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Nonalcoholic Fatty Liver Disease (NAFLD) constitutes a wide spectrum of liver pathology with hepatic steatosis
at the core of this pathogenesis. Variations of certain genetic components have demonstrated increased
susceptibility for hepatic steatosis. Therefore, these inciting variants must be further characterized in order
to ultimately provide effective, targeted therapies for NAFLD andwill be the focus of this review. Several genetic
variants revealed an association with NAFLD through Genome-wide Association Study, meta-analyses, and
retrospective case–control studies. PNPLA3 rs738409 and TM6SF2 rs58542926 are the two genetic variants
providing the strongest evidence for association with NAFLD. However, it remains to be determined if these
genetic variants serve as the primary culprit which induces the pathogenesis of NAFLD. Prospective and
intervention studies are urgently needed tofirmly establish a cause-and-effect relationship between the presence
of certain genetic variants and risk of NAFLD development and progression. ( J CLIN EXP HEPATOL 2018;8:390–
402)
onalcoholic Fatty Liver Disease (NAFLD) NAFLD, fibrosis stage, but no other histologic features of
Nencompasses a spectrum of liver disease that
ranges from simple triglyceride (TG) accumula-

tion, or steatosis, in the liver to necro-inflammation, fibro-
sis, cirrhosis, and hepatocellular carcinoma (HCC).1

Hepatic steatosis may be accompanied by other pathologic
changes, such as lobular inflammation or hepatocellular
ballooning, that define Non-alcoholic Steatohepatitis
(NASH). Although the progression from isolated hepatic
steatosis to NASH is unclear, cirrhosis and HCC remain
common long-term complications found among patients
with NASH.2,3 In a longitudinal study of patients with
s: nonalcoholic fatty liver disease, genetic variants, genetic poly-
ms, single nucleotide polymorphisms, epigenetics
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steatohepatitis, were associated independently with long-
term overall mortality, liver transplantation, and liver-
related events.4

A complex interplay between cellular, genetic, and envi-
ronmental factors is implicated in the pathogenesis of
NAFLD (Figure 1). Hepatocytes play a central role in lipid
metabolism, importing serum free fatty acids and
manufacturing, storing and exporting lipids and lipopro-
teins. Accumulation of TG can occur in the liver as a result
of abnormal fatty acid metabolism,5 with excessive delivery
of free fatty acids to the liver compared to that which can be
metabolized (obesity, rapid weight loss, TPN), an increased
mitochondrial synthesis of fatty acids, or a failure of the
synthesis or secretion of apolipoproteins or TGs.6 The pri-
mary metabolic abnormality catalyzing the transformation
of hepatic steatosis to NASH is still unknown. Insulin
resistance plays a key role, since it may influence several
intracellular metabolic pathways.7 Higher levels of fasting
serum insulin have been frequently noted in NASH
patients.8 Conditions associated with peripheral insulin
resistance, such as type 2 diabetes mellitus and obesity
(in particular visceral adiposity), are frequently observed
in patients with NAFLD. Insulin resistance has also been
observed in patients with NASH who are not obese and
those who have normal glucose tolerance.8 It is postulated
that impaired capacity to adequately expand the peripheral
adipose tissue compartments drives dyslipidemia and insu-
lin resistance.9 Insulin resistance decreases peripheral
| No. 4 | 390–402 ã 2018 INASL.
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Figure1 Pathophysiology of NAFLD. Visualized here are the influences of environmental factors, genetic components, and the intestinal microbiome
on the development of hepatic steatosis and the progression of NAFLD. (A) NAFLD is characterized as>5% triglyceride accumulation in hepatocytes.
This can be isolated hepatic steatosis, or accompanied by minimal inflammation within the lobules. (B) Histology showing classic features of NASH
such as steatosis, inflammation, and hepatocellular ballooning degeneration. (C) Trichrome stain revealing progression of NASH to cirrhosis. (D)
Histology illustrating the progression of cirrhosis to HCC. 11HSD-1, 11b-Hydroxysteroid Dehydrogenase Type 1; CCL2, C-C Motif Chemokine
Ligand 2; EGF, Epidermal Growth Factor; FA, Fatty Acid; IL-6, Interleukin 6; HCC, Hepatocellular Carcinoma; HDL, High Density Lipoprotein; HGF,
Hepatocyte Growth Factor; LDL, Low Density Lipoprotein; PAI-1, Plasminogen Activator Inhibitor-1; PDGF, Platelet-Derived Growth Factor; RBP4,
Retinol Binding Protein 4; ROS, Reactive Oxygen Species; SNP, Single Nucleotide Polymorphism; TG, Triglyceride; TGF-b, Transforming Growth
Factor Beta; TNF-a, Tumor Necrosis Factor Alpha.
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glucose uptake and promotes a lipogenic state within
hepatocytes.6,10–12 After the introduction of excess hepatic
TGs, increased lipid peroxidation and reactive oxidative
species are generated which insidiously promotes dysfunc-
tion of the mitochondria and endoplasmic reticulum
(ER).13–16 This increased cellular stress defines the lipotox-
icity which ultimately concludes with hepatocellular death,
which further amplifies the inflammatory response within
thismilieu.17 Hepatic steatosis with ensuing lipotoxicity and
inflammatory response set the stage for NASH. Several
adipocytokines derived primarily from the adipose tissue
depot such as leptin, TNF-alpha, IL-6, adiponectin, resistin
has been implicated in the pathogenesis ofNASH, however a
Journal of Clinical and Experimental Hepatology | December 2018 | Vol. 8
detailed discussion of their mechanism is beyond the scope
of this review, and has been recently reviewed by Polyzos
et al.18 Adipokines serve as auxiliary catalysts at numerous
points along the pathway ofNAFLDpathogenesis.19 Finally,
intestinal dysbiosis has been shown to exacerbate this entire
process through diet-induced changes affecting the gut-liver
axis.20,21 It is imperative to note the underlying pathophysi-
ology because it is the genetic variations within this mecha-
nism that dictate functionality of proteins within these
cellular processes. Thus, minor epigenetic changes or alter-
ations within the genetic sequence can clearly predispose
individuals to both the development and progression of
NAFLD.
| No. 4 | 390–402 391
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Although there are clearly numerous components at
play, the individual genetic elements responsible for these
cellular functions remain critical to the inner workings of
this pathophysiology. Several genetic disorders that alter
the lipoprotein levels such as, disorders of high density
lipoprotein (familial hypoalphalipoproteinemia, Tangier
disease, and LCAT deficiency); familial hypocholesterole-
mias (familial hypobetalipoproteinemia, abetalipoprotei-
nemia, PCSK9 loss of function mutations, familial
combined hypolipidemia, and chylomicron retention dis-
ease); b-sitosterolemia; cerebrotendinous xanthomatosis;
and lysosomal acid lipase deficiency exists that potentially
can predispose for development of NAFLD.22 Clear
genetic association of NAFLD has been shown with LIPA
gene mutation in lysosomal acid lipase deficiency, and a
targeted therapies currently exists for this condition.23

