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Abstract

Alzheimer’s disease (AD) is one of the most serious progressive neurodegenerative diseases 

among the elderly, therefore the identification of conversion to AD at the earlier stage has become 

a crucial issue. In this study, we applied multimodal support vector machine to identify the 

conversion from normal elderly cognition to mild cognitive impairment (MCI) or AD based on 

magnetic resonance imaging and positron emission tomography data. The participants included 

two independent cohorts (Training set: 121 AD patients and 120 normal controls (NC); Testing 

set: 20 NC converters and 20 NC non-converters) from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. The multimodal results showed that the accuracy, sensitivity, and 

specificity of the classification between NC converters and NC non-converters were 67.5%, 

73.33%, and 64%, respectively. Furthermore, the classification results with feature selection 

increased to 70% accuracy, 75% sensitivity, and 66.67% specificity. The classification results 

using multimodal data are markedly superior to that using a single modality when we identified 

the conversion from NC to MCI or AD. The model built in this study of identifying the risk of 

normal elderly converting to MCI or AD will be helpful in clinical diagnosis and pathological 

research.
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INTRODUCTION

Alzheimer’s disease (AD) is the most serious neurodegenerative disorder in the world. Until 

2010, 36.5 million people worldwide lived with AD and other dementias [1]. With the aging 

of world’s population, more people will suffer from AD. There are different stages in the 

progress of AD, accompanied by both structural and functional changes in the brain. It is 

possible to characterize various neuroimaging alterations in AD with the advancement of 

computational image analysis methods and neuroimaging technologies such as magnetic 

resonance imaging (MRI) [2, 3] and positron emission tomography (PET) [4, 5]. 

Researchers have detected or predicted AD with different classification methods based on 

single-modal or multimodal neuroimaging data [6–9]. As there are no effective treatments 

for AD, identifying the conversion to AD at the earlier stage has become a crucial issue.

Mild cognitive impairment (MCI), as a transitional stage between normal elderly and AD, 

has attracted increased attention in this research field. MCI patients exhibit demonstrable 

memory deficits and neurological changes in the brain, such as gray matter atrophy, 

hypometabolism, and amyloid-β (Aβ) deposition, which can be examined and detected by 

MRI [9], 18F-fluorodeoxyglucose PET (FDG-PET) [10] and 18F-florbetapir PET (AV45-

PET), respectively. Previous studies classified MCI converters (MCI-c) from MCI non-

converters (MCI-nc) using neuroimaging data based on different classification methods [11–

14]. For example, Cui et al. used data from MRI, cerebrospinal fluid, and 

neuropsychological measures to classify MCI-c from MCI-nc based on support vector 

machine (SVM) [11]. Others have applied the method of Spatial Pattern of Abnormalities 

for Recognition of Early AD (SPARE-AD) using MRI and cerebrospinal fluid data to 

predict whether MCI will convert to AD [13, 14]. Contrary to the large number of prediction 

or classification studies in MCI, similar studies are rare in the normal aging population.

Compared with healthy young people, healthy elderly show various alterations in brain 

function and structure during normal aging [15, 16]. Previous studies using PET technology 

showed that Aβ deposition is the major neuropathological feature of AD [17, 18]. In recent 

years, many studies suggest that approximately 20–30% of cognitively normal elderly also 

had Aβ deposition in the brain, mainly in the precuneus, temporal lobe, and cingulate cortex 

accompanied by glucose metabolism reduction and gray matter atrophy [19–22]. The 

existing documents suggest that a percentage of normal elderly who have Aβ deposition in 

the brain may convert to AD. The studies of normal aging may improve our understanding 

of the early pathological alterations of AD. In addition, an accurate classification and 

identification of subjects in this stage is very important to clinical applications.

Different imaging modalities provide complementary information, such as MRI for gray 

matter volume, FDG-PET for hypometabolism, and AV45-PET for Aβ deposition [4]. In 

recent years, SVM has been introduced to study multimodal neuroimaging data [23]. The 

multimodal SVM, as an improved SVM method, determines the weights of the kernels of 

each modality; the classification takes advantage of the complementary information within 

multiple types of the imaging data [24]. Using data from MRI, FDG-PET, and cerebrospinal 

fluid, Zhang et al. applied multimodal SVM to the classification of AD and MCI [24].
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The purpose of our study is to apply the multimodal SVM method to identify the conversion 

from normal elderly cognition to MCI or AD within 24 months using imaging data from 

three modalities: MRI, AV45-PET, and FDG-PET. The present study included two datasets: 

one was from AD subjects and the normal controls (NC) used as the training set to build the 

classifier; the other dataset was from the independent normal elderly, which included NC-c 

(NC converted to MCI or AD within 24 months) and NC-nc (NC did not convert) used as the 

testing set.

