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Abstract

Objective—Clinical anxiety is prevalent, highly comorbid with other conditions, and associated 

with significant medical morbidity, disability, and public health burden. Excessive attentional 

deployment towards threat is a transdiagnostic dimension of anxiety seen at both initial and 

sustained stages of threat processing. However, group-level observations of these phenomena mask 

considerable within-group heterogeneity that has been linked to treatment outcomes, suggesting 

that a transdiagnostic, individual differences approach may capture critical, clinically relevant 

information.

Methods—70 clinically anxious individuals were randomized to receive 8 sessions of Attention 

Bias Modification (ABM; n=41 included in analysis), a computer-based mechanistic intervention 

that specifically targets initial stages of threat processing, or a sham control (n=21). Participants 

completed a mixed block/event-related fMRI task optimized to discriminate transient from 

sustained neural responses to threat.

Results—Larger transient responses across a wide range of cognitive-affective regions (e.g., 

ventrolateral prefrontal cortex, anterior cingulate cortex, amygdala) predicted better clinical 

outcomes following ABM, in both a priori anatomical regions and whole-brain analyses; sustained 

responses did not. A spatial pattern recognition algorithm using transient threat responses 

successfully discriminated the top quartile of ABM responders with 68% accuracy.

Conclusions—Neural alterations occurring on the relatively transient timescale that is 

specifically targeted by ABM predict favorable clinical outcomes. Results inform how to expand 

on the initial promise of neurocognitive treatments like ABM by fine-tuning their clinical 

indications (e.g., through personalized mechanistic intervention relevant across diagnoses) and by 

increasing the range of mechanisms that can be targeted (e.g., through synergistic treatment 
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combinations and/or novel neurocognitive training protocols designed to tackle identified 

predictors of nonresponse).
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Introduction

Clinical anxiety is a prevalent and disabling condition (Kessler, 2007; Kessler, Chiu, Demler, 

Merikangas, & Walters, 2005) characterized by excessive attention to threat and associated 

prefrontal-limbic circuit disruptions. As a group, anxious individuals show threat vigilance 

during initial stages of processing (e.g., 16-500ms after stimulus onset)(Bar-Haim, Lamy, 

Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 2007). Cognitive models posit that 

such threat vigilance actively contributes to anxiety (Beck, Emery, & Greenberg, 1985), 

promoting greater awareness of threats in the environment and reinforcing catastrophic 

beliefs. A distinct and equally important factor in anxiety is what an individual does with 

threatening information once detected. Later, sustained stages of processing may include 

perseverative attention to threats [e.g., worry, rumination—two highly overlapping 

constructs prevalent in anxiety (McEvoy, Mahoney, & Moulds, 2010; McLaughlin & Nolen-

Hoeksema, 2011)], which promotes sustained negative mood and has been linked to negative 

health consequences via physiological and immunological factors (Brosschot, Gerin, & 

Thayer, 2006; Brosschot, Pieper, & Thayer, 2005).

Attention Bias Modification (ABM) is a fully automated, computer-based, translational 

intervention rooted in the premise that the attentional patterns observed in anxious patients 

might point the way towards novel interventions that seek to explicitly reverse these patterns. 

In its typical and most widely-studied form, ABM is designed to target relatively early 

processes of initial vigilance to threat by modulating attentional patterns within 500ms of the 

appearance of a threatening stimulus. ABM has shown promise in alleviating anxiety 

symptoms in some patients, although results are inconsistent across individuals and studies 

(MacLeod & Clarke, 2015; Price, Wallace, et al., 2016). To date, ABM studies have largely 

focused on establishing efficacy for anxious patients fitting within narrow diagnostic 

categories. A dimensional, transdiagnostic approach, in which traditional diagnostic 

boundaries are transgressed in favor of cross-cutting, empirically derived dimensions of 

functioning, is increasingly viewed as important in advancing the field of clinical 

psychology by promoting rapid translation between basic and applied domains (Insel et al., 

2010). Consistent with this viewpoint, a critical question for ABM research is whether 

transdiagnostic, biobehavioral dimensions of threat processing can be used as part of a 

neurocognitive process-based framework to classify patients according to aberrant 

mechanisms and then treat these mechanisms directly. Although initial and sustained bias 

are present simultaneously in many patients, we posited that patients relatively high on an 

initial threat processing dimension (relative to a more sustained processing dimension) 

would be ideal candidates for the present form of ABM, which is specifically designed to 

target initial bias.
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The neural circuitry guiding attention to threat has been well-described in animals. It 

includes bottom-up emotional salience signals generated by the amygdala (LeDoux, 2000) 

to promote rapid orienting towards threat, as well as top-down ventral prefrontal signals 

capable of flexibly modulating amygdalar engagement (Quirk & Mueller, 2008) and altering 

selective attention through biasing signals (Desimone & Duncan, 1995; Pessoa, Kastner, & 

Ungerleider, 2002). Sustained states of anxious apprehension have partially dissociable 

substrates, including the bed nucleus of the stria terminalis (BNST;(Davis, Walker, Miles, & 

Grillon, 2010)) and the insula (Paulus & Stein, 2006). Initial human neuroimaging studies of 

threat processing concord well with animal models. Broadly, relevant alterations in anxious 

subjects’ responses to threat are apparent in the amygdala, ventromedial PFC and anterior 

cingulate cortex (ACC) regions implicated in automatic forms of emotion regulation 

(Phillips, Ladouceur, & Drevets, 2008), and lateral PFC regions implicated in voluntary 

emotion regulation (Banich et al., 2009; Davidson, 2003; Phillips et al., 2008) and 

attentional control (Nee, Wager, & Jonides, 2007; Wager & Smith, 2003). However, the 

directionality, temporal pattern, and specific regional location of changes may distinguish 

initial (Monk et al., 2006; Monk et al., 2008; Price, Eldreth, & Mohlman, 2011; Price et al., 

2014) and sustained (Andreescu et al., 2011; Mohlman, Eldreth, Price, Staples, & Hanson, 

In press; Price et al., 2013) forms of threat processing. Using a mixed block/event-related 

design capable of directly comparing the two forms of processing within a single human 

sample, neural substrates of initial/transient responses to threatening images (e.g., amygdala, 

midbrain, dorsolateral PFC) were dissociated from sustained responses to blocks of 

threatening images (e.g., BNST, anterior insula) among healthy controls (Somerville et al., 

2013).