The relevance of genetic factor in the context of NAFLD
has been recently and elegantly outlined by twin studies.24

Particular variants or Single Nucleotide Polymorphisms
(SNPs) across multiple genetic loci have been demon-
strated to work synergistically with adipose tissue in order
to augment the risk of NAFLD.25 SNPs and epigenetic
modifications affecting the genes within this process have
been demonstrated to increase the susceptibility for
hepatic steatosis, a central crux of this pathology which
this review will analyze in further detail.
GENETIC VARIANTS IMPLICATED IN NAFLD
PATHOGENESIS

Genome Wide Association Studies
Genome-wide Association Studies (GWAS) have identified
associations of several genetic variants with NAFLD26–35

(Table 1). GWAS have become a novel, powerful tool in
first assessing which genes are affiliated with a particular
disease. The majority of these findings have incriminated
genetic variants, such as SNPs, as potential mechanisms
predisposing for NAFLD pathogenesis.

Romero et al. for the first time reported in a GWAS a
relationship of NAFLD with a SNP identified in patatin-
like phospholipase domain-containing 3 (PNPLA3) on
chromosome 22, PNPLA3 rs738409, which has founded
this variant as a prime candidate of genetic-associated
NAFLD.26 The variant rs738409 (c.444 C>G, p.I148M),
a non-synonymous cytosine to guanine mutation result-
ing in isoleucine tomethionine conversion, correlates with
increased hepatic lipid content and predisposes to fatty
liver-associated liver disease, from simple steatosis to stea-
tohepatitis, fibrosis and HCC.26,36 Overexpression of the
I148M variant in mouse liver promotes accumulation of
triacylglycerol, increased synthesis of fatty acids and
impaired hydrolysis of triacylglycerol.37 This genetic vari-
ant has been examined extensively in subsequent studies,
and is analyzed in detail in this review. However, this study
392
utilized an American cohort, of which African American
subjects were predominant. This demographic composi-
tion may result in slightly skewed data because the preva-
lence of NAFLD is highest in Hispanics and Caucasians,
while least common among African American individuals,
respectively.38 The population with the highest prevalence
was grossly underrepresented in this study, and therefore,
may serve as a poor indicator of true genetic association.
This GWAS analyzed cohort patients using Proton Mag-
netic Resonance Spectroscopy (1H-MRS) and fails to
report the percentage of total patients with NAFLD as
calculated via 1H-MRS, but only summarizes hepatic TG
percentage within each ethnic group. Hepatic TG content
was also stated as skewed, and a power transformation was
applied to that trait prior to analysis. Nevertheless, this
large-scale cohort was a landmark study that demon-
strated a significant association between PNPLA3
rs738409 and NAFLD.

Chalasani et al. in another GWAS retrospectively ana-
lyzed data from the NAFLD database Study.27 The entire
genome of 236 American subjects confirmed by histology
via liver biopsy was analyzed. PNPLA3 was not verified in
this cohort, but SNPs in the COL13A1 and FDFT1 genes
were found to be associated with NAFLD. Despite provid-
ing convincing evidence, there was one major drawback of
this study in that this cohort was purely composed of
Caucasian females. A highly homogenous group such as
this may not represent the most indicative genetic asso-
ciations in the general population.

