Skip to main content
. Author manuscript; available in PMC: 2019 Dec 1.
Published in final edited form as: Ann Biomed Eng. 2018 Jul 26;46(12):1988–1999. doi: 10.1007/s10439-018-2095-6

Table 4.

Testing result (Dataset II) of the four classifiers trained with the features extracted after fine-tuning of the five different deep CNNs. NI-to-PI: transferring from the natural image dataset to the target pathology image dataset; and PI-to-PI: transferring from the non-target PI dataset to the target PI dataset. All three networks were fine-tuned on Dataset II. C1: first convolutional layer; FC1: fully connected layer. Each classifier was built on the C3 layer for the C1-C2-C3-FC1 network and on the C5 layer for the C1-C2-C3-C4-C5-FC1 network.

ScoreModel C1-C2-C3-FC1 C1-C2-C3-C4-C5-FC1 AlexNet Places365-AlexNet GoogLeNet
NI-to-PI PI-to-PI NI-to-PI PI-to-PI NI-to-PI PI-to-PI NI-to-PI PI-to-PI NI-to-PI PI-to-PI
ACC (%) SVClnr 89.9 89.8 89.3 89.5 88.7 87.8 88.5 88.8 91.8 91.3
SVCrbf 75.0 73.5 90.3 90.4 91.3 90.8 91.5 91.4 90.8 90.6
RF 88.3 88.1 86.1 87.6 90.3 89.7 90.0 90.3 90.1 90.3
KNN 89.0 88.8 87.0 88.6 90.8 91.0 91.2 90.8 91.5 91.3
AUC SVClnr 0.966 0.965 0.959 0.962 0.958 0.954 0.959 0.959 0.974 0.973
SVCrbf 0.919 0.922 0.964 0.965 0.973 0.972 0.973 0.973 0.970 0.970
RF 0.947 0.951 0.937 0.945 0.961 0.958 0.959 0.959 0.961 0.961
KNN 0.958 0.959 0.950 0.958 0.970 0.969 0.971 0.970 0.973 0.974
TPR (%) SVClnr 88.9 88.5 88.3 88.2 88.3 88 88.3 88.5 91.5 90.8
SVCrbf 53.7 49.5 89.3 88.4 90.2 88.6 90.7 90.7 90.6 89.5
RF 85.8 84.5 83.4 85.1 88.3 88 88.0 88.7 87.9 88.6
KNN 89.1 87.9 87.3 86.1 88 89.4 89.8 89.7 90.4 89.6
PPV (%) SVClnr 90.8 90.9 90.2 90.6 89.1 87.7 88.7 89.1 92.1 91.8
SVCrbf 94.0 95.7 91.2 92.1 92.3 92.7 92.2 92.0 91.0 91.6
RF 90.4 91.1 88.3 89.7 92.0 91.2 91.7 91.7 92.0 91.8
KNN 89.0 89.6 86.9 90.7 93.3 92.4 92.4 91.8 92.5 92.8
F1 (%) SVClnr 89.8 89.8 89.2 89.4 88.7 87.9 88.5 88.9 91.9 91.3
SVCrbf 68.3 65.3 90.3 90.2 91.3 90.6 91.5 91.4 90.9 90.6
RF 88.0 87.7 85.8 87.3 90.1 89.5 89.9 90.2 90.0 90.2
KNN 89.1 88.7 87.1 88.3 90.6 90.9 91.1 90.8 91.5 91.2