A small extant literature has linked ABM outcomes to individual differences in patterns of 

behavior (Amir, Taylor, & Donohue, 2011; Price, Wallace, et al., 2016), event-related 

potentials (Dennis-Tiwary, Egan, Babkirk, & Denefrio, 2016), and fMRI indices during 

attention-to-threat tasks. Increased amygdalar responses (Britton et al., 2015) and decreased 

amygdalar-insular connectivity (White et al., In press) have each been associated with 

greater symptom reduction across anxious individuals participating in studies that compared 

ABM to sham training, but neither finding was specific to the active ABM condition in these 

relatively small imaging datasets (n=15–24 in the active ABM groups). A focus on 

individual differences in brain function, including simultaneous characterization of both 

initial and sustained processing patterns, may improve prediction by bringing predictor 

variables proximal to the final biobehavioral mechanisms of symptom reduction in ABM 

(e.g., relatively early brain responses), rather than relying on relatively indirect measures that 

reflect the downstream output of threat processing (e.g., reaction times). Studies in diverse 

clinical populations suggest that fMRI, a measure of brain function that provides both 

temporal and anatomical information, surpasses behavioral measures in predicting clinical 

outcomes, even when fMRI effect size estimates are carefully controlled (Hoeft et al., 2011; 

Kumari et al., 2009; Murdaugh, Cox, Cook, & Weller, 2011; Siegle, Carter, & Thase, 2006). 

Furthermore, fMRI may increase sensitivity to detect altered threat processing, given that 

altered fMRI activity in anxious participants can be observed even in the absence of 

detectable behavioral effects (Monk et al., 2008; Price et al., 2014). Although time course is 

a critical factor in attention bias, with distinct behavioral and neural profiles emerging at 
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initial and sustained timepoints, previous studies in clinical patients have not examined 

whether a match between the timing of altered threat processing in an individual patient and 

the timing of ABM stimulus length is a critical factor in ABM outcome. ABM typically 

targets vigilance at a fixed interval of 500ms from stimulus onset, suggesting that threat 

processing alterations occurring on a brief/transient timescale are the most relevant.

Attention bias has been documented in a wide range of clinical and non-clinical anxiety 

(Bar-Haim et al., 2007). Thus, our randomized controlled trial included any patient with 

clinically elevated anxiety, providing for an appropriate dimensional examination of ABM 

prognosis in a sample better reflecting the heterogeneity of real-world clinical patients. 

Using a previously validated mixed block/event-related design (Somerville et al., 2013), we 

posited that larger initial/transient responses to aversive images would imply a good fit 

between individual patients and ABM (which specifically targets initial vigilance) and thus 

would track linearly with greater clinical benefit following ABM. To probe potential clinical 

utility of these neural patterns, we further characterized the accuracy of fMRI-based clinical 

prediction of favorable response using a machine learning pattern recognition approach.

ABM is a relatively mature translational intervention, with at least 7 published meta-

analyses examining its clinical efficacy across numerous studies (Jones & Sharpe, 2017). 

Thus, our explicit focus was not on the question of overall group efficacy in relation to a 

control condition, which has been extensively studied in larger cohorts of anxious patients, 

but on understanding individual differences in outcome using neural indices of threat 

processing, which we expected would be proximal to the intervention’s active mechanisms. 

Within a broader translational framework, this approach represents an important step within 

an iterative process of mechanistic intervention refinement. While prior work translated a 

basic mechanism (attention bias) into an intervention (ABM), we now step back towards 

basic cognitive neuroscience in an effort to define more precisely for whom the intervention 

works best, and why. Ideally, this undertaking will point the way back to refined clinical 

practice by yielding new translational insights, including personalized intervention 

prescriptions, refinements to the intervention itself, and/or novel interventions or 

intervention combinations designed to tackle identified predictors of non-response.

Methods

Design overview

Seventy unmedicated patients reporting clinically elevated levels of trait anxiety and 

associated clinician-rated disability (full inclusion/exclusion criteria detailed below) were 

randomized to receive active ABM (n=49) or a sham control variant (n=21) 

(clinicaltrials.gov: (clinicaltrials.gov: NCT02303691). Uneven allocation was used to 

maximize sample size and statistical power in the active ABM group, as primary hypotheses 

concerned mechanistic predictors of ABM response. The sham sample was included to 

assess specificity of findings through effect size comparison, rather than to explicitly provide 

a well-powered examination of group-level effects of ABM vs. sham on outcomes, given 

that: a) the question of ABM’s group-level efficacy in relation to sham has been extensively 

examined in much larger primary and meta-analytic datasets (Price, Wallace, et al., 2016) 

(Jones & Sharpe, 2017); and b) we explicitly recruited a heterogeneous sample and 
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anticipated that individual differences within the sample would substantially influence 

group-level patterns. 94.3% of patients completed the treatment and post-treatment 

assessment (CONSORT diagram: Figure 1). This study was approved by the Institutional 

Review Board.

