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Abstract

Developing automated and interactive methods for building a model by incorporating mechanistic 

and potentially causal annotations of ranked biomarkers of a disease or clinical condition followed 

by a mapping into a contextual framework in disease-linked biochemical pathways can be used for 

potential drug-target evaluation and for proposing new drug targets. We demonstrate the potential 

of this approach using ranked protein biomarkers obtained in neonatal sepsis by enrolling 127 

infants (39 infants with late onset neonatal sepsis and 88 control infants) and by performing a 

focused proteomic profile of the sera and by applying the interactive druggability profiling 

algorithm (DPA) developed by us.

Keywords

Protein biomarkers; pathway analysis; druggability profiling; mechanistic annotation; neonatal 
sepsis; machine learning

Introduction and background

Identification of proteomic biomarkers from blood for early detection of systemic infections 

or malignancies will facilitate prompt treatment leading to improved outcomes. Various 

biomarkers are useful for diagnosis, assessment of treatment response to drugs and for 

prognostic evaluation. However, there is limited work on mechanistic modeling of the 

biomarkers and identification of biomarkers that are likely to be druggable, that is, they 

could be subject to manipulation by small molecules. Simply identifying the protein 

biomarkers differentially expressed in diseased versus healthy populations may be 

appropriate for predicting outcomes, but this approach does not offer the ability to 

differentiate between biomarkers that drive disease manifestations (causal influences) and 

those that result from the disease process (effects).

During the last decade, there has been increasing interest in looking into the peripheral blood 

for protein biomarkers for early detection, diagnosis, risk stratification, treatment planning 
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or therapeutic response prediction for various infections, inflammatory conditions, 

degenerative diseases and cancers [1–16]. Compared to traditional tissue biopsies, drawing 

peripheral blood for biomarker assay is relatively non-invasive and the process can be easily 

repeated if needed for studying temporal patterns. Though there were some concerns early 

on about the process of biomarker discovery, validation and clinical utility [17], recent 

advances in proteomic biomarker assay development [18–24] have considerably improved 

the utility and value for examining protein biomarkers in blood. Since the proteome is 

downstream relative to the genome and transcriptome, assaying proteins holds considerable 

promise for discovering disease-linked biomarkers. It is clear that detection of 

multiparameter protein biomarkers from blood for prompt and early detection of systemic 

infections or cancers could lead to much more effective treatment of the condition with 

possible improvement in outcomes. Though researchers have recognized the potential of 

multiple biomarker measurements for rationalizing the discovery of suitable drug targets [7], 

there is limited work on mechanistic modeling of the biomarkers and in identifying the set of 

druggable biomarkers [25–27] (that is, compounds/drugs that can modulate the protein(s) 

and/or receptor(s)). Moreover, from a druggability perspective, large tracts of the exome 

have been left unexplored. Based on review of literature, Hopkins et al. report that 399 non-

redundant molecular targets have been shown to bind efficaciously with small molecules 

[28] out of more than 10,000 likely such targets in the human genome using projections of 

ligand binding domains [29]. The challenge is to identify the relevant subset of potential 

druggable targets that are represented in disease-linked proteins.

A set of predictive, diagnostic or prognostic biomarkers relevant to a specific clinical 

condition or disease can be identified using a focused literature search or obtained from 

research studies designed specifically for biomarker discovery. Although biomarkers can 

play an effective role in early detection, diagnostic reasoning and assessment of prognosis, a 

mechanistic understanding is required for evaluating biomarkers from a druggability 

perspective. The resulting mechanistic knowledge will eventually move the promising ones 

to clinical trials and for therapeutic interventions.

We illustrate the proof of concept of our approach using the domain of late onset neonatal 

sepsis.

Methods

Biomarker discovery and ranking

We performed a focused proteomic assay of 90 potential biomarkers suspected to play a role 

in infection and/or inflammation using serum samples collected from 39 cases of late onset 

neonatal sepsis (culture positive) and 88 controls (culture negative) that we enrolled over a 

five year period from 2007 to 2012 (n=127). The Institutional Review Board at our 

institution approved the protocol, and written, informed parental consent was obtained. The 

potential biomarkers were selected based on literature and domain knowledge of experts Dr. 