In the largest GWAS to date, Speliotes et al. not only was
able to reproduce an association with PNPLA3 rs738409,
but also established a new relationship between NAFLD
and glucokinase regulatory protein GCKR rs780094 and
NCAN rs2228603.28 This variant produces a GCKR with
defective inhibitory function, leading to increased glucoki-
nase activity and hepatic glucose uptake.39 The resultant
unimpeded hepatic glycolysis reduces glucose levels, induc-
ing malonyl-CoA synthesis, a substrate for lipogenesis that
causes liver fat deposition and impairs mitochondrial
b-oxidation. This cohort was comprised of populations
in family-based studies from the FraminghamHeart Study,
Family Heart Study, Old Order Amish community, and
Reykjavik Study from Iceland. All of the individuals in this
cohort were Caucasian and from either America or Iceland.
While the sheer number of individuals tested provides
powerful data, this analysis will represent skewed informa-
tion from within the same genetic pools, which could alter
the validity of the GWAS as compared to the entire popu-
lation. Also, the modality of NAFLD diagnosis was initially
established with Computed Tomography (CT), and then if
positive, followed up by liver biopsy. Utilizing this meth-
odology, patients with lower levels of hepatic steatosis may
have gone undetected in the initial screening process by
CT, and thus, not confirmed on liver biopsy. Even though
constraints certainly exist, this study was not only able to
ã 2018 INASL.



Table 1 Genome-Wide Association (GWA) and Genome-Wide Exome Studies Identifying Genetic Variants Associated with
NAFLD.

Gene SNP Study
population

Notable cohort
characteristics

Diagnostic
modality

NAFLD sample size

Romeo et al., 200826

PNPLA3 rs738409 American %52 African American,
29% Caucasian, 17%
Hispanic

1H-MRS 2111 total (controls vs
NAFLD not reported)

Chalasani et al., 201027

COL13A1 rs1227756
American 100% Caucasian females Liver biopsy

236

FDFT1 rs2645424

Speliotes et al., 201128

GCKR rs780094

American &
Icelandic

100% Caucasian Family
studies included

CT and/or liver
biopsy

592LYPLAL1 rs12137855

NCAN rs2228603

PNPLA3 rs738408

Kawaguchi et al., 201229

PNPLA3 Several (but rs738409 not
tested)

Japanese – Liver biopsy 529

Adams et al., 201330

LPPR4 rs12743824

Australian
Adolescents at 17 years of
age

US
126GC rs222054

LCP1 rs7324845

SLC38A8 rs11864146

Kitamoto et al., 201331

PARVB rs5764455, rs6006611

Japanese – Liver biopsy
392PNPLA3 rs738409, rs2896019,

rs3810622

SAMM50 rs738491, rs2073082,
rs3761472, rs2143571

Feitosa et al., 201332

ERLIN1 rs2862954, rs1408579,
rs10883451

American 100% Caucasian Family study CT
2767

CHUK rs11597086, rs11591741

CWF19L1 rs17729876, rs17668255,
rs17668357, rs12784396

PNPLA3 rs738409

PPP1R3B rs2126259

Kozlitina et al., 201433

TM6SF2 rs58542926 American 48% African American, 32%
Caucasian, 17% Hispanic

1H-MRS 2735 total [controls vs
NAFLD not reported]

Shang et al., 201534

COL13A1 rs1227756

Chinese Children aged 7–18 US
162

EHBP1L1 rs6591182

FDFT1 rs2645424

GCKR rs7800094

NCAN rs2228603

PDGFA rs343064

PNPLA3 rs738409

DiStefano et al., 201535

PNPLA3 rs4823173, rs2896019,
rs2281135 American

100% Caucasian 81% female
Subjects undergoing bariatric
surgery

Histology from
intraoperative liver
biopsy

1386

SUGP1 rs10401969

CHUK, Conserved Helix-Loop Helix Ubiquitous Kinase; COL13A1, Collagen Type XIII, alpha1; CT, Computed Tomography; CWF19L1, CWF19-like Protein 1;
EHBP1L1, EH Domain Binding Protein 1-like 1 Gene; ERLIN1, ER Lipid Raft Associated 1; FDFT1, Farnesyl Diphosphate Farnesyl Transferase 1; GC, Group-
specific Component; GCKR, Glucokinase Regulator; 1H-MRS, Proton Magnetic Resonance Spectroscopy; LCP1, Lymphocyte Cytosolic Protein-1; LPPR4,
Lipid Phosphate Phosphatase-Related Protein Type 4; LYPLAL1, Lysophospholipase-like 1; NCAN, Neurocan; PARVB, Parvin, Beta; PDGFA, Platelet-derived
Growth Factor Alpha Polypeptide; PNPLA3, Patatin-like Phospholipase Domain Containing 3; PPP1R3B, Protein Phosphatase 1 Regulatory Subunit 3B;
SAMM50,SortingandAssemblyMachineryComponent50;SLC38A8,SoluteCarrier Family38Member8;SUGP1,SURPandGPatchDomainContaining1;
TM6SF2, Transmembrane 6 Superfamily Member 2; US, Ultrasonography.
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reproduce results on PNPLA3 rs738409, but also pioneered
the association between NAFLD and GCKR rs780094 and
NCAN rs2228603. Additionally, the multidimensional func-
tion of GCKR needs a mention here as a recent meta-
analysis also suggests that the rs780094 polymorphism
in GCKR is associated with elevated T2DM risk, which
may indirectly influence the risk of developing NAFLD.40

Romero et al. in the first GWAS provided the frame-
work for the remaining nine studies whose results are
further detailed in Table 1. Three of the studies were
strictly in Japanese and Chinese cohorts, the latter being
primarily focused in a pediatric population.34 Of note, the
individuals in the Chinese pediatric population were diag-
nosed with NAFLD based upon US. Another study was
performed in Australia, which also used US for detection
of hepatic steatosis.30 Patients with limited hepatic stea-
tosis would potentially go undetected utilizing this
modality. The remaining GWAS were performed in Amer-
ican cohorts, which were able to confirm the prevalence of
SNPs from previous work as well as identify new potential
genetic variants associated with NAFLD.
Candidate Gene Studies
After the explosion of information from numerous
GWAS, many candidate gene studies have been performed
in order to examine the influence of particular SNPs on
NAFLD pathogenesis. The most prominent genetic
variants41–55 exhibiting a predilection or progression of
NAFLD are displayed in Table 2.