Participants

Participants were recruited and enrolled from 03/2013-11/2016, stopping when the target 

randomization sample of 70 participants was obtained. Participants were recruited through 

flyers posted in clinical settings, email announcements, and through a university-maintained 

research registry that matches prospective participants to relevant studies based on inclusion/

exclusion criteria. Inclusion criteria specified that participants: 1) be between the ages of 18 

and 55 years; 2) score >=45 on the Spielberger State-Trait Anxiety Inventory—trait form, a 

clinically relevant cut-point that statistically maximizes discrimination between clinical and 

non-clinical anxiety (Fisher & Durham, 1999) and eliminates the bottom ~84% of a typical 

healthy control distribution (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983); and 3) 

score >=75th percentile on the World Health Organization Disability Assessment Schedule 

2.0—clinician-rated version, a percentile that is characteristic of individuals with one or 

more mental disorders (Andrews, Kemp, Sunderland, Von Korff, & Ustun, 2009). These 

criteria produced a study sample in which 91% of randomized participants had one or more 

diagnosed anxiety disorder at baseline (mean=2.10 DSM-IV-TR disorders), while the 

remaining 9% (n=6) captured ‘diagnostic orphans’ with clinically significant anxiety and 

associated impairment who did not meet full criteria for any specific DSM-IV-TR anxiety 

disorder (and consequently were assigned a diagnosis of Anxiety Disorder Not Otherwise 

Specified). Diagnoses were established by experienced master’s-level (or higher) clinicians 

using the MINI International Neuropsychiatric Interview. The sample met criteria for a wide 

range of DSM-IV-TR Anxiety Disorders, with a preponderance of distress-related disorders 

(Generalized Anxiety Disorder criteria met by 84% of the sample; Social Anxiety Disorder 

criteria met by 34% of the sample). See Table 1 for additional sample characteristics.

Exclusion criteria included the following: 1) current medication or Cognitive-Behavioral 

Therapy for anxiety or depression; 2) failure to meet standard Magnetic Resonance Imaging 

(MRI) inclusion criteria: those who have cardiac pacemakers, neural pacemakers, surgical 

clips in the brain or blood vessels, surgically implanted metal plates, screws or pins, cochlear 

implants, Intrauterine Devices, metal braces, or other metal objects in their body, especially 

in the eye. If the subject reported any metal or implants in the body they had to be deemed 

safe by the MRI Research Center’s safety screening procedure prior to enrollment; 3) 

pregnancy, determined by pregnancy tests on females; 4) currently suicidal or at risk for 

harm to self or others; 5) visual disturbance (<20/40 as per the Snellen test, corrective lenses 

allowed); 6) <6th grade reading level as per the Wide Range Achievement Test; 7) presence 

of bipolar, psychotic, autism spectrum, substance dependence, or primary depressive 

disorder; 8) positive urine drug test.

The study was approved by the local institutional Internal Review Board. All participants 

provided informed consent prior to any study procedure.

Price et al. Page 5

J Consult Clin Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ABM and sham conditions

Patients and clinical assessors were successfully blinded to treatment allocation (see 

Supplement). The ABM and sham conditions were modeled after prior studies (e.g., Amir, 

Beard, Burns, & Bomyea, 2009). Participants in both groups completed 8 twice-weekly 

sessions, in the laboratory, over 4 weeks (~10–15min/session) consisting of 300 trials of a 

dot-probe task. At baseline, ten idiographic threat words were selected collaboratively by the 

participant and clinical interviewer, immediately following the baseline clinical interview, 

designed to capture the full range of concepts most relevant to the participant’s daily 

experience of anxiety. All idiographic items were rated by the participant as -2 or -3 on a 

scale of pleasantness ranging from +3 (“very pleasant”) to -3 (“very unpleasant”). Each 

idiographic threat word was paired, on an individual (per-participant) basis, with a neutral 

word (drawn from a normative corpus) that was rated as neutral (score=0) by the participant 

and matched to the idiographic threat word on word length and the participant’s familiarity 

rating (on a 7-point Likert-like scale). These idiographic word pairs were supplemented by 

20 threat words and 20 neutral words from a normative corpus used previously in ABM 

research (e.g., Amir et al., 2009). Each word was presented a total of 8 times per session in a 

randomized location (top/bottom).

During training trials, word pairs (80% threat-neutral; 20% neutral-neutral) were presented 

vertically subtending a visual angle of approximately 2 degrees, for 500ms, followed by a 

probe (‘E’ or ‘F’) in either the upper or lower word location which remained on-screen until 

the participant responded via button press to indicate the letter displayed. Participants 

responded via button press to indicate the probe letter displayed. Ten idiographic threat 

words were selected collaboratively by the participant and the clinical interviewer.

The only distinction between the ABM and control conditions was in the relationship 

between the probe location and the threat word in each word pair. In ABM, for 100% of 

threat-neutral trials (80% of all trials), the probe replaced the neutral word, thereby shaping 

attention away from threatening cues through practice. In the sham condition, the probe 

replaced either the threat or neutral word with equal likelihood.

Clinical assessment

Clinical hypervigilance to threat was assessed at pre- and post-treatment via clinical 

interview using the “hypervigilance” item of the well-validated Clinician-Administered 

PTSD Scale (CAPS-vigilance (Blake et al., 1995)), which sums two sub-items assessing 

frequency and intensity of vigilance, each rated on a 0–4 scale with verbal anchors. Meta-

analyses suggest the use of a clinician-rated (rather than self-report) index improves 

sensitivity to ABM effects (Linetzky, Pergamin-Hight, Pine, & Bar-Haim, 2015; Price, 

Wallace, et al., 2016). The wording of the item is sufficiently broad to capture the 

transdiagnostic concept of vigilance to threat (e.g., “have you been especially alert or 

watchful” for threat-related information or “felt as if you were constantly on guard?”). 

Masters-level clinical assessors administered the item and were trained to provide 

idiographic examples of potential threat vigilance patterns based on the participant’s self-

reported foci of anxiety/concern (e.g., scanning faces for signs of disapproval/rejection; 

being on guard for signs of deteriorating health; being on guard or watchful for phobia-
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related stimuli in the environment; being on guard for interoceptive panic-related cues; etc.). 

Of note, the latter “distress” component was explicitly quantified irrespective of frequency 

(i.e., “At those specific times when you were especially alert or watchful, how hard did you 

try to be watchful…?”) so that it could flexibly capture decreases in the severity of self-

reported vigilance even for cases where exposure to triggering events may be more 

circumscribed (e.g., specific phobia). A random subset of videotaped interviews (15%), 

including both pre- and post-treatment interviews, was scored by a second evaluator; 100% 

reliability was obtained.

