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Abstract

Alzheimer’s disease (AD) is characterized by two primary pathologies: tau-related neurofibrillary 

tangles and the extracellular accumulation of amyloid-β (Aβ). The development of these 

pathologies is topologically distinct early in the disease, with Aβ beginning to accumulate as a 

diffuse, neocortical pathology, while tau-related pathology begins to form in mesial temporal 

regions. This study investigated the hypothesis that, by virtue of this distinction, there exist 

preferential associations between the primary pathologies and aspects of the cognitive phenotype. 

We investigated the relationship between cerebrospinal fluid (CSF) biomarkers for tau and Aβ 
pathologies with neurocognitive measures in 191 patients with mild cognitive impairment (MCI). 

Participants completed cognitive tests of new learning, information processing speed, and working 

memory. Separate regression models were computed and then followed up with mediation 

analyses to examine the predictive status of CSF biomarkers. The effect of Aβ on learning was 

mediated by phospho-tau (p = 0.008). In contrast, Aβ had a direct effect on information processing 
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speed that was not mediated by phospho-tau (p = 0.59). No predictors were significant for working 

memory. This study provided evidence for a differential relationship of Aβ and phospho-tau 

pathologies on the neurocognitive phenotype of MCI. This supports the proposition that these 

primary AD pathologies maximally affect different aspects of cognition, and has potential 

implications for cognitive assessments and the use of biomarkers in disease-modifying therapeutic 

trials.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative condition that results in a progressive 

clinical syndrome of deteriorating neurocognitive function of insidious onset [1]. In typical 

AD, the neurocognitive phenotype follows a well-documented progression, beginning with 

impairments in new learning before evolving to affect semantic memory, praxis, and 

visuospatial function [2]. The evolution of neurocognitive dysfunction corresponds to the 

severity and pathological staging of tau-related neurofibrillary tangles (NFTs) [3–5]. The 

accumulation of NFTs follow a predictable course, beginning in transentorhinal cortex, and 

then spreading to nearby limbic regions (including the hippocampus) before infiltrating 

broad regions of isocotex [6]. The fact that that fundamental memory impairment is an early 

neurocognitive marker of the disease is not surprising given the early involvement of the 

mesial temporal regions [7]. The spread of this pathology to lateral temporal neocortex also 

accords with the evolution of the clinical syndrome in the form of deficits in semantic 

function. Similarly, the later development of impairments in praxis and spatial function 

corresponds to pathology in the temporo-parietal neo-cortical regions [8].

Unlike the evolution of tau-related pathology, which corresponds to the development of the 

neurocognitive phenotype, the nexus between amyloid-β (Aβ) and cognition is not well 

established. When measures of Aβ-related pathology are compared directly to tau-related 

pathology with regard to their respective contributions to global cognitive dysfunction, Aβ 
consistently accounts for less variance [9, 10]. In contrast to the tau-based NFTs, which 

begin to accumulate in the mesial temporal region, Aβ deposition begins in basal isocortex 

before spreading inwards to mesial temporal regions and finally involving more diffuse 

isocortical regions [11]. A number of in vivo imaging studies of Aβ have revealed deposition 

to be a diffuse neocortical pathology, with greatest binding in anterior neocortex and 

relatively little uptake in mesial temporal structures [12–15].

Given the neocortical predominance of Aβ deposition, particularly in anterior regions, it is 

of note that clinical syndrome is not dominated by neurocognitive signs considered typical 

of these regions (e.g., primary executive impairments). The question then becomes, how 

does Aβ pathology contribute to the neurocognitive phenotype? There are two possible 

answers to this suggested by the amyloid cascade hypotheses [16]. The first is that the effect 

of Aβ is entirely indirect, and influences cognitive function by causing the accumulation of 
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tau-related pathology. In this way, the effect of Aβ on the neurocognitive phenotype is 

mediated by the effect of tau-related pathology. This possibility is supported not only by the 

nexus between tau-related pathology and cognition, but also by evidence that the 

relationship between amyloid load and cognition is attenuated when the effect of tau-related 

pathology is taken into account [3, 17]. A recent study also reported that the relationship 

between Aβ load and memory function is mediated by hippocampal volume, which further 

supports this view [18]. This indirect effect may also explain why the correlation between 

cognition and Aβ is weaker than that of tau.