PNPLA3 rs738409 remains the most highly proclaimed
genetic variant incriminate in the pathogenesis of NAFLD.
To date, three large-scale meta-analyses48–50 (Table 2) have
been performed across a vast array of ethnicities and large
sample populations, confirming the evidence for this rela-
tionship. Support from this data aligns with the intracellu-
lar actions of PNPLA3 as a lipase in both hepatocytes and
hepatic stellate cells. Aberrant function of PNPLA3 rs738409
results in an absence of lipase activity, thus leading to
intracellular TG or retinol accumulation in hepatocytes
and hepatic stellate cells, respectively.56–58 However a recent
study has argued against this mechanism as knockout mice
fail to develop steatosis and it is more likely to be a gain-of-
function mutation that modulates the composition of
hepatic lipid, resulting in lipotoxicity.59

The genetic variant in TM6SF2 rs58542926 on chromo-
some 19 (19p13.11) has been reported to correlate with
steatosis and increased risk of advanced fibrosis in NAFLD
patients,33,60 independently of other factors, including
diabetes, obesity, or PNPLA3 genotype. TM6SF2, is a
transmembrane protein localized in ER and ER–Golgi
compartments and functions as a lipid transporter.61

The amino acid change E167K causes loss of function
of TM6SF2 protein, and downregulation of TM6SF2
reduces lipoproteins and apolipoprotein B (APOB) levels,
394
and increases hepatic deposition of TGs and the amount
and size of lipid droplets. In contrast, the size and number
of lipid droplets diminishes when TM6SF2 is overex-
pressed, indicating that TM6SF2 plays a role in regulating
hepatic lipid efflux.33,61 This genetic variant was first
recognized after emerging as a leading candidate from
the genome-wide exome study performed by Kozlitina
et al.33 A myriad of studies have since validated its associ-
ation withNAFLD, including onemeta-analysis.54 Despite
a large sample size only three out of the eight studies
confirmed NAFLD on liver biopsy, and one study from
Italy included pediatric subjects.55

Although the presence of several other genetic variants
listed in Table 2 have proven a high propensity for NAFLD
through retrospective evidence, only APOC3 rs2854116 and
rs2854117 have been studied through meta-analysis of
prospective data.43

PPARg rs1805192 and 1801282 have been examined in
two meta-analyses. In the first meta-analysis, these genetic
variants were found to have no association with NAFLD.51

The second meta-analysis provides somewhat weaker
methodology, in that the incidence of hospital-based
and population-based controls, as well as the diagnostic
modality for NAFLD, was not reported.52 Amidst these
deficiencies, it was concluded that these genetic variants
were associated with NAFLD in the East Asian population
that was studied, but not the European population.
Clearly, there is inconsistent data concerning the PPARg
rs1805192 and rs1801282 and further analysis is required
regarding its role in NAFLD pathogenesis.

Meta-analysis provides the highest level of evidence to
date, however there is a multitude of cross-sectional stud-
ies analyzing the role of specific genetic variants in their
association to NAFLD. Selected retrospective studies62–85

from each genetic variant are detailed here in Table 3,
which have been performed over a variety of populations
and ethnicities. Certainly, there are many genetic variants
embroiled in this disease process, and many of which,
warrant further investigation. However, LYPLAL1
rs12137855 provides an interesting context to NAFLD
pathogenesis. After being implicated in the landmark
GWAS by Speliotes et al.,28 this genetic variant was shown
to have no association with NAFLD in a Chinese study
population through retrospective case–control analysis.84

Results of these studies potentially could be biased related
to power of these studies and could have been confounded
by the quality of the study design.
EPIGENETIC MODIFICATIONS IMPLICATED
IN NAFLD PATHOGENESIS

Epigenetic changes consist in modifications at the tran-
scriptional level affecting gene expression and phenotype.
A number of epigenetic aberrations have been associated
ã 2018 INASL.



Table 2 Meta-analyses and Prospective Evidence for the Association of Genetic Variants with NAFLD.