Post-treatment CAPS-vigilance scores were regressed on pre-treatment scores (within each 

treatment condition separately) to obtain residual CAPS-vigilance scores, a measure of pre- 

to-post-treatment improvement. Similar to change (difference) scores, residual scores can be 

both positive and negative, with lower (i.e., more negative) values indicating fewer residual 

vigilance symptoms (i.e., better outcome). Residual scores indicate the degree to which the 

improvement experienced by any given individual surpasses (negative values) or lags behind 

(positive values) what would be predicted on the basis of his/her pre-treatment CAPS value 

alone. The use of residual scores as an outcome measure generally improves power in 

randomized designs (Petscher & Schatschneider, 2011) and accounts for non-static 

relationships between pre and post (absolute) scores, although drawbacks of the approach 

have also been articulated (Dimitrov & Rumrill, 2003; Forbes & Carlin, 2005). See the 

Supplement for validation of our decision to analyze residual scores and exploration of the 

impact of this decision in comparison to other options (e.g., change scores).

fMRI task and data acquisition

T2*-weighted images depicting BOLD contrast (TR=2000; TE=28; flip angle=73°; 38 

slices; FOV=200x200; 3.125x3.125x3.2mm voxels) were acquired on a 3T Siemens Trio 

approximately one week prior to the onset of ABM or sham training. Standard preprocessing 

steps were applied using Analysis of Functional Neuroimaging (AFNI). The following 

preprocessing steps were applied, as described in more detail previously (Siegle et al., 

2012): slice time correction, cross-registration of functional data to a high-resolution 

structural scan acquired in the same fMRI session (axial MPRAGE: TR=2100; TE=3.31; 

176 slices; flip angle=8°; FOV=256x208; 1mm isotropic voxels), 6-parameter motion 

correction, linear detrending to correct drift, conversion to percent change, temporal 

smoothing using a seven-point Gaussian weighted moving average filter [intended to 

improve signal-to-noise and reduce bias in BOLD data; (Friston et al., 2000)], 32-parameter 

nonlinear warping to the Montreal Neurological Institute Colin-27 brain data set, spatial 

smoothing [6-mm full width half maximum]. Participants with excessive motion during the 

task (>30% of scans showed incremental movement >1mm or incremental rotation >1°, or 

>30% of scans showed absolute movement from baseline >5mm or absolute rotation >5°) 

were excluded from analysis (n=2; 2.9%). Raw motion parameters were included as 

nuisance covariates in the single-subject regression models used to generate brain maps for 

each task condition, ensuring variance linearly related to motion did not explain findings.

The task was adapted from Somerville and colleagues; see (Somerville et al., 2013) for 

detailed description. Briefly, participants were alerted by a 2s text cue, presented at the start 
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of each of eight 78s blocks, as to the nature of the upcoming block. Blocks were either 

“Negative”, containing a series of 10 negative images, presented for 3s each, from the 

International Affective Picture Set (IAPS; (Lang, Bradley, & Cuthbert, 2008)), or “Neutral,” 

consisting of 10 neutral IAPS images. Both negative and neutral blocks were also either 

“Predictable,” with each individual image being preceded by a numerical countdown (e.g., 

3-2-1), or “Unpredictable,” with each image being preceded by a random string of numbers. 

To encourage continued attention to the images, participants completed an incidental task by 

responding via button press to indicate whether each image depicted an indoor or an outdoor 

scene (see Supplement for exploratory analyses of behavioral task data). The onsets of each 

transient image were jittered by presenting a pseudorandom number (varying from 1 to 8) of 

numerals prior to image onset, with each numeral presented for 1s, comprising a total of 44s 

of numeral presentations per block. Each block concluded with a 2s stop cue. Jittered onsets 

of each image enabled efficient estimation of transient brain responses evoked by each 

image type by sampling across the full hemodynamic response curve. Blocks of resting 

fixation cross (32s each) were interleaved with all active blocks to facilitate efficient 

modeling of both sustained and transient patterns.

The task design and regression analyses were optimized in previous research (Somerville et 

al., 2013) to allow estimation of transient responses to each image type embedded within the 

sustained response to each overarching block type (e.g., “Predictable Negative,” “Predictable 

Neutral,” etc.). The task was designed in accordance with recommendations for mixed 

block/event-related design (Dosenbach et al., 2006; Visscher et al., 2003) and included a 

number of important features that permitted transient responses to be disentangled from 

sustained responses. These include sufficiently variable jitter between transient stimuli, 

sufficient time spent in a sustained state and not experiencing a transient event (>58% total 

block time), sufficient time spent in resting fixation (outside of any block condition; >25% 

of total task time), and modeling of transients (as detailed below) using a finite impulse 

response (FIR) basis function rather than a canonical hemodynamic response function, 

which ensures that sustained condition estimates are truly maintained and not aliased by 

high-frequency components of the signal.

fMRI regression analyses

Both a priori anatomical region-of-interest (ROI) and whole-brain analyses were conducted. 

Twelve anatomical ROIs were selected a priori in order to capture a comprehensive network 

of regions implicated in prior literature in anxiety and threat processing, across both 

transient and sustained timescales. Two limbic (amygdala, BNST) and two prefrontal 

(VLPFC, DLPFC) regions were defined in each hemisphere, in addition to medial regions 

within the anterior cingulate cortex (ACC; parcellated into dorsal, perigenual, and subgenual 

subregions) and ventromedial PFC. Anatomical regions of interest were defined using the 

Automated Anatomic Labeling (AAL) atlas, which includes regional parcellations hand-

drawn on the single-subject reference brain in MNI space (Tzourio-Mazoyer et al., 2002). 

Mean AUC and beta weight values were then extracted for each ROI using AFNI’s 

3dmaskave command. The anterior cingulate cortex (ACC) was parcellated into dorsal, 

perigenual, and subgenual subregions using previously defined boundaries as in (Gianaros et 

al., 2014)]. The ventrolateral prefrontal cortex was defined as the Frontal Inferior Orbital 
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region from the AAL atlas. The dorsolateral prefrontal cortex was defined as Brodmann’s 

areas 9 and 46, more lateral than |x|=19 and more dorsal than z=21. The ventromedial 

prefrontal cortex was defined as the Frontal Middle Orbital (medial segment) from the AAL 

atlas. The left and right bed nucleus of the stria terminalis (BNST) were hand-drawn onto a 

standardized MNI reference brain by a co-author (LB) with expertise in the structure and 

function of this region in animal and human research (Banihashemi & Rinaman, 2006; 

Banihashemi, Sheu, Midei, & Gianaros, 2015), as previously described (Banihashemi et al., 

2015).