MATERIALS AND METHODS

ADNI

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies, and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been to test whether serial 

MRI, PET, other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of MCI and early AD. Determination of sensitive and 

specific markers of very early AD progression is intended to aid researchers and clinicians to 

develop new treatments and monitor their effectiveness, as well as lessen the time and cost 

of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see http://www.adni-info.org.

Ethics

The ADNI study was approved by Institutional Review Board (IRB) of each participating 

site, including the Banner Alzheimer’s Institute, and was conducted in accordance with 

Federal Regulations, the Internal Conference on Harmonization (ICH), and Good Clinical 

Practices (GCP). Study subjects gave written informed consent at the time of enrollment and 

completed the questionnaires, according to the IRB rules and local laws.

Participants

According to the ADNI protocols, the diagnosis of probable AD met criteria set by the 

National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s 
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Disease and Related Disorders Association (NINCDS/ADRDA) [25].The severity of 

cognitive impairment was assessed using the Mini-Mental State Examination (MMSE) [26] 

and Clinical Dementia Rating (CDR) scores [27]. We selected subjects who had data 

consisting of three modalities: MRI, FDG-PET and AV45-PET. NC had a CDR of 0 and 

MMSE scores between 26 and 30. AD patients had a CDR between 0.5 and 2.0 and MMSE 

scores less than 26. There were a total of 281 participants in the present study. The training 

set included 121 AD patients and 120 NC. The testing set included 40 normal subjects: 20 

NC-nc and 20 NC-c (nineteen subjects converted to MCI and one subject converted to AD). 

The follow-up period for converters and non-converters is 24 months. The mean conversion 

time of the converters is 15.36 ± 6.96 months. Normal elderly in the testing set are 

independent of those in the training set. Table 1 shows the detailed demographic information 

for all subjects. The AD group did not significantly differ from the NC group with respect to 

gender ratio χ(1)
2 = 2.19, p = 0.14  or age (t(239) = 0.40, p = 0.69); in addition, the NC-c 

group did not significantly differ from the NC-nc group with respect to gender ratio 

χ(1)
2 = 0.11, p = 0.74  or age (t(38) = 0.21, p = 0.83).

Neuroimaging data acquisition

MRI data—For each participant, a T1-weighted image was obtained from 1.5 T or 3 T 

scanners. MRI images were obtained from different sites and platforms with different 

acquisition parameters. Corrections of image intensity were performed for gradient 

nonlinearity and intensity non-uniformity on all MRI images. Details regarding the protocols 

of the correction can be found at http://adni.loni.usc.edu/.

PET data—Both FDG-PET and AV45-PET data of the same subject were obtained on the 

same scanner within one month. The interval between MRI and PET scan was within 3 

months. Before the imaging session, the subjects were asked to abstain from eating food and 

drinking fluids (except water) for at least 4 h. For FDGPET scanning, subjects were injected 

with 185 MBq of 18F-FDG as a bolus. The subjects were then allowed to rest comfortably in 

the room for approximately 20 min. Following this, a dynamic 3D scan was acquired, which 

consisted of six 5-min frames. For AV45-PET scanning, 370 MBq of AV-45 was 

intravenously injected as a bolus. After a 20-min incorporation period, a PET scan was 

obtained, consisting of four 5-min frames.

For both types of PET images, all temporal frames were co-registered to decrease the effects 

of head motion. All image sets were then reoriented to a common spatial orientation and 

interpolated to a voxel size of 2 mm. The details of the PET protocols can be found at http://

adni.loni.usc.edu/.

Image preprocessing

The spatial preprocessing of all MRI and PET images was implemented in SPM8 software 

(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB (Mathworks Inc., Sherborn, MA). Figure 1 

shows the flowchart of multimodal data processing and classification.
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The segmentation and normalization of the MRI images were implemented using a VBM8 

toolbox (http://dbm.neuro.uni-jena.de/vbm8) of SPM8, based on the voxel-based 

morphometry (VBM) method. First, images were segmented into three parts: gray matter, 

white matter, and cerebrospinal fluid, using adaptive maximum posterior and partial volume 

estimation [28, 29]. To further improve segmentation, spatially adaptive non-local means, 

consisting of a denoising filter [30] and a classical Markov Random Field approach, were 

used. The gray matter images were normalized using a protocol named as Diffeomorphic 

Anatomical Registration using Exponential Lie Algebra (DARTEL) [31]. During 

normalization, a template was created and images were registered iteratively. Finally, gray 

matter tissue maps were transformed to the Montreal Neurological Institute (MNI) space, 

which were modulated to preserve the total volume in original space.

