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Abstract

Robot-assisted medical interventions, such as robotic catheter ablation, often require the robot to 

perform tasks on a tissue surface. This paper presents a task-space motion planning method that 

generates actuation trajectories which steer the end- effector of the MRI-actuated robot along 

desired trajectories on the surface. The continuum robot is modeled using the pseudo-rigid-body 

model, where the continuum body of the robot is approximated by rigid links joined by flexible 

joints. The quasistatic motion model of the robot is formulated as a potential energy minimization 

problem. The Jacobian of the quasistatic motion model is used in calculating the actuations that 

steer the tip in the desired directions. The proposed method is validated experimentally in a 

clinical 3-T MRI scanner.
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I. INTRODUCTION

THIS work focuses on the class of continuum robotic manipulators that are made of thin 

elastic rods. This particular type of continuum robots has several characteristics that make it 

especially appealing to medical applications. First, continuum robots are compliant, i.e., 

their elasticity allows them to conform to their surroundings, which makes it easier to 

navigate continuum robots in confined spaces. Their compliance makes it less likely that the 

robots will damage the surrounding tissue; therefore, continuum robots are potentially safer 

for the patient. The elasticity of the robots also provides intrinsic force sensing, where 

contact forces can be estimated from the shape of the robot and the applied actuation. 

Another appealing characteristic of continuum robots is that they are generally easier to 

miniaturize than their traditional counter-parts that rely on pin joints.

The MRI-actuated continuum robot, otherwise known as MRI-actuated robotic catheter, is a 

robotic catheter designed to operate while the patient is inside the bore of an MRI scanner. 
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This setup has two main advantages. First, the MRI scanner poses no radiation-exposure 

threat to the patient, while also providing images with superior soft-tissue visualization. The 

images from the scanner can also be used to estimate the configuration of the robot without 

the use of additional sensing equipment. Moreover, the MRI scanner provides the robotic 

catheter with a strong magnetic field, which is used for remote-steering of the robot. Remote 

steering is enabled by electromagnetic coils attached to the body of the robot. When 

electrical currents are applied, the coils produce magnetic moments that bend the robot 

under the scanner’s magnetic field [1]. This magnetic actuation scheme has no friction or 

backlash problems, and the actuation bandwidth is much higher than that of the mechanical 

bandwidth of the robot. A prototype of the MRI-actuated catheter is shown in Figure 1.

Catheter interventions, such as catheter ablation, require the continuum robot to perform 

tasks on a tissue surface. In order to perform a given task, the robot must maintain contact 

with the surface while moving its end-effector on the surface. This is also known as task-

space control in robotics, where the goal is to calculate an actuation trajectory that results in 

the desired end-effector trajectory in the task space. For serial manipulators with motorized 

joints, the joint-space trajectory for a given task can be calculated either by discretizing tip 

trajectory and solving inverse kinematics along the discrete trajectory, or by using the 

Jacobian of the robot’s forward kinematics to calculate joint velocities from workspace 

velocities. The latter method is often more practical, because solving inverse kinematics 

involves solving a set of nonlinear equations, which can be very computationally expensive. 

The Jacobian approach also lends itself well to feedback control in the task space, where 

task-space errors are used to regulate the robot along the desired trajectory [2].

Since a continuum robot usually moves slowly during a medical procedure, the robot is often 

assumed to be moving quasistatically, i.e., the robot has enough time to reach its equilibrium 

configuration for a given actuation [3]. The quasistatic configuration of the robot for a given 

actuation can be formulated as a potential energy optimization problem. This paper presents 

a task-space motion planning method for MRI-actuated continuum robots based on the 

Jacobian approach. The first Jacobian is similar to the Jacobian of serial manipulators, and it 

depends only on how the shape of the robot is parameterized. The shape of the robot is 

represented by the pseudo-rigid-body (PRB) model, where the continuum body of the robot 

is approximated by n + 1 rigid links joined by n flexible joints, and the Jacobian of the 

forward kinematics of the PRB model can be calculated analytically. The Jacobian of a 

continuum robot with quasistatic motion can be separated into two parts, where the first 

Jacobian is the Jacobian of the robot’s forward kinematics, and the second Jacobian is the 

Jacobian of the mapping between the actuation and the quasistatic shape of the robot. The 

potential energy minimization problem then becomes an implicit mapping between the 

actuation and the quasistatic configuration, and its Jacobian can be obtained through the 

implicit function theorem. The proposed method is experimentally validated in a 3-T clinical 

MRI scanner, where the robot performs three different trajectories on a rigid surface.

The rest of the paper is organized as follows. Related work is presented in Section II. The 

PRB model of the continuum robot is presented in Section III. The Jacobian-based motion 

planning method is presented in Section IV. Experimental validation of the proposed method 

is presented in Section V. Conclusions are presented in Section VI.
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II. RELATED WORK

Continuum robots can be categorized by their actuation methods. Pull-wire mechanisms 

have been used for actuating continuum robots [4]–[7], similar to cable-driven manipulators. 

Some robots have pneumatic actuation [6], [8]. Another type of continuum robots have pre-

curved concentric tubes, and the desired shape of the robot is achieved by sliding and 

rotating the tubes [9], [10]. Alternatively, continuum robots can be actuated magnetically. 

Stereotaxis Niobe Magnetic Navigation System uses two permanent magnets mounted on 

pivoting arms to steer the tip of a continuum robot equipped with permanent magnets. The 

pivoting arms change the configurations of the external magnets to remotely steer the robot 

[11]. Spatial manipulation of a continuum robot with a magnetic actuation system similar to 

the Niobe system is presented in [12]. Continuum robots equipped with permanent magnets 

can also be controlled by an external magnetic field that is manipulated electrically [13], 

[14].