Gene SNP Study type Study
population

Notable cohort
characteristics

Sample size Diagnostic modality

ADIPOQ rs26672941 Meta-analysis Multiethnic
(primarily Asian)

HB vs PB not reported 9 retrospective case–
control studies 1223
cases/1580 controls

Liver biopsy only in
3/9 studies

APOC3 rs285411642 Prospective
case–control

Chinese 67% male subjects 300 cases/300 controls US

rs2854116 and
rs285411743

Meta-analysisa Multiethnic 5 HB vs 2 PB controls; 1
study included pediatric
subjects; 2 studies did not
report gender %

7 prospective case–control
studies 1745 cases/1437
controls

Liver biopsy only in
2/7 studies 1H-MRS
or US in others

GCKR rs78009444 Meta-analysis Multiethnic 5 HB vs 2 PB controls; 1
of the Asian studies
examines pediatric
subjects

5 retrospective case–
control studies 2090
cases/3003 controls

Liver biopsy only in
3/5 studies

MTHFR rs180113345 Meta-analysis Multiethnic All 8 studies PB controls 8 retrospective case–
control studies 785
cases/1188 controls

Liver biopsy in 4/5
studies, not
reported in Chinese
and Ukrainian
studies

rs1810113145 Meta-analysis Multiethnic All 5 studies PB controls 5 retrospective case–
control studies 476
cases/679 controls

Liver biopsy in 3/4
studies, not
reported in
Ukrainian study

MTTP rs180059146 Meta-analysis Multiethnic 6 HB vs 5 PB controls 11 retrospective case–
control studies 636
cases/918 controls

Not reported

PEMT rs794647 Meta-analysis Multiethnic
(primarily Asian)

4 HB vs 2 PB controls;
1 study included pediatric
subjects

6 retrospective case–
control studies 792
cases/2722 controls

Liver biopsy only in
2/6 studies

PNPLA3 rs73840948 Meta-analysis Multiethnic 11 HB vs 5 PB controls; 5
studies included pediatric
subjects

16 retrospective case–
control studies 12,677
total

Liver biopsy only in
6/16 studies 1H-
MRS, US, or CT in
others

rs73840949 Meta-analysis Asian 4 HB vs 8 PB controls 12 retrospective case–
control studies 4495
cases/7431 controls

Liver biopsy only in
5/12 studies

rs73840950 Meta-analysis Multiethnic 15 HB vs 8 PB controls 23 retrospective case–
control studies 5826
cases/10,796 controls

Liver biopsy only
in10/23 studies

PPARg rs1805192 and
rs180128251

Meta-analysisa Caucasian
and Asian

4 HB vs 4 PB controls 8 retrospective case–
control studies 1697
cases/2427 controls

Liver biopsy in 5/9
studies

rs1805192 and
rs180128252

Meta-analysisb Caucasian
and Asian

HB vs PB not reported 5 retrospective case–
control studies 1225
cases/2016 controls

Not reported

SREBF-2 rs13329153 Prospective cohort Italian 65% male subjects 48 cases/127 controls Liver biopsy

TM6SF2 rs5854292654 Meta-analysis Multiethnic 4 HB vs 3 PB vs 1 mixed
controls;
1 of the 2 Italian studies
in pediatric

8 retrospective case–
control studies 5537 total

Liver biopsy only in
3/8 studies

rs5854292655 Prospective cohort Multiethnic Pediatric cohort 957 total Liver biopsy only in
11 patients

aThis study demonstrated no association with NAFLD.
bThis study suggested association with NAFLD in the East Asian population, however not in the European population. ADIPOQ, Adiponectin; APOC3,
Apolipoprotein C-III; CT, Computed Tomography; GCKR, Glucokinase Regulator; 1H-MRS, Proton Magnetic Resonance Spectroscopy; HB, Hospital-
Based Controls; MTHFR, Methylenetetrahydrofolate REDUCTASE; MTTP, Microsomal Triglyceride Transfer Protein; PB, Population-Based Controls;
PEMT, Phosphatidylethanolamine N-methyltransferase; PNPLA3, Patatin-like Phospholipase Domain Containing 3; PPARg, Peroxisome Prolifera-
tor-Activated Receptor Gamma; SREBF-2, Sterol Regulatory Element-binding Factor 2; TM6SF2, Transmembrane 6 Superfamily Member 2; US,
Ultrasonography.
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Table 3 Retrospective Candidate Gene Studies Linking Genetic Variants to NAFLD.
Gene SNP Study population Notable cohort

characteristics
Sample size Diagnostic

modality

ABCC2 rs17222723, rs818771062 Argentine Poor selection of
controls

109 cases/58 controls US

ACSL4 rs788798163 Finnish Validated in 2
replication cohorts

302 total with replication cohorts 1H-MRS

ADIPOR2 rs76787063 Finnish Validated in 2
replication cohorts

302 total with replication cohorts 1H-MRS

ADRB2 rs104271464 Japanese – 132 cases/119 controls US

ADRB3 rs499465 Japanese Exclusively NASH cases 63 cases/100 controls CT

AGTR1 rs3772630, rs377262266 Japanese 80% males in NAFLD
cases

167 cases/435 controls Liver biopsy

APOE rs7412, rs42935867 Turkish – 57 cases/245 controls Liver biopsy

APPL1 rs464052568 Chinese – 280 cases/281 controls Unreported

FADS1 rs17455669 American and
Chinese

Analysis of explanted
liver samples

206 transplants Histology of donor
livers

GCLC/GCLM rs1788390170 Brazilian – 131 cases/141 controls Liver biopsy

IL-1 rs1694465 Japanese Exclusively NASH cases 63 cases/100 controls CT

IL-6 rs180079571 Italian Poor selection of
controls

114 cases/79 controls Liver biopsy in 59/
114 cases

LEPR rs670098672 Egyptian – 90 cases/30 controls Liver biopsy

rs1137100, rs113710173 Malaysian,
Chinese, Indian

– 144 cases/198 controls Liver biopsy

LYPLAL1 rs1213785584 Chinese – 184 cases/114 controls US

MBOAT7 rs64173874 American and
European

– 3854 total in Dallas Heart Study, 1149
total in Liver Biopsy Cohort

Liver biopsy and 1H-
MRS

NCAN rs222860375 American Bariatric cohort; 80%
female subjects;
Ethnicities not reported