Ballard and Dr. Ohls. The quantitative proteomic assay was performed by Myriad RBM 

using a customized implementation of the Luminex xMAP technology, a microsphere-based 

multiplexed immunoassay platform. Our first modeling objective was to develop a 

classification method capable of detecting late onset neonatal sepsis (LOS) on the day the 
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clinician first suspected sepsis. Toward this end, we first defined t0 as the day on which the 

first positive blood culture was drawn, as this likely corresponds to be the day sepsis was 

first suspected. For each control, we selected a day t0 taking into consideration the infant’s 

age and sample availability. We then included only data from samples drawn on or before t0 

for computational predictive modeling. Ranking of predictive biomarkers was performed 

using a machine learning (ML) approach—the Random Forest variable importance method 

[30 31] to score and rank each variable. The methodological details of predictive modeling 

for biomarker discovery and ranking are described in detail in [32] which is under review. 

The methodological framework is summarized in Figure 1.

The methodological approach for biomarker discovery and ranking consists of 

predominantly two integrated modules—the predictive modeling and evaluation module 

(PMEM) and the biomarker ranking module (BRM). The PMEM proposes and validates a 

set of biomarkers for the condition of interest (neonatal sepsis). The BRM module 

incorporates three biomarker ranking approaches based on (1) variables representation in 

models, (2) feature set selection algorithms and (3) random forest variable importance. For 

this illustrative study we used the random forest variable importance method for ranking the 

neonatal sepsis biomarkers. Though we tried various thresholds in the model building stage 

to optimize sensitivity or specificity, the area under the ROC curve (AUC) remained the 

same and based on the best performance of RF we selected RF variable importance for 

variable ranking.

Note that though the 1st step of the DPA algorithm combines biomarker discovery and 

ranking, the operationalization of the step involves two procedures and they are separated 

out into two modules in Figure 1. For biomarker ranking to be effective and meaningful we 

need predictive models with high performance leading to the identification of useful 

predictive biomarkers. In the predictive modeling phase a representative set of machine 

learning algorithms are used to generate different types of predictive models and their 

performance evaluated. High performing models are then leveraged for the identification of 

predictive biomarkers which can be ranked by different methods using the biomarker 

ranking module.

Mechanistic annotation of ranked biomarkers

The top biomarkers selected using machine learning methods produce an incomplete 

mechanistic picture of their role in the disease process and its manifestations, which can be 

completed by including mechanistic information from pathway databases. We developed a 

workflow to extract, merge and analyze pathways from the "KEGG: Kyoto Encyclopedia of 

Genes and Genome" database [33 34] that are relevant to biomarkers of interest. First, all 

pathways implicated by any of the selected top biomarkers were identified; next, all these 

pathways were extracted from the KEGG pathways database and expanded.

Using (1) pathway biomarker representation and (2) the state-of-the-art drug database 

consisting of detailed information on approved and discontinued drugs worldwide 

(DrugCentral) [35 36] developed by our group, we identified biomarkers that can serve as 

potential therapeutic targets for further evaluation and drug development. We used the gene 
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set over-representation analysis tool from ConsensusPathDB [37] to obtain a ranked list of 

KEGG pathways in which the top biomarkers for neonatal sepsis were over-represented.

We implemented an automated tool to extract drug associations from the KEGG REST 

API1. For each pathway, we first retrieved the list of drugs linked directly to the pathway. 

Then, we retrieved the list of genes in the pathway and the list of drugs linked to each of 

those genes. We next retrieved a list of activities for each drug linked to the pathway or a 

gene in the pathway. The pathway diagrams were annotated manually using this extracted 

information.

We additionally obtained a list of drugs from DrugCentral that are potentially active on the 

top-ranked pathways we had identified. That is, for each pathway, we extracted a list of 

drugs that have known bioactivities with a gene in the pathway recorded in DrugCentral.

We also performed a target tissue localization (TTL) analysis of the top sepsis biomarkers 

using the Human Proteome Map (HPM) [38] to understand the tissue specificity of the 

biomarkers. The official gene names of the top biomarkers listed in Table 1 were used to 

query the HPM database and generate Figure 3. Note that DPA is an interactive algorithm 

and needs manual intervention during all step transitions.