The second possibility suggested by the amyloid cascade hypothesis is that Aβ may also 

have a direct and tau-independent effect on cognition. There is evidence to suggest that Aβ 
oligomers, an intermediate species in the amyloid-aggregation process, can directly cause 

subtle synaptic dysfunction [19–23]. Unlike tau-related pathology, which likely exerts focal 

and specific neurocognitive effects (especially early in the disease), Aβ is likely to exert 

general neurocognitive dysfunction as a result of its diffuse cortical distribution. In support 

of this view, a recent study reported that successful clearance of Aβ pathology in patients 

with AD resulted in improvements on tasks of executive function, but not of memory[24].

The possibility that Aβ pathology may result in neurocognitive dysfunction via two 

pathways suggests it may be possible to differentiate the effects of Aβ and phospho-tau. To 

our knowledge no previous study has attempted to dissociate the pathology-cognition 

relationship in this way. The purpose of this study was to examine this using data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). The analysis focused on patients with 

MCI, in order to increase the likelihood of demonstrating differential relationships between 

the two pathological hallmarks and cognition. Specifically, as tau-related pathology begins 

in mesial temporal regions and spreads out, and Aβ deposition begins in neocortex and 

spreads inwards, it stands to reason that in the early the stage of the disease there will be less 

overlap between the two pathologies. Patients with MCI are more likely than elderly 

controls to carry AD pathology and as such, without accurate in vivo diagnostics, MCI 

presents the best clinical model of early AD [25].

CSF biomarkers of phospho-tau and Aβ were utilized, which remain the only currently 

accessible methods for measuring multiple pathological hallmarks in AD using a common 

modality. CSF levels of Aβ and phospho-tau are abnormal in AD, with decreased levels of 

Aβ, and increased phospho-tau compared to cognitively normal controls [26–28]. In MCI, 

lower baseline Aβ and higher phospho-tau is associated with more rapid cognitive decline, 

greater cortical thinning, and increased likelihood of transition to dementia of the 

Alzheimer’s type (DAT) [29–33]. Critically for the present study, CSF levels of Aβ and 

phospho-tau from lumbar puncture are significantly correlated with cortical brain biopsy 

histology, suggesting they are adequate surrogates for ex vivo histopathological 

measurements [34, 35].

Several studies have investigated the relationship between CSF biomarkers and different 

aspects of the cognitive phenotype; however, a consensus is yet to emerge [36, 37]. One 

possible reason for this is that these studies used CSF total tau as a marker of tau-pathology. 

CSF total-tau is obtained from assays that detect all available isoforms or tau, while assays 
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for CSF p-tau are specific to phosphorylated tau protein [38, 39]. Given NFTs are comprised 

of hyper-phosphorylated tau, this renders p-tau a conceptually more specific marker of tau-

related pathology in AD. Further, CSF t-tau likely reflects non-specific neuronal damage, 

including from trauma, stroke, and Creutzfeldt-Jakob disease. Critically for the present 

study, although t-tau and p-tau CSF levels are both elevated in AD, this correlation is not 

seen in stroke or Creutzfeldt-Jakob Disease where t-tau levels are elevated but p-tau levels 

are not [40–46]. Taken together, this suggests that CSF p-tau levels might be more specific 

to NFT-related pathology, while t-tau may be a more general marker of neuronal damage 

[47, 48]. As such, CSF p-tau will be used as the primary marker for tau-related pathology in 

the present enquiry.

The hypothesis proposed here is not one of absolute dissociation. Patients at the MCI stage 

of the disease are likely to have some NFT formation in neocortical regions. Rather, it is 

expected that there will be preferential association between CSF biomarkers and aspects of 

the cognitive syndrome. It is predicted that phospho-tau will be most strongly associated 

with memory functions, while Aβ will be most strongly associated non-memory functions 

(such as executive functions).

MATERIALS AND METHODS

ADNI

The data used in this study were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. The ADNI was launched in 2003 by the National Institute on 

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the 

Food and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year public-private partnership. The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. 

Determination of sensitive and specific markers of early AD progression is intended to aid 

researchers and clinicians to develop new treatments and monitor their effectiveness, as well 

as lessen the time and cost of clinical trials. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, with 

subjects recruited from over 50 sites across the U.S. and Canada. The initial target for ADNI 

was to recruit 800 adults, ages 55 to 90, to participate in the research, approximately 200 

cognitively normal older individuals to be followed for 3 years, 400 people with MCI to be 

followed for 3 years and 200 people with early AD to be followed for 2 years (for more 

information, see http://www.adni-info.org).