748 cases/344 controls Liver biopsy

PARVB rs5764455, rs600647376 Chinese 60% male subjects 384 cases/384 controls US

PPP1R3B rs424062477 American Population-based 4804 total US

SAMM50 rs738491, rs2143571,
rs376147285

Chinese – 340 cases/452 controls US

SLC2A1 rs4658, rs84185678 Spanish Poor selection of
controls

451 cases/304 controls Liver biopsy

SOD2 rs488079 Chinese – 131 cases/90 controls Liver biopsy

TCF7L2 rs790314680 Italian �75% male subjects 78 cases/156 controls Liver biopsy in 34/
78 cases

TLR4 rs498679081 Turkish – 119 cases/80 controls Liver biopsy in
111/119 cases

TRAIL rs1131568, rs113158082 Chinese – 84 cases/80 controls Unreported

UCP3 rs1123597283 Spanish – 39 cases Liver biopsy

11b-HSD1 rs2235543, rs12565406,
rs4844880111

German 100% Caucasian
All subjects had family
history of T2DM,
BMI > 27, or impaired
glucose tolerance
testing

327 total subjects 1H-MRS

CD14 C159T polymorphism112 Indian 64% male subjects 200 NAFLD/50 controls US

Omentin-1 rs2274907113 Iranian Significantly lower BMI
in control group

94 NAFLD/188 controls US

PTPRD rs35929428114 Japanese Significantly lower age
in control group

36 NAFLD/27 controls Liver biopsy

Resistin rs1862513113 Iranian Significantly lower BMI
in control group

94 NAFLD/188 controls US

a This study demonstrated no association with NAFLD.
ABCC2, ATP-binding Cassette, Sub-family C, Member 2; ACSL4, Acyl-coA Synthase Long Chain Family Member 4; ADIPOR2, Adiponectin Receptor 2; ADRB2, Adrenergic Beta 2
Receptor; ADRB3, Adrenergic Beta 3 Receptor; AGTR1, Angiotensin II Type 1 Receptor; APOE, Apolipoprotein E; APPL1, Adaptor Protein, Phosphotyrosine Interacting with PH
Domain and Leucine Zipper 1; CT, Computed Tomography; FADS1, Fatty Acid Desaturase 1; GCLC/GCLM, Glutamate-cysteine Ligase; 1H-MRS, Proton Magnetic Resonance
Spectroscopy; IL-1, Interleukin-1; IL-6, Interleukin-6; LEPR, Leptin Receptor; LYPLAL1, Lysophospholipase-like 1; MBOAT7, Membrane Bound O-acyltransferase Domain-
containing 7Gene; NCAN, Neurocan; PARVB, Parvin Beta; PPP1R3B, Protein Phosphatase 1 Regulatory Subunit 3B; SAMM50, Sorting and AssemblyMachinery Component 50;
SLC2A1, Solute Carrier Family 2Member 1; SOD2, Superoxide Dismutase 2,Mitochondrial; TCF7L2, Transcription Factor 7-like 2; TLR4, Toll-like Receptor 4; TRAIL, TNF-related
Apoptosis-inducing Ligand; UCP3, Uncoupling Protein 3, Mitochondrial; 11b-HSD1, 11b-Hydroxysteroid Dehydrogenase Type 1; CD14, Coreceptor Cluster of Differentiation
14; PTPRD, Receptor-type Tyrosine-protein Phosphatase Delta; US, Ultrasonography.
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with NAFLD pathogenesis, causing alterations in lipid
metabolism, Insulin Resistance (IR), dysfunction of ER
and mitochondria, oxidative stress and inflammation. As
opposed to targeting changes in the genetic sequence and
analyzing SNPs associated with NAFLD, a growing inter-
est in recent scientific studies have focused on mecha-
nisms responsible for modified expression or translation
of genes related to the disease process. Interestingly, it is
unclear if the altered gene expression causes the disease or
the disease itself drives the modifications of gene expres-
sion. Nevertheless, two major gene expression modifying
mechanisms, MicroRNA (miRNA) and epigenetics are
found to be associated with NAFLD.
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Analysis of miRNA Mediated Modifications
miRNAs modulate gene expression via post-transcrip-
tional mechanisms, regulating themain cellular processes,
such as lipid metabolism, inflammation, apoptosis, cell
growth and differentiation. Aberrant miRNA expression
has been reported in a number of diseases including
metabolic disorders,86,87 whereas an increasing number
of dysregulated miRNAs, implicated in fatty acid synthe-
sis, uptake and storage of TGs or oxidation, have been
recently identified in NAFLD.88 miRNAs have been the
most comprehensively studied epigenetic mechanism in
relation to NAFLD. There have been numerous miRNAs
implicated in this pathology and demonstrated through
mouse models, however only the associations found in
humans have been listed in Table 4. In general, miRNAs
listed here exhibit their action by modifying the expres-
sion or downstream effects of genes correlated with lipid
metabolism, inflammation, and fibrogenesis. Presently,
the most highly touted entity of this group has been
miR-122, which constitutes over 70% of hepatic miRNA
expression.89 One of its primary targets serves to decrease
the expression of numerous genes critical for lipid metab-
olism, such as FASN, ACC2, SCD1, and ACLY.90 There
have been three major studies examining the effects of this
miRNA on NAFLD in human subjects. The first two
demonstrated an association between miR-122 expression
and NAFLD, however subsequent review exposed discor-
dance between the levels miR-122 measured in hepato-
cytes and the serum.91,92 This phenomenon remained
relatively unchallenged until the landmark investigation
by Pirola et al.,93 Serum levels of miR-122 were once again
demonstrated to be elevated in individuals with isolated
steatosis or NASH as compared to controls. However, the
hepatic expression was significantly downregulated in
NAFLD, particularly in more severe cases such as NASH.
Immunohistochemical staining revealed that miR-122
expression was restricted to the periphery of lipid-laden
hepatocytes, suggesting they were in the process of export-
ing out of the hepatocytes into the circulation. Not only
was this finding independently significant, but the serum
Journal of Clinical and Experimental Hepatology | December 2018 | Vol. 8
levels of miR-122 were also found to correlate with hepa-
tocellular ballooning and fibrosis in addition to serving as
a superior biomarker for NAFLD than aminotransferases
and CK-18, which has gained traction as a novel bio-
marker for liver disease. These groundbreaking findings
suggest the export of miR-122 from hepatocytes into the
circulation detects the underlying lack of inhibition on
lipogenic gene expression and NAFLD pathology. miR-
NAs, such as miR-122, still demand further investigation,
yet provide novel targets for NAFLD therapy in the future.
Analysis of Epigenetic Modifications
While the seemingly small amount of data regarding
miRNAs has yet provided new insight into this pathologic
mechanism, epigenetic modifications have been character-
ized to an even lesser degree. Such epigenetic modifica-
tions are driven by DNA methylation. Defects within this
epigenetic mechanism have not been studied as thor-
oughly as other genetic variants, but many have been
correlated with NAFLD. Much like for the miRNAs, there
has been a great deal of work in mouse models, but only
those significant studies performed in human
subjects89,92–99 have been outlined here in Table 4. The
first study analyzed morbidly obese patients undergoing
bariatric surgery through a retrospective case–control
study.94 After histologic analysis of livers taken from both
NAFLD and control patients, a correlation was found
between the methylation of several genes with the exis-
tence of NAFLD. However, this data is very selective in that
the subjects were morbidly obese and undergoing major
surgical intervention. Furthermore, the control samples in
this study were taken from subjects undergoing major
oncologic surgery. This garners data in a very highly
specific clinical scenario and may not accurately provide
insight to the general population of patients with NAFLD.
The next two major studies established a correlation
between methylation of several target genes and the diag-
nosis of NAFLD based upon liver biopsy is presented in
Table 4.95,96 However, a great portion of this data vested
its analysis in the epigenetic differences among various
degrees of NAFLD severity, or increased fibrosis. Further-
more, it has recently been shown that DNAmethylation as
detected in the plasma can serve as an accurate biomarker
for hepatic fibrosis in NAFLD.100 Certainly there is prom-
ise for NAFLD association with epigenetic mechanisms
such as these, but many more studies with stronger meth-
odology and a higher level of evidence must be completed
in order to confirm this association.