Correlations between these a priori regions and residual CAPS-vigilance scores were used to 

provide unbiased effect size estimates in both the ABM and control groups, with False 

Discovery Rate (FDR) correction applied to correct for multiple comparisons across all a 
priori ROIs.

A complimentary whole-brain analysis was used to identify the most predictive regions 

across the entire brain utilizing AFNI’s spatial autocorrelation function (‘-acf’) option 

implemented in 3dClustSim, with voxel-wise alpha=.001. Briefly, 3dClustSim simulates 

noise-only random brain maps matching the structure and smoothness of the empirical 

datasets from a given study, and uses these simulations to compute a cluster-size threshold 

that holds the probability of a false positive finding below the desired level (e.g., map-wise 

p<.05) for a user-defined voxel-wise p-value threshold (here, p<.001). This approach 

provides accurate Type I error control (Cox, Reynolds, & Taylor, 2016), but effect size 

estimates in the ABM group are likely to be inflated (Vul, Harris, Winkielman, & Pashler, 

2009).

At the single-subject level, transient and sustained responses were modeled simultaneously 

using box-car regressors for each block type (Negative Predictable, Negative Unpredictable, 

Neutral Predictable, Neutral Unpredictable) and finite impulse response functions over 20sec 

to flexibly model responses to each transient image (separate Negative-Transient and 

Neutral-Transient regressors), along with nuisance covariates (motion parameters). Transient 

regressors collapsed across Predictable/Unpredictable blocks, as predictability was only 

manipulated at the sustained/block level (i.e., negative image sets were identical for both 

predictable and unpredictable blocks). As in prior work (Somerville et al., 2013), an area 

under the curve (AUC) was computed for each transient regressor to capture the magnitude 

of transient response from 2-6 TRs (4-12secs) after each image presentation and used for 

subsequent group analyses. As in previous validation work for the task (Somerville et al., 

2013), this timeframe was selected to capture neuronal activity in the immediate aftermath 

of image onset (e.g., 0–500ms after image onset), after accounting for the hemodynamic 

delay in the BOLD signal, which generally peaks at 4–6 seconds following neuronal activity 

and subsides by app. 12 seconds post-neuronal event (Friston et al., 1998). AUC values were 

computed at every voxel as the sum of finite impulse response function beta weights derived 

at each of the relevant timepoints (4–12s post-stimulus onset) in response to transient images 

of each type (negative, neutral). For anatomical ROI analyses, AUC values as well as beta-

weights for sustained (block-type) regressors were averaged for each emotional image type 

(negative and neutral) across all voxels in a given ROI, extracted for each participant, and 

analyzed in relation to CAPS-residual scores using SPSS software.
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Due to the inclusion of both sustained and transient regressors in a single regression model 

constructed for each individual, individual differences in Negative-Transient AUC values 

can be conceptualized as representing the degree to which a given voxel in the brain tracked 

with the presentation of each transient negative image relative to the more sustained 

response maintained across the entirety of the block. Thus, an individual with a relatively 

large Negative-Transient AUC value in a given region showed a tendency for brain activity 

to track with each transient image presentation, rather than maintaining a consistently 

modulated response that tracked best with the overall sustained (block-level) manipulation.

Outliers within both voxel-wise AUC values and CAPS-vigilance scores were rescaled prior 

to analysis (see Supplement). Single-subject Negative-Transient AUC values were then 

regressed on residual CAPS-vigilance scores within the ABM group only. This within-group 

analysis approach was dictated by the study design to preserve maximal power for 

identifying brain predictors of response within the larger, active intervention group. Effect 

sizes and significance levels for both a priori anatomical and functional ROIs derived from 

the whole-brain analysis were examined in the control group as an exploratory probe of the 

specificity of prediction findings to active ABM. While the smaller sample size in the 

control group will result in reduced p-values for the same effect size, conversely, point 

estimates of effect size are not influenced by sample size and therefore can be used to 

provide a valid comparison across unequal samples, particularly when applied to the 

unbiased effect size estimates that are derived by using a priori anatomical ROIs. An 

exploratory statistical moderation analysis was undertaken for the conjoined mask of a priori 
anatomical ROIs, but not for the whole-brain search due to insufficient power, particularly 

given conservative alpha (e.g., p<.001) necessary for Type I error control in fMRI whole-

brain searches (Eklund, Nichols, & Knutsson, 2016). By exploring the conjoined mask of a 
priori anatomical regions in a single test of moderation, Type I error could be preserved at 

p<.05 without the need for multiple comparisons corrections which could adversely impact 

power.

Exploratory Pattern Recognition Analysis

ABM participants were divided into quartiles based on CAPS residual scores in order to 

assess the ability to accurately make binary (yes/no) decisions about the clinical utility of 

ABM on an individual patient basis. Pattern Recognition of Brain Image Data (PROBID) 

was applied to single-subject Negative-Transient AUC maps from the quartiles in order to 

build and test a classifier for separating the highest/strongest ABM responders from each 

other quartile (partial responders, partial non-responders, and poorest responders). For post 
hoc exploration and descriptive validation of the clinical generalizability of these extreme 

quartiles, we conducted exploratory comparisons of the strong responders in relation to both 

the poorest responders and the entire sham sample, which generally supported more 

favorable clinical response among the strong CAPS responders across a range of clinical 

measures (see Table 1). The PROBID analysis was conducted separately for each pairwise 

classification task (strongest responders vs. each other quartile) because the classifier can 

only be built to separate two groups of equal size (i.e., make a single, binary classification 

decision). Briefly, the PROBID algorithm proceeds in two phases in order to identify 

spatially distributed patterns of transient brain responses that robustly predicted 
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exceptionally good outcomes following ABM. During classifier training, the algorithm finds 

the set of regions (i.e., voxels in the whole-brain Negative Transient AUC activation map) by 

which the two groups (strong responders vs. another quartile) can be best distinguished from 

each other (i.e. a discriminating map). In the next phase, the test phase, given the brain scan 

from a previously unseen subject, the algorithm predicts the subject’s group. A Gaussian 

Process Classifier with leave-one-out cross-validation was used to determine the accuracy of 

predicting whether an individual would be a strong ABM responder based on this 

probabilistic class prediction. Finally, after determining the classifier’s accuracy (sensitivity 

and specificity) during the test phase, a permutation test was run to assess the statistical 

significance of the accuracy data by randomly permuting the datasets to assess whether the 

predictions the classifier provided for a particular group comparison were better than those 

that arise by chance.

