal antibody, tocilizumab (TCZ) [41]. The FDA has 

approved the use of TCZ in the treatment of RA and JIA. In Japan, TCZ is approved for the 

treatment of Castleman’s disease [1]. Tocilizumab blocks both the classic and trans-

signaling pathways by preventing IL-6 from binding to mbIL-6R and sIL-6R [42]. The 

efficacy of TCZ in treating other autoimmune disease is being explored in ongoing clinical 

trials including those in systemic sclerosis [43], neuromyelitis optica [44] and new-onset 

T1D (clinicaltrials.gov NCT02293837). Most recently, a second anti-IL-6R antibody, 

sarilumab, which binds to the IL-6R with up to a 40-fold higher affinity than TCZ, was 

approved for the treatment of RA [45].

Anti-IL-6 antibodies

There is also a class of anti-IL-6 antibodies being developed for the treatment of 

autoimmune diseases. One of the first anti-IL-6 antibodies, siltuximab, functions by 

inhibiting IL-6 binding to the IL-6R and is approved for the treatment of Castleman’s 

disease [46]. Treatment with sirukumab has improved symptoms in RA patients that 

previously failed anti-TNF therapy [47]. A third anti-IL-6 antibody, clazakizumab, improved 

musculoskeletal manifestations in patients with psoriatic arthritis [48]. Additionally, some of 

these therapies are also being tested in the setting of malignancy and transplantation [49,50].

JAK inhibitors

Janus kinase (JAK) family enzymes participate in signal transduction of multiple cytokines. 

Inhibitors of JAKs, Jakinibs, have been developed to for the treatment of inflammatory 

diseases and cancer. Tofacitinib is a JAK3 specific inhibitor that also inhibits JAK1 and 

JAK2 and thus has the potential to block IL-6 signaling. Tofacitinib is approved for RA and 

ulcerative colitis and is effective in a broad range of dermatological conditions including 

alopecia areata [51] and psoriasis [52]. There is ongoing development of additional Jakinibs 

including the JAK3-specific inhibitor, peficitinib, which has shown promise in RA [53].

In addition to improving treatment of autoimmunity, blockade of the IL-6 pathway has 

allowed us to develop a broader understanding of how IL-6 influences the lymphocyte 

population and its function in vivo. Treg and Th17 cells are altered with TCZ treatment in 

RA patients. An increase in the ratio of Treg to Th17 cells with therapy is a common finding 
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in these studies; this is predominantly due to an increase in Treg [54,55] though there is 

limited evidence of decreased Th17 cells [34]. Moreover, Treg function is improved with 

TCZ therapy in RA and correlates with clinical response, in part due to an increase in the 

frequency of functionally suppressive CD39+ Tregs [54,56]. Further, natural killer cells are 

also found to inversely correlate with DAS28 disease score after three months of TCZ 

treatment [57]. Anti-IL-6 therapies have not been available long enough for their impact to 

be known; limited studies of tofacitinib demonstrate increases in B cell counts but impaired 

plasmablast development [58,59]. These findings support the multiple roles played by IL-6 

in defining the character of the CD4 T cell and B cell response in human health and disease.

Concluding Comments

Due to its pleiotropic nature, IL-6 has multiple roles in host defense and in human disease, 

from autoimmunity to cancer. Our understanding of how IL-6 influences the immune 

response continues to grow, exemplified by the recent discovery of IL-6 cluster signaling 

and its unique impact on T cell responses [35] alongside the many studies describing the 

immunologic consequences of IL-6R blockade in humans [33,56]. As the IL-6/IL-6R axis 

continues to be implicated in more autoimmune diseases, the need to better understand the 

dysregulation of the signaling pathways driving these diseases also grows. Ultimately, 

therapeutics targeting the IL-6/IL-6R axis may need to be further tailored to specific cell 

types or tissue compartments. An example of this is the development of a bispecific antibody 

against Il-6R and IL-17A, a novel therapeutic approach that could be used to target the Th17 

lineage and its pathogenicity in autoimmunity [60]. Future investigation into the cell types, 

tissues and dysregulated signaling pathways involved in the IL-6/IL-6R axis will enable a 

more streamlined process of drug development and therapeutic selection.
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HIGHLIGHTS

1. IL-6 promotes development of Th17 and Tfh cells and suppresses induction 

of Treg.

2. IL-6 signals via three distinct mechanisms: classical, trans- and cluster 

signaling.

3. IL-6/IL-6R axis is dysregulated in autoimmunity.

4. Targeting the IL-6 pathway has proven to be therapeutic in autoimmunity.
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Figure 1. IL-6 is a proinflammatory modulator of T cells.
IL-6 contributes to autoimmunity by promoting Tfh, Th17, and Teff lineage and function 

and by inhibiting the suppressive capacity and induction of Tregs. In the presence of IL-21, 

IL-6 promotes commitment to the Tfh lineage, which is capable of stimulating B cell 

proliferation and class switching. In addition to bolstering Teff resistance to suppression by 

Tregs, IL-6 also promotes the conversion of Tregs to Th17 and may reduce Treg suppressive 

capacity. Lastly, in the presence of TGF-β, IL-6 enhances commitment and function of Th17 

cells, a well-established pathogenic cell type in autoimmunity.
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Figure 2. Signaling modes, JAK/STAT cascade and therapeutic targets.
IL-6 signals via three mechanisms: classic signaling mediated by the membrane bound IL-6 

receptor (mbIL-6R), trans-signaling mediated by the soluble IL-6 receptor (sIL-6R) and 

cluster signaling in dendritic cells (DCs). In classic signaling, IL-6 binds the mbIL-6R 

leading to recruitment of gp130, which then activates JAK1 and JAK2, leading to 

phosphorylation of the transcription factors, STAT1 and STAT3. Activated STAT3 induces a 

negative-feedback molecule, suppressor of cytokine signaling (SOCS), SOCS1 and SOCS3. 

In trans-signaling, IL-6 binds extracellular sIL-6R before complexing with gp130 and 

initiating the JAK/STAT cascade. Trans-signaling is inhibited by extracellular sgp130, which 

can complex with sIL-6R and prevent it from binding to the membrane-bound gp130. 

Classic signaling and trans-signaling may be augmented by ADAM17, which cleaves 

mbIL-6R to generate sIL-6R. In cluster signaling, IL-6 is complexed with IL-6R within 

intracellular compartments in DCs before being transported to the membrane to activate 

gp130 in target cells. Current IL-6 targeting therapies inhibit either IL-6, the IL-6R, or JAK. 

IL-6 inhibitors include siltuximab, sirukumab, clazakizumab, and olokizumab. Siltuximab is 

approved for the treatment of Castleman’s disease. Il-6R blocking drugs tocilizumab and 

sarilumab are both approved for the treatment of RA. Tofacitinib, a JAK inhibitor, is 
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approved for the treatment of RA and has a demonstrated therapeutic effect in ulcerative 

colitis, alopecia areata, and psoriasis. *indicates FDA approval for an autoimmune disease
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