Lastly, there has been novel exploration into the
remaining genome and its influence on NAFLD develop-
ment and severity. Analysis of Long Noncoding RNAs
(lncRNA) have provided significant intrigue in regards
to their transcriptional and epigenetic influence over this
pathophysiology. Most recently, one specific lncRNA, lnc-
| No. 4 | 390–402 397



Table 4 Epigenetic and miRNA Targets Correlated with NAFLD.

Gene Study population Notable cohort
characteristics

Sample size Diagnostic modality

miR-16, 34a, 12289 American 91% male Unreported
ethnicities

34 cases/19 controls Liver biopsy

miR-12292 American 82% female 82%
Caucasian

25 NASH/25 controls Liver biopsy

miR-122, 192, 37593 Argentine Ethnicities not reported 16 NASH/16 isolated
steatosis/16 controls

Liver biopsy

ACLY, GALNTL4, GRID1,
IGF1, IGFBP2, IP6K3, PC,
PLCG1, PRKCE94

German
and Swiss

Morbidly obese patients
undergoing bariatric
surgery

45 cases/18 controls Liver biopsy or histology
from intraoperative sample

CASP1, FGFR2, MAT1A,
MTHFD295

American �100% Caucasian 56 cases/25 controls Liver biopsy

Collagen 1A1, PDGFa,
PPARa, PPARd, TGFb196

British 100% male 17 cases (no controls, just
comparing mild to severe
NAFLD)

Liver biopsy

MT-ND697 Argentine Ethnicities not reported 45 cases/18 controls Liver biopsy

TET1, TET298 Argentine Ethnicities not reported 67 cases/23 controls Liver biopsy (only US in
controls)

TFAM99 Argentine Ethnicities not reported 63 cases/11 controls Liver biopsy

lnc-JAM2-6101 Argentine None 32 NAFL/32 NASH/32
controls

Liver biopsy

PPARg100 British 2 subjects previously
transplanted for “cirrhotic
NAFLD” were included