Participants

The ADNI study includes healthy controls, participants with MCI, and those with DAT. The 

characteristics of the clinical cohort, including inclusion and exclusion criteria, are described 

elsewhere [49]. For the present study, the ADNI database was queried for participants who, 

at baseline, met the criteria for MCI. Participants were classified as satisfying MCI criteria 

if, in addition to the general study criteria referred to above, they: (a) had a subjective 
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memory complaint verified by an informant; (b) demonstrated objective memory 

dysfunction on the Logical Memory II subtest of the Wechsler Memory Scale; (c) had a 

Mini-Mental Status Examination (MMSE)scoreofbetween24and30(inclusive);(d)had a 

Clinical Dementia Rating (CDR) score of 0.5 with a Memory Box Score of at least 0.5; and 

(e) did not meet criteria for DAT [50].

Of MCI participants in ADNI cohort, 200 underwent CSF collection. Nine subjects were 

excluded for use in the current study: one participant failed screening and was excluded 

from further participation in the ADNI study, one participant had missing biomarker data, 

and seven participants had missing neuropsychological data. The remaining 191 participants 

were included for analysis. Due to deliberate oversampling of male participants in order to 

guard against differential life expectancy, the sample included 126 males (66%) and 65 

females (34%). Participants were administered a range of screening instruments, including 

the modified Hachinski Ischemic Index [51], Geriatric Depression Scale (GDS), Functional 

Assessment Questionnaire (FAQ), Alzheimer’s Disease Assessment Scale-Cognitive 

(ADAS-Cog), and MMSE.

Pre-morbid verbal intelligence was estimated using the American version of the National 

Adult Reading Test, a test of single word reading (ANART) [52]. The number of errors 

(mispronounced words) on the ANART was used in combination with years of education to 

estimate each participant’s pre-morbid verbal intelligence quotient (VIQ) using an approach 

described elsewhere [53].

Cerebrospinal fluid biomarkers

CSF was sampled from all participants via lumbar puncture. Samples were subsequently 

analyzed by the ADNI Core Biomarkers Team for levels of (Aβ1–42) and tau 

hyperphosphorylated at the threonine 181 (p-tau181P). The detailed protocol for this analysis, 

including quality control procedures, is described elsewhere [54]. The mean delay between 

lumbar puncture and neuropsychological assessment was 0.52 days (SE = 0.26).

Cognitive measures

Memory—The Rey Auditory Verbal Learning Test (RAVLT) [55] is a test of verbal supra-

span memory widely used in research and clinical practice [56]. For this study, four indices 

derived from the RAVLT were analyzed. The first index, total learning, is the number of 

words correctly recalled, summed over trials the five learning trials. The second index, post 

interference recall included the number of words correctly recalled following the 

interference trial. Third, delayed recall, is the number of words correctly recalled from list A 

following a 30-min delay. Finally, recognition was calculated as the number of false 

positives subtracted from the number of correctly recognized words on the delayed 

recognition trial.

Non-memory cognitive tests—A number of non-memory cognitive measures were used 

in the present study. Digit Span Forwards and Digit Span Backwards from the WAIS-R [57] 

were included as measures of the ability to register, update, manipulate, and report 

information in working memory. Digit Symbol Substitution from the WAIS-R [58] was 
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included as a test of attention and speed of information processing. Part A of the Trail 

Making Test was included as a further measure of information processing speed. Part B was 

included as a measure of working memory and attentional switching. To correct for the 

effect of information processing speed, the score for Part B was divided by Part A [59].

Statistical analyses

The individual cognitive variables were reduced using principal component analysis (PCA) 

primarily for the purposes of assisting in data interpretation, but also to reduce the problem 

of multiple comparisons. Unlike the construction of scales by adding conceptually related 

items together, PCA allows for the item loadings for each scale to be determined empirically, 

thus ensuring the resulting component scores explain the maximum possible variance in the 

original items, while still fulfilling the practical requirement of data reduction [60].

Initial analysis entailed the estimation of separate multiple regression models with 

biomarkers, age, gender, and VIQ regressed onto each of the component scores. The pattern 

of significant regression coefficients was interpreted to evaluate the unique contribution of 

each biomarker variable to the model. These regression analyses were followed up with 

mediation analyses.

Mediation analyses were conducted in SPSS 22 (IBM Corporation) using the PROCESS 

package [61]. For each cognitive composite variable, a simple mediation model was 

computed to examine whether the relationship between Aβ1–42 and cognition was either 

direct, or mediated by p-tau181P. age, gender, and VIQ were added to all models as 

covariates. The significance of the mediation effect was determined using Sobel’s test [62]. 