Results

Clinical Effects

ABM participants showed pre-to-post decreases across a range of clinician-rated and self-

report variables, including vigilance. Effect sizes generally favored ABM over sham, though 

Cis were overlapping (Table 1). See Supplement for further analyses of clinical outcomes 

(e.g. group*time interactions).

Regression

Primary analyses utilized Negative-Transient values to predict decreased clinical vigilance in 

the ABM group (see Supplement for additional task conditions, e.g., Negative-Sustained 

values). A priori regions. Greater Negative-Transient responses predicted greater reductions 

in clinical vigilance in every a priori anatomical ROIs except for one (see Table 2). The set 

of eleven significant findings surpassed FDR correction for multiple comparisons across the 

full set of twelve anatomical ROIs (family-wise FDR p<.05). Whole-brain analysis. After 

correcting for multiple comparisons across the whole brain, greater Negative-Transient 

responses predicted greater reductions in clinical vigilance across numerous regions 

implicated in affective processing and attentional control (see Table 2; Figure 2), including 

clusters encompassing a priori hypothesized regions (e.g,. dACC, pgACC, VLPFC, R 

amygdala) as well as novel regions (e.g., thalamus, precentral gyrus, temporal cortex). 

Specificity to ABM. No ROI defined by either a priori anatomical or whole-brain functional 

analysis was related to outcome following the sham condition; effect sizes were almost 

uniformly near-zero (Table 2). In an exploratory test of moderation, after summing 

Negative-Transient responses across a priori predictor ROIs, statistical moderation was 

supported (group*A-priori-Negative-Transient responses: βstandardized=−0.54;p=.048), with 

the significant interaction effect reflecting prediction of CAPS-vigilance residuals by the 

conjoined mask of a priori ROIs in the ABM group (βstandardized=−0.47;p=.001) but not the 

sham group (βstandardized=0.14;p=.62). In whole-brain analyses of the sham sample 

(Supplement), no predictors of CAPS-vigilance residual scores were found, even using 

lenient thresholding to equate power in the smaller sham sample.
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Exploratory: Pattern Recognition

The group of strong ABM responders, defined as the lowest quartile on CAPS-Vigilance 

residual scores, generally showed superior clinical outcomes as compared to both poor 

(highest quartile) ABM responders and the sham group as a whole (see Table 1, bottom), 

suggesting that the clinical benefits seen among the strong ABM responders were not 

restricted to the CAPS measure but were robust across multiple clinical outcomes. Using 

whole-brain maps of the Negative-Transient effect, the strongest ABM responders could be 

discriminated by spatial patterns in Negative-Transient AUC values with 68% overall 

accuracy. The accuracy data for the classifier separating the strongest ABM responders from 

each other quartile were as follows: strongest responders vs. poorest responders (70% 

accuracy; 80% sensitivity; 60% specificity; p=.045; spatially distributed classifier and results 

shown in Figure 3); strongest responders vs. partial non-responders (70% accuracy; 80% 

sensitivity; 60% specificity; p=.038); strongest responders vs. partial responders (65% 

accuracy; 80% sensitivity; 50% specificity; p=.083). An identical pattern recognition 

approach failed to yield accurate prediction of better vs. worse outcomes within the sham 

group (n=10 per group based on median split; accuracy=15%; p>.90).

Discussion

Alterations in both transient and sustained processing of threat cues are core features of 

clinical anxiety that cut across diagnoses, and may implicate distinct translational 

treatments. Efforts to translate these basic, well-defined neurocognitive mechanisms into 

targeted treatments will be optimized if individual differences in the relevant basic 

mechanisms are taken into account. For instance, while it is unlikely that the full range of 

heterogeneous clinical anxiety presentations can be successfully treated with a computer-

based intervention targeting one unitary, highly specific mechanism (here, ABM targeting 

early/initial attentional responses to threat), we posited that the neural measures most 

relevant to this mechanism would help identify those specific anxious individuals who 

respond well. The present study was optimized for identifying transdiagnostic 

neurocognitive predictors of ABM response, rather than for explicit ABM vs. sham control 

comparisons. Previous studies and meta-analyses provide more conclusive information 

regarding ABM’s clinical efficacy (e.g., Price, Wallace, et al., 2016) and neural effects (e.g., 

Britton et al., 2015), and support the need for a better understanding of which patients are 

likely to benefit. The current study findings likewise highlight the role that individual 

differences—specifically, neurocognitive individual differences relevant to the intervention’s 

posited mechanisms of action—play in explaining why, at the group level, all individuals 

who receive a given treatment (such as ABM) may not show a reliable and clear benefit in 

relation to control/comparison conditions.

Using an fMRI task optimized to separate transient from sustained neural responses, larger 

transient brain responses to negative images predicted better outcomes following ABM, 

while sustained responses did not (see Supplement: “Analyses of other task conditions” for 

sustained analyses). Similar neural patterns of elevated responding were predictive across a 

wide range of cognitive and affective regions, in both a priori anatomical regions and whole-

brain analyses with stringent Type I error control. No similar predictive patterns were 
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observed among anxious patients receiving a sham version of the intervention. Indeed, 

across the network of selected a priori anatomical regions, statistical moderation findings 

suggested prediction of outcomes was specific to active ABM and absent for the sham 

condition. In an exploratory analysis using spatial pattern recognition, transient brain 

responses to negative images identified specific individual patients who responded 

exceptionally well to ABM with 65–70% accuracy, and significantly outperformed chance in 

spite of small sample sizes. Thus, while superior clinical effects of ABM over sham were not 

strongly evident in the present study, a subgroup of strong ABM responders could be 

identified on the basis of mechanistically relevant neural patterns. These strong responders 

also showed superior outcomes on several other clinical outcome measures, in relation to 

both other ABM recipients and to the sham group as a whole (Table 1), supporting the 

broader clinical relevance of the hypervigilance measure—although the generalized benefits 

were not statistically robust across all measures examined.