26 NAFLD/26 controls Liver biopsy

ACLY, ATP Citrate Lyase; CASP1, Caspase 1; Collagen 1A1, Collagen Type 1 Alpha 1; FGFR2, Fibroblast Growth Receptor 2; GALNTL4, UDP-N-acetyl-
alpha-D-Galactosamine:Polypeptide N-Acetylgalactosaminyltransferase-like 4; GRID1, Glutamate Receptor, Ionotropic, Delta 1; HDAC3, Histone
Deacetylase 3; HDAC8, Histone Deacetylase 8; IGF1, Insulin Like Growth Factor 1; IGFBP2, Insulin Like Growth Factor Binding Protein 2; IP6K3,
Inositol Hexakisphosphate Kinase 3; MAT1A, Methionine Adenosyl Methyltransferase 1A, MT-ND6, Mitochondrially Encoded NADH Dehydrogenase
6; MTHFD2, Methylenetetrahydrofolate Dehydrogenase 2; PC, Pyruvate Carboxylase; PDGFa, Platelet Derived Growth Factor Alpha; PPARGC1a,
PPARG Coactivator 1 Alpha; PLCG1, Phospholipase C Gamma 1; PPARa, Peroxisome Proliferator Activated Receptor Alpha; PPARd, Peroxisome
Proliferator Activated Receptor Delta, PRKCE, Protein Kinase C, Epsilon; SIRT1, Sirtuin 1; SIRT6, Sirtuin 6; TET1, Ten-Eleven Translocation
Methylcytosine Dioxygenase 1; TET2, Ten-Eleven TranslocationMethylcytosine Dioxygenase 2; TFAM, Transcription Factor A, Mitochondrial; TGFb1,
Transforming Growth Factor Beta 1; lncRNAs, Long Noncoding RNAs; PPARg, Peroxisome Proliferator Activate Receptor Gamma; US,
Ultrasonography.
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JAM2-6, was associated with NAFLD and disease severity,
potentially through interactions with oncogenes MAFK
and JUND and the transcription factor CEBPB that is
central to the inflammatory mechanism.101 This study
represents a landmark trial in terms of genomic analysis
among NAFLD subjects and may have pioneered meth-
odology for future studies.

Emerging single-cell epigenomic methods are being
developed with the exciting potential to transform our
knowledge of gene regulation. High-throughput
sequencing has revolutionized the field of epigenetics
with methods for genome-wide mapping of DNA meth-
ylation, histone modifications, chromatin accessibility,
and chromosome conformation. Initially, the input
requirements for these methods meant that samples con-
taining hundreds of thousands or millions of cells were
required; but in the last couple of years this has changed
with numerous epigenetic features now assayable at the
single-cell level.102
398
PHARMACOGENOMICS

Although genetic makeup of an individual does not fully
explain the disease phenotype and natural history of
NAFLD, the utility of genetic data on assessing the respon-
siveness to various therapeutic interventions in NAFLD is
emerging. This personalized treatment, or pharmacogenom-
ics, supplies a pragmatic treatment option in NAFLD given
the heterogeneity of the disease phenotype, with contribu-
tions of host and environmental factors. Furthermore, the
genotype of an individual has a potential to change the
metabolism of dietary components and also the pharmaco-
dynamics of the medications used for NAFLD patients. For
example, de novo lipogenesis and hepatic fat content in
patients with I148M variant, or GG polymorphism, of the
PNPLA3 gene have been associatedwith intake of sugars and
sweetened beverages103,104 and hepatotoxicity due to imbal-
ance of the ratio of omega-6 to omega-3 fatty acids.105 On
the other hand, this variant was also associatedwith reduced
ã 2018 INASL.
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hepatic steatosis and fat content with increased consump-
tion of vegetables in diet106 and with weight loss.107

Although most studies have shown benefit of statins across
the entire NAFLD spectrum, this benefit is blunted in
patients with GG polymorphism of the PNPLA3 gene.108

Potential beneficial effects of statins in NAFLD and other
chronic liver diseases are based on low quality RCTs, and
needs further studies before can be routinely recom-
mended.109 In another study, a marginal association was
shown between V433M genotype of CYP4F2, a primary
component of vitamin E metabolism, and improvement
in NAFLD activity score without impact on vitamin E levels,
suggesting another potential mechanism of this benefit in
patients with this specific genotype.110 As the fields of
genetic testing and therapies for NAFLD evolve, pharmaco-
genomics and personalized therapy is going to become
increasingly more relevant in tailoring the diet, exercise
regimen, and use of pharmacological treatment options
for managing patients with NAFLD.
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CONCLUSION

The exact mechanism of NAFLD pathogenesis still remains
intricately obscure with interplay among environmental
factors, individual genetic variants, or alterations in the
intestinal microbiome to provide an environment which
is susceptible for the development of NAFLD. Several
genetic variants have been implicated in this disease process,
however their specificity remains unknown. Certain genetic
variants, such as PNPLA3 rs738409 and TM6SF2 rs58542926,
have been repeatedly demonstrated to be closely linked in
this disease process, however it is critical to note that
causality cannot be established from these studies. While
currently there is a great deal of unknown, identification of
known genetic variants will help tailor treatment strategies
for these high risk patients in the future. Rigorous prospec-
tive investigation of these genetic variants are needed in
biopsy proven NAFLD patients in order to firmly establish
which of those genetic components serve as the primary
culprit of NAFLD pathogenesis, in addition to the progres-
sion of NASH to advanced fibrosis, cirrhosis and HCC.
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