Standardized regression coefficients were used to interpret the predictive relationship 

between variables. Given the conceptual relationship between VIQ and other cognitive 

measures, these regression models were repeated with VIQ removed to confirm the pattern 

of findings.

RESULTS

Biomarkers and control variables

Participant demographics are included in Table 1. Mean CSF Aβ1–42 was 163.31 pg/ml (SE 
= 54.74) and mean CSF p-tau181P levels were 35.98 pg/ml (SE = 18.12). Mean CSF t-tau 

levels were 104.86 pg/ml (SE = 4.48). Aβ1–42 and p-tau181P were moderately negatively 

correlated, r = −0.53, p < 0.001. P-tau181P was not significantly correlated with age, r = 0.02, 

p = 0.76, nor VIQ, r = 0.06, p = 0.40. Similarly, A−β1–42 was not correlated with age, r = 

0.02, p = 0.80, nor VIQ, r = −0.04, p = 0.61. No gender differences were observed for either 

Aβ1–42, t(189) = 1.56, p = 0.11, or p-tau181P, t(189) = −1.54, p = 0.16.

Cognitive component scores

Descriptive statistics for all cognitive measures are shown in Table 2. The PCA solution 

revealed three components, all with eigenvalues greater than one, which together explained 

68% of variance in the original items. Following the application of a promax rotation (κ= 2), 

these components were labeled learning (containing the four items from the RAVLT), 
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working memory (digits forwards, digits backwards, and corrected trail making test part B), 

and processing speed (trail making test part A and digit symbol coding). The pattern matrix 

is show in Table 3. Component scores were generated for each participant using the 

regression method.

Regression analyses

Results for the regression analyses are shown in Table 4. The overall regression model for 

learning was significant, R = 0.31, F(5,190) = 4.00, p = 0.002, with p-tau181P a significant 

predictor. Aβ1–42 was a non-significant predictor, as were gender (p = 0.05), VIQ (p = 0.18), 

and age (p = 0.66). The relationship between p-tau181P and new learning persisted after re-

running the regression model with VIQ omitted (p = 0.006), and with VIQ replaced with 

MMSE (p = 0.005). The relationship between learning and p-tau is shown in Fig. 1.

While the overall model for working memory was significant, R = 0.31, F(5,190) = 4.04, p = 

0.002, neither p-tau181P nor Aβ1–42, were significant predictors. VIQ was a statistically 

significant covariate (p < 0.001), while gender (p = 0.93) and age were not (p = 0.77).

The overall model for processing speed was signifi-cant, R = 0.31, F(5,190) = 3.92, p = 

0.002, with Aβ1–42 a significant predictor. P-tau181P was non significant, as were gender (p 
= 0.054) and age (p = 0.341). VIQ was a significant covariate (p = 0.007). The relationship 

between Aβ1–42 and processing speed persisted after the regression analysis was re-run with 

VIQ omitted (p = 0.02). After including MMSE in the regression instead of VIQ, Aβ1–42 

became non-significant (p = 0.07). The relationship between Aβ1–42 and processing speed is 

shown in Fig. 2.

Mediation analyses

As biomarkers were only significant predictors in these learning and processing speed 

models, mediation analyses were limited to these cognitive variables. For learning, the direct 

effect of Aβ1–42 was completely mediated by p-tau181P, Sobel’s Z = 2.65, p = 0.008. As 

shown in Fig. 3, the effect was indirect, with Aβ1–42 significantly predicting p-tau181P and p-

tau181P subsequently predicting learning. The same mediation effect was not observed when 

the analysis was repeated with t-tau instead of p-tau181P, Sobel’s Z = 1.92, p = 0.06.

In contrast, as shown in Fig. 4, the direct effect of Aβ1–42 on processing speed was not 

mediated by p-tau181P, Sobel’s Z = −0.55, p = 0.59, and remained significant with p-tau181P 

included in the model. Further, the indirect effect was also non-significant with p-tau181P 

failing to predict processing speed. The indirect effect remained non-significant when t-tau 

was entered as the mediator, Sobel’s Z = −0.80, p = 0.42.