Notably, overall increased neural engagement on a transient timescale was predictive across 

diverse regions of the brain, including ventral affective regions previously implicated in both 

initial (amygdala) and more sustained (BNST, insula) forms of threat processing (Davis et 

al., 2010; Somerville et al., 2013), as well as numerous prefrontal and posterior regions 

implicated in emotional and cognitive control (Banich et al., 2009; Davidson, 2003; Nee et 

al., 2007; Phillips et al., 2008; Wager & Smith, 2003). These uniform patterns across much 

of the brain seem to argue against a strictly anatomical focus in predicting ABM response, 

instead highlighting the importance of joint temporal and anatomical features within the 

neural data. More specifically, within the overarching context of sustained blocks of anxious 

apprehension, having a higher ‘ceiling’ for further flexible transient responding to individual 

images, even among regions that likely participate in sustaining and/or regulating attention 

to threat, provides for a good fit for the type of training our ABM intervention provided—

specifically, modification of attention to threat soon after a cue appears in the visual field. 

Conversely, individuals whose brain responses follow a more sustained, block-like pattern, 

showing little tendency towards fluctuating transient increases occurring on a relatively brief 

timescale, are a poor fit for ABM’s mechanistic target, and may require a distinct approach.

No regions were identified in which decreased activation predicted better outcomes. Instead, 

cognitive control regions and bottom-up affective regions responded similarly among ABM 

responders, potentially consistent with previous findings that increased activations in both 
PFC and amygdala (Monk et al., 2006) may index early attentional bias towards threat 

among anxious individuals. Furthermore, this overarching pattern across individuals held 

true even within the context of overall, group-level deactivations in ventromedial and 

ventrolateral PFC regions in response to transient negative images (see Supplement), 

consistent with previously published group-level findings using the current fMRI task 

(Somerville et al., 2013). Thus, even when neighboring and overlapping prefrontal regions 

exhibited an overall decrease averaging across individuals, those specific individuals who 

“bucked the trend” by exhibiting a relatively attenuated decrease (or, in some cases, an 

actual increase; see Figure 2) were more likely to respond to ABM. This pattern of relatively 

greater activity levels in cognitive control regions among the strongest ABM responders 

could reflect greater compensatory need for activation due to exaggerated stimulus-driven 

threat responding and/or decreased neural efficiency of top-down attentional control. 
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Regardless, the findings suggest the best responders to ABM displayed a widely distributed 

pattern of increased neural engagement on the transient timescale. Consistent with a 

potentially widespread biomarker of the ability to engage effectively with a given 

intervention, we have previously reported similar evidence that increased overall neural 

engagement with training-relevant stimuli at baseline predicts more favorable responses 

across multiple forms of computer-based cognitive training paradigms, in both healthy 

controls (Collier & Siegle, 2015; Price, Greven, Siegle, Koster, & De Raedt, 2016) and 

depressed patients (Siegle et al., 2014).

As a fully automated, mechanistic intervention, ABM offers several benefits over current 

first-line treatments for anxiety, including cost-effectiveness, ease of dissemination, low 

patient burden, and high transdiagnostic relevance. However, meta-analyses suggest 

beneficial effects on anxiety are inconsistent across individuals and studies (e.g., Linetzky et 

al., 2015; Price, Wallace, et al., 2016), raising the question of which anxious patients may be 

most likely to benefit from ABM, and why. The present study examined mechanistic 

predictors of ABM response in a transdiagnostic adult sample, providing preliminary 

support for a process-based, neurocognitive approach to patient classification and matched 

treatment assignment. Current findings, including both dimensional analyses and the ability 

to leverage pattern recognition to predict individual patient outcomes with reasonable 

accuracy, suggest this approach may be fruitful for ABM and other cognitive training 

interventions. Though classification results are preliminary and exploratory, this approach 

might eventually hold the potential to surpass the ~50% response plateau pervasive in 

psychiatric clinical trials (Forgeard et al., 2011). Here, sensitivity was a relatively robust 

index—across all of the pairwise group comparisons (where strong responders were 

compared to other quartiles), 80% of patients who were classified at baseline as unlikely to 

have a strong favorable outcome did in fact fail to achieve substantial relief. Overall 

accuracy of the classifier (68%) was likely too low to be informative for clinical decision-

making in its present form, although the classifier consistently outperformed chance. With 

further refinement (e.g., inclusion of multiple forms of predictive information 

simultaneously), this general data-driven approach could one day be helpful in informing 

patients regarding their odds of benefiting from interventions like ABM.

Results may have both clinical and research implications in helping to refine, personalize, 

and extend upon a relatively well-studied translational intervention. Matching the timescale 

of neural responses and intervention mechanisms may be critical to successfully alleviating 

anxiety with a mechanistic approach. From a precision medicine framework, mechanistic 

assessment may allow for identification of specific patients from within a heterogeneous 

pool who are a good fit for standard ABM—particularly if fMRI predictors can be translated 

into a clinically available form (Siegle, Steinhauer, Friedman, Thompson, & Thase, 2011). 