For FDG-PET images, each FDG-PET image was first coregistered to its corresponding 

MRI image for each subject. Each FDG-PET image was then normalized to MNI space 

using the deformation fields from normalization of the corresponding MRI image. Finally, 

we computed standardized uptake value ratios (SUVr) for each image by normalizing to the 

mean uptake of the reference region. AV45-PET and FDGPET images were separately 

spatially preprocessed using the same protocol; the cerebellum was the reference region for 

both AV45-PET data and FDG-PET data (Fig. 1).

Feature extraction

Ninety regions of interest (ROIs) on the whole brain, except the cerebellum, were included 

in our study, which were defined on the Automatic Anatomical Labeling (AAL) atlas [32]. 

We used the gray matter image to create a mask for each subject, including only voxels that 

exceeds 0.15 on the gray matter image. These masks were applied to each image, including 

gray matter, AV45-PET, and FDG-PET images. We then extracted features based on AAL 

ROIs. For each ROI, mean gray matter volume of the MRI images and mean intensity of the 

PET images were separately computed as a feature. Therefore, we obtained a total of 270 

features for each subject.

Classification

SVM is a supervised classification algorithm for pattern classification; it is based on the 

statistical learning theory. It constructs a linear boundary to separate samples in high 

dimensional space through mapping non-linearly separated samples in low dimensional 

space to high or infinite dimensional space [33]. This method is regarded as one of the most 

powerful classification algorithms.

The multimodal SVM fuses modalities by weighted coefficients, which uses all of the 

information of each type of data. After adding weighted coefficients, the kernel function in 

this method changes into

∑m = 1
M βmk(m) xi

(m), x j
(m) (1)
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where k(m) xi
(m), x j

(m) = ϕ(m) xi
(m) T

ϕ(m) x j
(m)  is the kernel function for training samples of m-

th modality. βm is the weight of the m-th modality.

If x = {x(1), x(2), … , x(M)} is the test sample, we can obtain the decision function

f x(1), x(2), …, x(M) = sign ∑
i = 1

n
yiαi ∑

m = 1

M
βmk(m) xi

(m), x(m) + b (2)

We used a grid search to obtain weights of each modality based on the accuracy of 

classification between AD and NC, and the size of the grid was 0.1. To reduce the overfitting 

and ensure the generalizability of our results, we performed 10-fold cross-validation using 

all training data to gain the weight combination of the three modalities for classifying AD 

from NC. Firstly, all training data was randomly divided into 10 groups. Then, we used 9 

groups to train SVM model and 1 group to test. The accuracy of each grid was entirely 

obtained by averaging cross-validation 10 results. After obtaining the best combination of 

weights, a mixed kernel was derived to train a classifier with the training set, which was 

tested on NC-c and NC-nc group to identify the conversion from normal elderly to AD/MCI. 

We notice that the training set and the testing set were totally independent in this process. 

All classification process was performed on the LIBSVM toolbox (http://

www.csie.ntu.edu.tw/~cjlin/libsvm/).

Feature selection

A two sample t-test was implemented for each ROI to examine the difference between AD 

and NC groups for each modality, respectively. And each modality’s ROIs were ranked 

based on the tests’ significances. We added one ROI a time based on these rankings to 

distinguish AD and NC subjects in order to obtain the best combination of weights using the 

same number of ROIs for the three modalities. The optimal number of features was obtained 

based on the results of classification in the training data.

RESULTS

The classification accuracy with different combining weights of MRI, AV45-PET, and FDG-

PET data are shown in Fig. 2. According to the results of the grid search, based on the 

constraint of βMRI + βAV45 + βFDG = 1, the best combination of weights are βMRI = 0.2, 
βAV45 = 0.4, and βFDG = 0.4. The best accuracy of classification between AD and NC is 

shown in Table 2. The accuracy, sensitivity, and specificity of the classification are 93.40%, 

94.10%, and 93.29%, respectively. Table 2 also shows the confidence intervals of accuracy, 

sensitivity, and specificity. In addition to Fig. 3, we plotted the ROC curves of the four 

methods regarding the classification between AD and NC. The area under the ROC curve 

(AUC) is 0.987 for the multimodal method. The AUCs using only a single modality: MRI, 

FDGPET, and AV45-PET, are 0.968, 0.963, and 0.951, respectively.