DISCUSSION

The results of this study support the hypothesis of preferential association between AD 

biomarkers of tau and Aβ related pathology and cognitive dysfunction. We found that the 

degree of memory impairment was maximally associated with tau-related pathology, but not 

Aβ. The effect of Aβ was indirect, that is, while Aβ levels predicted phospho-tau, only 

phospho-tau was statistically associated with memory function. This same effect was not 
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observed for total tau. This finding is consistent with the early accumulation of tau-related 

pathology in the mesial temporal regions in AD compared to the relatively diffuse deposition 

of Aβ [7]. In a previous study, Mormino and colleagues reported that the relationship 

between cortical Aβ deposition and memory function was mediated by hippocampal volume 

[18]. Although a direct measure of tau-related pathology was not included in their study, the 

authors speculated that hippocampal volume might have acted as an indirect measure of 

NFT load. This explanation is supported by our finding that the effect of Aβ on memory 

function was mediated by phospho-tau. The mediating effect of tau has been documented in 

previous work by Bennett and colleagues [17].

Previous work from Hedden and colleagues [63] reported that Aβ binding was correlated 

with the degree of memory impairment healthy older adults. The results presented here to 

not contradict such findings. Our finding of an indirect relationship between Aβ and 

memory (mediated by tau) suggests that a correlation would be observed between Aβ and 

memory if tau had not been included in mediation analysis. As the study by Hedden and 

colleagues did not investigate cerebral phospho-tau accumulation, it is not possible to 

speculate whether the relationship between memory and Aβ would persist once levels of tau-

pathology had been considered. A similar finding was reported by Lim and coworkers [64] 

who showed that MCI patients with high Aβ were characterized by memory impairment, 

while low-Aβ MCI patients presented with impairments in multiple domains, including 

executive functions. Without considering the burden of tau-related pathology, it is difficult to 

reconcile these findings with the present study. This underscores the need to replicate our 

findings, as well as the need to consider markers of both primary pathologies in studies of 

cognitive impairment in AD.

We also demonstrated a direct, tau-independent association between Aβ and impairments in 

processing speed. This association was small, but statistically significant and remained after 

controlling for phospho-tau. It also remained after controlling for total tau. This finding is 

consistent with proposition that Aβ deposition, as a diffuse neocortical pathology, has a 

direct and independent effect on the neurocognitive phenotype. It is likely processing speed 

behaved as a marker of diffuse cerebral involvement, as fundamental processing speed 

impairment characterizes a number of diffuse pathologies [65–69]. This association did not 

persist when global cognitive status was taken into account statistically, further supporting 

the global effects of amyloid as a diffuse pathology.

These findings are also consistent with the amyloid cascade hypothesis. Specifically, the 

finding that the effect of Aβ on memory function was indirect is consistent with the view 

that the accumulation of tau-related pathology is secondary to the accumulation of Aβ [16, 

70–74]. A direct effect of Aβ on cognition is also consistent with the amyloid cascade 

hypothesis, and accords with evidence that Aβ oligomers directly disrupt synaptic function 

[19–23]. This is also congruent with the recent finding that treatment with an anti-Aβ 
therapy resulted in improvements in executive functions (including very fundamental aspects 

such as processing speed), but not memory [24].

The absence of a detectable association between any of the pathological biomarkers and 

working memory was unexpected. One possibility is that any relationship between working 
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memory and Aβ is overshadowed by the variance shared with processing speed such that 

any residual relationship between working memory and Aβ could not be statistically 

detected. An association between working memory and phospho-tau was also not observed. 

The further investigation of the relationship between working memory and disease 

biomarkers is a clear direction for future research. Estimated verbal intelligence was the only 

variable to significantly predict working memory. This might be explained by the fact 

performances on the working memory tasks (digit span and the trail making test) are 

mediated by verbal abilities. While the effect of tau on memory persisted when a measure of 

global cognitive status was included, the effect of Aβ on information processing speed did 

not. This supports the global and diffuse nature of amyloid-pathology, but also confirms the 

importance of more sensitive cognitive assessment in future studies to further differentiate 

the preferential effects of amyloid.

Given the overlap of tau- and amyloid-pathology, even in patients with MCI, it will be 

necessary to confirm these findings in a longitudinal context with patients in the very early 

stages of the disease (e.g., healthy controls who later convert to DAT). This would help 

address issues related to inter-individual variation in the development of AD-related 

pathology. It would also help address the uncertainty of using MCI to investigate underlying 

AD pathology. A further factor to take into account involves white-matter integrity. Previous 

work has shown a relationship between executive function impairments and quantification of 

white matter hyperintensities [63]. The participants in this study were at relatively low risk 

for cerebrovascular disease, based on screening using the Hachniski Ischemia score. 