We now introduce the DrugCentral before presenting the results. DrugCentral database 

aggregates information on approved and discontinued drugs worldwide, except for 

biological entities (antibodies, vaccines, etc.). More than 4400 active ingredients manually 

curated are stored currently in a relational database, with 3,943 small organic molecule 

entries; INN and USAN assigned names mapped to Active Pharmaceutical Ingredients 

(APhIs). Each APhI is linked to biological activity records collected from public (ChEMBL, 

IUPHAR[39], PDSP[40]), and commercial (WOMBAT-PK) databases. New FDA-approved 

APhIs are stored with biological activities data published in scientific literature. Currently, 

22,760 biological activity records for human protein targets (1,886 unique), and 4,696 

activity records for non-human targets (1,184 unique) are stored in DrugCentral. Drug 

targets related to known mechanisms of action (MoA) are currently under evaluation and to 

date 138 out of 838 human target-APhI pairs have been expert curated. Approved drug labels 

are collected and stored in text fields organized by LOINC (Logical Observation Identifiers 

Names and Codes, http://loinc.org/) section headings.

The steps of the Druggability Profiling Algorithm (DPA) are shown in Box 1.

Results

Fifteen biomarkers were identified that predicted neonatal sepsis infection with high 

accuracy. These biomarkers are shown in Table 1.

We identified five pathways extracted from the KEGG database that incorporate many of the 

top ranked sepsis biomarkers. See Table 2 for a listing of these pathways and the biomarkers 

represented in each.

1"REST-style KEGG API." 2012. 4 Dec. 2014 <http://www.kegg.jp/kegg/docs/keggapi.html>

Mani et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2018 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://loinc.org/
http://www.kegg.jp/kegg/docs/keggapi.html


Most of the top ranked biomarkers are cytokines and of the top selected pathways in sepsis 

the NOD-like receptor signaling pathway includes four biomarkers selected using the 

methods described in the Methods section. A subset of the protein targets present in this 

pathway are modulated by approved and investigational drugs as depicted in Figure 2. Only 

drugs with a known mechanism of action are shown in Figure 2.

Table 3 provides a summary of the top KEGG pathways of neonatal Sepsis showing the 

number of biomarkers represented in each of the pathways, the number of drugs in KEGG 

acting on these biomarkers and the number of drugs in DrugCentral acting on them.

The tissue specific expression data of the various sepsis biomarkers are shown in Figure 3. 

Figure 3 provides the relative expression of some of the top ranked sepsis biomarkers in 30 

clinically defined healthy tissues (17 adult tissues, 6 primary hematopoietic cells and 7 fetal 

tissues). It also indicates the lack of expression for five of them in healthy tissues.

Discussion and Conclusion

Biomarker profiling for potential drug target identification using KEGG pathway database 

and the DrugCentral database has the potential to identify drug-target interactions related to 

the biomarkers of a specific disease or clinical condition. Even though KEGG incorporates 

drug-target pairs, KEGG doesn’t provide numerical bioactivity values relating drugs and 

targets; in comparison DrugCentral has quantitative values associating drug-target pairs. 

Moreover, DrugCentral contains additional ~900 drug entries not present in KEGG [36]. The 

six drug-target interactions extracted from KEGG and the seven drug-target interactions with 

mechanism of action identified using DrugCentral shown in Figure 2 and the multiple drug-

target interaction counts presented in Table 3 need further evaluation with respect to altering 

the pathology and clinical course of neonatal sepsis.

The results presented in Table 2 indicate that multiple signaling pathways are dysregulated 

in sepsis, suggesting that a successful treatment of this severe condition would require a 

polypharmacological approach using combinations of multiple drugs in order to restore the 

equilibrium in these multiple pathways. As seen in Table 3, some drugs act on targets 

included in these pathways, and a combination of them could be considered by expert 

clinicians as promising candidates for further evaluation in future experiments on animal 

models or clinical trials.

The tissue-specific expression data shown in Figure 3 can be used to prioritize drug targets 

in terms of tissue relevance for many clinical conditions. In addition to antibiotics which are 

critical in the management of neonatal sepsis druggability profiling of proteomic biomarkers 

provides additional avenues for modifying the course of neonatal sepsis based on host 

response. The intense proinflammatory host response with elevated chemokines and 

cytokines is an important factor in neonatal sepsis pathology and these immunological 

reactions can adversely affect distant organs including the brain [41]. Based on the clinical 

presentation and organ involvement TTL information from Step 5 of the DPA (Figure 3) can 

be used to select the most appropriate drug from Step 4 of DPA (Figure 2). This study opens 

up the possibility of biomarker druggability profiling using informatics methods and 
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databases to propose new drug targets and for a systematic identification of drug-target 

interactions.