Table 3 shows the classification results of NC-c and NC-nc with both multimodal and 

single-modal methods using the mixed kernel with the best combination of weights. The 
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accuracy, sensitivity, and specificity, using multimodal SVM method, are 67.5%, 73.33%, 

and 64%, respectively. The ROC curves also are showed in Fig. 3. The best accuracy, based 

on the single-modal method, is 62.5%.

Figure 4 shows the accuracy of four methods with different number of features between AD 

and NC. The number of ROIs increased with the ranked p values, and the multimodal 

method achieves better results compared with other three single-modal methods each alone. 

With the selected 7 features of each modality, the classification accuracy between NC-c and 

NC-nc is 70%, and the sensitivity and specificity are 75% and 66.67%, respectively (Table 

3). Table 4 shows the classification results between AD and NC with feature selection.

DISCUSSION

The present study identified the conversion from normal elderly cognition to MCI or AD 

using pattern classification methods. We constructed a multimodal SVM classifier on AD 

and NC groups. Then we classified NC-c and NC-nc based on data from the three 

modalities: MRI, FDG-PET, and AV45-PET. The accuracy of the multimodal classification 

with selected features is 94.44% between AD and NC; the identification accuracy of the 

conversion from NC to MCI or AD with and without feature selection are 67.5% and 70%, 

respectively.

MRI and PET techniques have been showed to be sensitive to AD. Thus, a number of studies 

have used MRI and PET images to detect AD [34–36]. Gray et al. used baseline and 12-

month FDG-PET and MRI data to obtain a classification accuracy of 88.4% between AD 

and NC based on the SVM method [37]. Hinrichs et al. also used FDG-PET and MRI data 

for AD classification through the multiple kernel learning method and obtained an accuracy 

of 87% [38]. In our study, we used data from MRI, FDG-PET, and AV45-PET and obtained 

94.44% accuracy, which illustrates that our method is useful in classifying AD.

MCI is a transitional stage between AD and NC. Some studies have predicted whether MCI 

will convert to AD by classifying MCI-c from MCI-nc [9, 14, 39]. For example, based on 

the regression analysis method, Ewers et al. obtained an accuracy of 72.2% using data from 

cerebrospinal fluid, MRI, and score of the Rey Auditory Verbal Learning test (RAVLT) [40]. 

Misra et al. used a high-dimension pattern classification method to obtain an 81.5% 

accuracy with data from MRI images [39]. These studies indicate that AD can be predicted 

in the early stages. Meanwhile, the structural and functional changes of the brain related to 

AD have appeared when the elderly are still cognitively normal. Therefore, our study 

predicted the conversion by distinguishing between NC-c and NC-nc. We obtained an 

accuracy, sensitivity, and specificity of 70%, 75%, and 66.67%, respectively. Because brain 

changes in the healthy elderly are relatively more stable than those in AD or MCI patients, 

classification between NC-c and NC-nc is more difficult. Thus, it is reasonable that our 

accuracy is little lower than that of the classification of MCI.

MRI studies have demonstrated the dramatic functional and structural alterations in the brain 

during normal aging. A few studies related to AD paid attention to the old individuals with 

normal cognition. De Leon et al. predicted the conversion from normal cognition to MCI in 
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a 3-year longitudinal study of 48 healthy normal elderly, through detecting glucose 

metabolic alterations of the entorhinal cortex, hippocampus, and temporal neocortex using 

FDG-PET images. This study suggested that an entorhinal cortex stage of brain involvement 

can be detected in normal elderly subjects to predict future cognitive and brain metabolism 

reductions [41]. Pattern classification method has been used in the identification of the 

conversion. Cui et al. predicted the transition from normal cognition to MCI by classifying 

NC-c and NC-nc based on SVM method, using a combination of neuropsychological 

measure scores and multiple morphological measures with the results of 78.51% accuracy, 

73.33% sensitivity, and 79.75% specificity [42], which are better than our results. In contrast 

to Cui et al.’s study, we used data of different modalities and measurement indices based on 

the different methods. Our results should not be directly compared with theirs due to this 

aspect. The effect of neuropsychological scores and morphological measures such as cortical 

thickness and surface area need to be further evaluated in the classification study.

It has been reported that information from different modalities is complementary for 

classification of AD [43–45]. Dukart et al. obtained an 100% accuracy using FDG-PET and 

MRI data based on the SVM method; by using only FDG-PET or MRI data, they obtained 

accuracies of 94.1% and 82.4%, respectively [34]. We can see from Tables 2–4 that when 

using multimodal data, the accuracy is superior to that when using a single modality, 

regardless of the classification between AD and NC or between NC-c and NC-nc. In the 

classification of AD without feature selection, the accuracy of 93.4% based on three 

modalities is better than the best accuracy of 90.45% among all of the single methods. This 

is demonstrated by the ROC curves in Fig. 3 and the AUC values. Similarly, the multimodal 

method obtained the best accuracy of the four methods when we identified the conversion 

from NC to MCI or AD. Our results are consistent with those in previous studies.