Nevertheless, quantification of cerebrovascular status would be appropriate for inclusion in 

future work.

This study found evidence for preferential association between biomarkers of tau and Aβ 
AD pathology in their relationship with different aspects of neurocognitive function in 

participants with MCI. The data demonstrated a direct association between phospho-tau and 

memory function, and a tau independent association between Aβ and processing speed. On 

this basis we proposed a model for AD where phospho-tau related pathology is maximally 

related to fundamental memory function by virtue of its early accumulation in mesial 

temporal regions, and Aβ pathology is maximally related to processing speed by virtue of its 

diffuse neocortical distribution. The data presented here provide tentative support for this 

model in patients with MCI. The effects reported here are small, but statistically significant, 

underscoring the need for replication of these findings.

A particular focus of future work would involve the differential effects of phospho-tau and 

total-tau. While both isoforms are present in AD, levels of phospho-tau are more 

conceptually aligned with NFTs [47, 48]. Nevertheless, the neurocognitive effects of total-

tau are likely to be significant, especially in cases of comorbid pathology, such as 

cerebrovascular disease [40–46]. A task for future work is to confirm the special effects of 

phospho-tau, compared to total tau.

These findings have potential implications for disease-modifying therapeutic trials in AD. 

Specifically, it is possible that therapeutic interventions targeting one of either Aβ or 

phospho-tau may be optimally assessed using different cognitive paradigms. While the 
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measurement of fundamental memory function may be most appropriate for a potential anti-

tau therapy, measures of more diffuse neocortical functions may be more appropriate for 

anti-Aβ therapies. This point is supported by the findings of Faux and colleagues [24] 

referred to previously.
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Fig. 1. 
Partial regression plot for learning and CSF-p-tau.
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Fig. 2. 
Partial regression plot for processing speed and CSF Aβ.
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Fig. 3. 
Learning Mediation Model. Numbers along paths are standardized regression coefficients. 

Statistical significance: *p < 0.05, **p < 0.01, nsp > 0.05.
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Fig. 4. 
Processing Speed Mediation Model. Numbers along paths are standardized regression 

coefficients. Statistical significance: *p < 0.05, **p<0.01, nsp > 0.05.
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Table 1

Participant characteristics

Variable Range M SE

Min Max

Age (years) 55 89 74.72 0.54

Education (years) 3 20 15.81 0.22

Hachinski Score 0 4 0.60 0.06

GDS 0 5 1.67 0.10

FAQ 0 21 3.71 0.32

ADAS-Cog 2.00 26.67 11.54 0.33

MMSE 24 30 26.95 0.13

VIQ 83.94 131.00 115.3 0.70

GDS, Geriatric Depression Scale; FAQ, Functional Assessment Questionnaire; ADAS-Cog; MMSE, Mini-Mental State Examination; VIQ, verbal 
intelligence quotient.
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Table 2

Cognitive measures

Variable Range M SE

Min Max

Delayed Recall 0 13 2.59 0.22

Post-interference Recall 0 14 3.52 0.22

Total Learning 11 55 30.33 0.63

Recognition 0 15 8.10 0.26

Digit Span Forwards 4 12 8.34 0.14

Digit Span Backwards 2 12 6.16 0.16

Trail Making – B 1.15 8.88 3.08 5.30

Trail Making – A 17 150 45.24 1.70

Digit Symbol Coding 9 64 37.16 0.82
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Table 3

Component loading for principal components analysis

Component

L WM PS

Delayed Recall 0.903

Post-interference Recall 0.896

Total Learning 0.798

Recognition 0.744

Digit Span Forwards 0.832

Digit Span Backwards 0.774

Trail Making – B –0.496

Trail Making – A –0.932

Digital Symbol Coding 0.793

L, new learning; WM, working memory; PS, processing speed.
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Table 4

Regression models and CSF biomarker coefficients

Model β t sr2 p

Learning

P-tau181P –0.23 –2.82 0.03 0.005**

Aβ1–42 0.07 0.84 <0.01 0.402

Working Memory

P-tau181P 0.06 0.77 <0.01 0.445

Aβ1–42 0.12 1.41 <0.01 0.161

Processing Speed

P-tau181P 0.05 0.55 <0.01 0.583

Aβ1–42 0.20 2.38 0.03 0.018*

*
p < 0.05,

**
p < 0.01,

df = 190, β = standardized regression coefficients, sr2 = semi-partial correlation coefficient squared.
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