For example, given that the present fMRI task elicits reliable separation of transient from 

more sustained patterns of threat processing, the relevant neural patterns elicited during the 

task might be sufficiently captured through peripheral physiology and/or behavior. The 

behavioral responses collected here (incidental judgments as to whether pictures depicted 

indoor or outdoor scenes) proved unrelated to ABM outcomes (see Supplement), but 

developing alternate indices that strongly track with the neural response to transient negative 

images (e.g., physiological arousal measures, behavioral responses that rely on the 
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processing of affective information within the images) is a worthwhile avenue with the 

potential for better clinical translation. Furthermore, given that strong anatomical 

distinctions were largely absent in the current neural prediction findings (i.e., transient 

responses across numerous regions uniformly predicted outcome), more clinically accessible 

methodologies that are optimized to capture the time-course (but not necessarily the 

anatomical source) of neural responses (e.g., pupilometry, mobile/low-cost EEG) may prove 

adequate for clinical translation of the current precision medicine approach. Existing 

neurocognitive training approaches could also be supplemented, refined, or extended to 

address unresolved targets identified in non-responders. For instance, alternate forms of 

computer-based cognitive training may successfully target sustained forms of processing, 

including previously developed approaches (Siegle et al., 2014). Additionally, understanding 

and defining the brain state that confers good outcomes following ABM could indicate a 

neural goal state that turns likely non-responders into responders, which might then be 

achievable through synergistic enhancements such as brain stimulation (Clarke, Browning, 

Hammond, Notebaert, & MacLeod, 2014; Heeren, Baeken, Vanderhasselt, Philippot, & de 

Raedt, 2015), acute pharmacology, neurofeedback, and/or other forms of cognitive training. 

Personalized ABM protocol development may also be indicated, such as using baseline 

assessment to determine the timescale of maximal neural engagement on an idiosyncratic 

basis [e.g., using peripheral neural indices such as pupil dilation (Price et al., 2013), or 

neural assessments providing fine-grained frequency information—e.g., steady-state visual 

evoked potentials (Woody et al., In press)] in order to fully personalize the timing of 

stimulus presentation during ABM.

Limitations

Prediction was applied only to acute outcomes, with a primary focus on active ABM due to 

the limited sample size in the sham group. Future studies should include long-term follow-

up, larger ABM and control groups, and additional bona fide treatments in order to identify 

robust moderators of response. Though enrollment was open to all participants with 

clinically elevated anxiety, the sample was comprised primarily of individuals meeting 

criteria for one or more distress-related (as distinct from fear-related) diagnoses, with a 

particular preponderance of GAD. Generalizability of findings could therefore be limited to 

samples with similar clinical characteristics. The CAPS hypervigilance scale was selected to 

capture vigilance across transdiagnostic anxiety presentations, and appeared to perform as 

intended in the current sample (see Supplement), but the measure might capture some forms 

of anxiety better than others (e.g., conditions with more ubiquitous forms of threat-related 

cues). fMRI analyses are limited in temporal resolution due to the hemodynamic delay of the 

BOLD signal, which is an indirect measure that lags substantially behind neuronal activity. 

Nevertheless, the mixed block/event-related design utilized here was effective in this cohort 

at evoking separable neural substrates of transient and sustained threat processing that were 

consistent with previous human and animal studies (see Supplement). Preliminary pattern 

recognition findings were based on leave-one-out cross-validation and permutation tests of 

significance, but were based on small subsamples and require a more rigorous test of 

generalizability in a larger, independent test sample. Finally, fMRI assessments are not 

readily available in clinical settings. While the current study was designed to identify 

predictors using fMRI indices considered highly proximal to the intervention’s brain 
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mechanisms, future work building on these findings should aim to translate these proximal 

brain mechanisms to more clinic-ready indices (e.g., behavioral, self-report, and peripheral 

psychophysiological markers).

Conclusions

The goal of the present study was to understand how individual differences in the neural 

mechanisms of initial and sustained threat processing relate to outcomes following a 

mechanistically targeted intervention (ABM). In meta-analyses of randomized controlled 

trials, ABM, a very low-cost, low-burden intervention, has shown both promise and 

limitations, producing clinically meaningful reductions in symptoms of anxiety, but only for 

a subset of individuals. Our results suggest that ABM’s clinical impact may be enhanced 

through process-based treatment-matching algorithms that take account of individual 

differences in the temporal pattern of neural responses to threat. While a cognitive 

neuroscience methodology (fMRI) was used here in an effort to precisely quantify and 

define mechanistic predictors of response to a translational intervention, predictive patterns 

of neural response will ideally be translated back to the clinic in an iterative process of 

intervention refinement, extension, and personalization. Current first-line treatments for 

clinical anxiety exhibit a ~50% response plateau, with high rates of relapse, low rates of 

remission, high treatment-related costs and patient burden, and little evidence to suggest 

which patients may benefit from which treatment options. A more efficient, effective, and 

personalized approach might be fostered through a greater focus on theory-driven, 

mechanistic predictors of treatment outcome, which cut across diagnostic boundaries, 

increasing generalizability; and by the use of translational treatment protocols that have 

clearly defined, unitary mechanisms.
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Refer to Web version on PubMed Central for supplementary material.
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Public Health Significance

This study suggests that a translational computer-based treatment targeting attentional 

patterns works best for those anxiety patients showing a specific, relevant profile of brain 

responses. This information might help in developing a process-based framework for 

matching patients to treatments across many anxiety diagnoses.
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Figure 1. 
CONSORT diagram for study.
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Figure 2. 
Clusters where negative transient AUC values predict CAPS-Vigilance residual scores (from 

whole-brain analysis). From left to right, panels display the following clusters from Table 2 

whole-brain analysis: 1) R VLPFC, R insula/IFG, R middle/superior temporal cortex, R 

DLPFC; 2) pgACC, dACC, thalamus; 3) R middle/superior temporal cortex, R amygdala/

hippocampus, thalamus; 4) R DLPFC, dACC/dmPFC, L DLPFC, L dorsal postcentral gyrus. 

Lower row of figures depicts representative linear relationships between negative transient 

AUC values from selected ROIs and residual CAPS-vigilance scores in the ABM and 

control groups.
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Figure 3. 
Discrimination map and classifier results from spatial pattern recognition analysis using 

whole-brain map of negative transient AUC values to classify individuals as high (best 

quartile) vs. poor (worst quartile) ABM responders. Discrimination information was 

strongest in vmPFC and bilateral VLFPC (dark blue shading).
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