In this study, we conducted feature selection to increase accuracy of classification, since not 

all brain regions are related to AD. Twenty one features were selected from three modalities 

in our method. When classifying AD from NC, the accuracy significantly increased from 

93.40% to 94.44% using selected features (p < 0.05). In addition, we obtained better results 

(70% accuracy, 75% sensitivity, and 66.67% specificity) than using all features together for 

classifying NC-c and NC-nc. The improved classification results illustrated that feature 

selection can remove redundant information to increase classification accuracy.

SVM, as one of the most popular multivariate methods, has been widely and successfully 

utilized in the detection of AD with multimodal neuroimaging data [6]. However, the 

standard SVM only processed concatenated data of different modalities. To take full 

advantage of the information in each modality, Zhang et al. proposed an improved SVM 

method, which is referred to as multimodal SVM. This method determines the weights of 

the kernels of each modality according to the effect on each classification, in an effort to 

take full advantage of the information within the images [24]. Some articles used the 

multimodal pattern classification methods to classify AD from NC. Gray et al. used the 

random forest method and obtained 89% accuracy [36], while Datatzikos et al. obtained 

87.6% accuracy based on Multi-Kernel Learning and SVM method [14]. Also, Dukart et al. 

obtained an 100% accuracy based on the SVM method [34]. Among these pieces of 

research, Zhang et al. still obtained a high accuracy of 93.2% [24] and we got an accuracy of 
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94.44%, which was based on the multimodal SVM. As data and subjects were different, the 

results were reasonable and indicated that the multimodal SVM was an effective method in 

the classification study of AD.

The aim of the present study is to identify whether the normal elderly converts to MCI or 

AD. Although we used accuracy as the criterion to identify the optimal classifier, sensitivity 

and specificity are also important metrics in routine clinical considerations. Higher 

sensitivity can increase the likelihood of correctly diagnosing AD/MCI patients. However, 

since the rate of conversion to MCI/AD is much less than equal odds, it may be preferred to 

emphasize specificity more. In our study, we obtained not only high accuracy 94.44%, but 

high sensitivity 95.69% in the classification between AD and NC. The accuracy is 70%, but 

the specificity of 66.67% is lower than the sensitivity of 75% between NC-c and NC-nc. 

More balanced combination of various indices should be considered in the future studies.

In 2011, the International Working Group (IWG) and the US National Institute on Aging-

Alzheimer’s Association developed recommendations towards defining the preclinical stages 

of AD [46]. The newest diagnostic guidelines (the IWG-2 criteria) [47] indicated that 

amyloid plaques and neurofibrillary tangles are the core pathophysiological markers on the 

diagnosis of AD. Meanwhile, FDG-PET and volumetric MRI measures were proposed to 

track disease progression. Although our results indicated that FDG-PET and MRI data 

offered more information for AD/NC and NC-c/NC-nc detection, they should not be used as 

part of the criteria for diagnosis and prognosis of the disease.

One limitation of our study is the small sample size limited by the requirement that each 

subject must have concurrent MRI, AV45-PET, and FDG-PET data. Additionally, we lack 

the ability to use the most updated diagnosis criteria since all the ADNI diagnoses were 

clinical without the use of fluid or imaging based biomarkers (Many ADNI subjects did not 

have these biomarkers available at the time of their diagnosis).

Present studies predicted MCI or AD in normal elderly using a multimodal SVM method. 

The prediction was implemented by classifying NC-c and NC-nc subjects using three 

modalities: MRI, FDGPET, and AV45-PET, after building a classifier based on the AD and 

NC groups. We fused three complementary modalities with different weights. This 

multimodal classifier can predict MCI or AD in the stage of normal cognition. In summary, 

the model we built identified at the risk of converting to MCI or AD in normal elderly; the 

identification of this population will be helpful in clinical diagnosis and pathological 

research.
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Fig. 1. 
The flowchart of multimodal data processing and classification.
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Fig. 2. 
The classification accuracy of AD and NC with different combining weights of MRI, FDG-

PET, and AV45-PET.
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Fig. 3. 
ROC curves for the classification of AD/NC and NC-c/NC-nc based on the multimodal 

method and three single-modal methods.
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Fig. 4. 
The classification accuracy of AD and NC based on multi-modal and three single-modal 

methods, with different numbers of ROIs.
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