For purposes of this study we adopted the biomarker ranking method based on RF variable 

importance. However, we also developed and implemented two other methods for biomarker 

ranking based on variable representation in tree models and feature sets.

We make two significant contributions—(1) we provide an interactive algorithm that takes as 

input a set of biomarkers and outputs a ranked list of pathways that incorporate the 

biomarkers while also providing a list of drugs with a mechanism of action that act on 

potential targets of the pathway and (2) we illustrate the usefulness of the algorithm in the 

domain of neonatal sepsis using top-ranked protein biomarkers.
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Box 1: Druggability Profiling Algorithm (DPA)

1. Protein biomarker discovery and ranking (Figure 1 and Table 1)

2. Identify pathways containing ranked biomarkers from KEGG

3. Analyze and rank based on number of biomarkers represented (Table 2)

4. Identify drugs from KEGG and DrugCentral acting on biomarkers and other 

proteins/genes in the pathways (Figure 2 and Table 3)

5. Perform target tissue localization (TTL) analysis of the top biomarkers using 

the Human Proteome Map
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Figure 1. 
ML Framework
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Figure 2. 
The NOD-like receptor signaling pathway from KEGG shown with drugs, targets and 

known mechanism of action (→ denotes activation, ---> and ---> denote indirect effect and 

— denotes binding/association).
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Figure 3. 
Expression across samples of selected sepsis proteomic biomarkers. Only six fetal tissues 

are represented. White squares denote absence of any expression, faded red denotes some 

level of expression and bright red denotes high levels of expression in the specific tissue for 

the particular protein biomarker providing a relative measure of tissue target localization.
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Table 1

Top Fifteen Predictive Biomarkers of Late Onset Neonatal Sepsis Based on RF Variable Importance. Gene 

Names in [] Map to Table 2 and Figures 2 and 3.

Monocyte Chemotactic Protein-1 (MCP-1) [CCL2]

Tumor necrosis factor receptor-2 (TNFR2) [TNFRSF1B]

Interleukin-6 (IL-6) [IL6]

Interleukin-1 receptor antagonist (IL-1ra) [IL1RN]

Prostatic Acid Phosphatase (PAP) [ACPP]

Macrophage Inflammatory Protein-1 beta (MIP-1 beta) [CCL4]

Granulocyte Colony-Stimulating Factor (G-CSF) [CSF3]

Calcitonin [CALCA]

C-Reactive Protein (CRP) [CRP]

Interleukin-8 (IL-8) [CXCL8]

Interleukin-10 (IL-10) [IL10]

Interleukin-1 beta (IL-1 beta) [IL1B]

Myeloperoxidase (MPO) [MPO]

Intercellular Adhesion Molecule 1 (ICAM-1) [ICAM1]

Tumor Necrosis Factor beta (TNF-beta) [LTA]

J Biomed Inform. Author manuscript; available in PMC 2018 December 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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Table 2

Top ranked KEGG pathways containing selected biomarkers from Table 1

Disease Pathway Biomarkers (Gene Names)

Sepsis Cytokine-cytokine receptor interaction - human CCL2, TNFRSF1B, CCL4, IL10, CSF3, IL6, LTA, IL1B

TNF signaling pathway - human CCL2, IL6, LTA, TNFRSF1B, IL1B

Chagas disease (American trypanosomiasis) - human IL10, CCL2, IL1B, IL6

NOD-like receptor signaling pathway - human CCL2, IL6, IL1B, IL8

Cytosolic DNA-sensing pathway - human IL6, IL1B, CCL4
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Table 3

Top ranked KEGG pathways with biomarker and drug counts from KEGG and DrugCentral

Disease Pathway Biomarker
Count

KEGG
Drug

Count

DrugCentral
Drug

Count

Sepsis Cytokine-cytokine receptor interaction - human 9 17 12

TNF signaling pathway - human 5 10 7

Chagas disease (American trypanosomiasis) -human 5 8 12

NOD-like receptor signaling pathway - human 4 7 12

Cytosolic DNA-sensing pathway - human 3 6 3
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