Trajectory generation based on the Jacobian, which is common approach for serial 

manipulators, is applicable to continuum robots. There are multiple ways of calculating the 

Jacobian for continuum robots. The Jacobian can be calculated from finite differences of 

forward kinematics [4], [12], [15], or symbolic differentiation [6]. Alternatively, when the 

motion of the robot is assumed to be quasistatic, the Jacobian can be calculated from the 

implicit function defined by the equilibrium condition [16], [17]. Bajo and Simaan perform 

hybrid position/force control of a multi-backbone tendon-driven continuum robot using the 

Jacobian [18]. Yip and Camarillo present model-less hybrid position/force control of a 

multi-backbone tendon-driven continuum robot, where the Jacobian is estimated from sensor 

data [19]. The model- less control method demonstrates its ability to perform cardiac 

ablation tasks in [20]. Besides the Jacobian-based methods, sampling-based motion planners 

have also been adapted for continuum robots, e.g., [21]–[23]. Planning problems can also be 

formulated as optimization problems, e.g., [24], [25].

This work presents the PRB model of magnetically-actuated MRI-guided continuum robots. 

The PRB model is generalized to the spatial case, where both planar and torsional rotations 

are included. This work also presents the first task-space control method that combines the 

potential energy minimization framework with explicit task-space constraints. The model of 

the catheter in this work extends the free-space model presented in [26] by incorporating a 

surface constraint to the potential energy formulation. The motion planning method in this 

work improves upon the method presented in [27] by extending the quasistatic formulation 

presented in [16], [17] to the case where the continuum robot has to perform tasks on a two-

dimensional surface. The present work is different from [18] because it does not rely on the 

geometric relationship between the actuation parameters and the shape of the robot in 

calculating the Jacobian, instead the Jacobian is calculated from the implicit function 

defined by the potential energy minimization problem, which can be easily extended to 

different continuum robots and kinematic models. The planning method presented in this 

work is also different from [19] and [20] because it is a model-based method. While model-

based methods generally require higher computational effort, they provide a platform in 

which the knowledge of the underlying physics of the robot can be seamlessly integrated 
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with sensor measurements, either in a classical feedback control framework [2], or in a 

probabilistic framework [28].

III. MATHEMATICAL MODEL

A PRB model with n spherical joints, shown in Figure 2, has 3n degrees of freedom, where 

each joint has three degrees of freedom, two bending and one twisting. The PRB model 

approximates the compliance of a continuum robot with a torsional spring attached to each 

degree of freedom. The continuously changing curvature of the centerline of the catheter is 

approximated by the rotations of the spherical joints and the translations along the rigid 

links. The PRB model can be interpreted as a Dirac delta function approximation of the 

curvature of a continuum robot as a function of the arc length.

Forward kinematics of the PRB model with spherical joints is presented in Section III-A. 

The potential energy minimization formulation of the quasistatic motion model is presented 

in Section III-B. Mathematical notations used in this paper generally follow those of [2].

A. Forward Kinematics

For industrial serial manipulators, a spherical wrist is modeled as three sequential revolute 

joints, where the axes of rotation intersect at a common point. In such cases, the sequential 

joints accurately model a spherical wrist where each rotation is actuated by a motor. 

However, this model is not applicable to the PRB model of a continuum robot, because the 

model assumes an order of rotation exists amongst the degrees of freedom. In order to 

accurately model the spherical joints in the PRB model without assuming an order of 

rotation, the rotation of the ith joint is parameterized by three rotation angles as follows, θi = 

[θi,1 θi,2 θi,3]T ∈ ℝ3. The orientation of the link above the ith joint with respect to the (i 

− 1)th joint is given by eθ  , where the wedge symbol (˄) maps the ℝ3 vector representation to 

the ℝ3 × 3 matrix representation of an element of so(3), with the inverse mapping denoted by 

the vee symbol (˅), and the exponential function maps an element of so(3) to an element of 

SO(3).

Once the spherical joint is parameterized, rigid body motion of the robot can be defined as 

follows. A twist, denoted by ξ ϵ se(3), is an infinitesimal generator of SE(3). Let qi denote 

the initial position of the ith joint with respect to the spatial frame. The twist of the ith joint 

can be written as an ℝ6 vector or an ℝ4 × 4 matrix as follows,

ξi θi =
−θ × qi

θi
or ξ

∧
i θi =

θ i −θi × qi

0 0
(1)

Similarly to rigid body rotation, for the rigid body motion case, ˄ maps the ℝ6 vector 

representation to the ℝ4 × 4 matrix representation of an element of se(3), with the inverse 

mapping denoted by ˅. The shape of the PRB model of the catheter with n spherical joints is 
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completely described by the joint angle vector θ = θ1
Tθ2

T ⋅ ⋅ ⋅ θn
T T ∈ 𝒞 ⊂ ℝ3n , where C 

denotes the set of all possible joint angles, also known as the configuration space.

The configuration of a coordinate frame A attached to the jth link given joint angles θ, 

denoted by gsa(θ) ϵ SE(3), is calculated from the product of exponentials formula as 

follows,

gsa θ = e
ξ
∧

1 θ1 e
ξ
∧

2 θ2 · · ·
e

ξ
∧

j θ j gsa 0 , (2)

where gsa(0) is the configuration of the frame A when θ = 0, i.e., when the catheter is 

perfectly straight.

B. Potential Energy Minimization

Continuum robots are inherently underactuated because their continuum bodies have infinite 

degrees of freedom, while there are finite actuation degrees of freedom. The quasistatic 

assumption resolves the underactuation problem by assuming that the robots move slowly 

enough that they can be considered as being in perpetual equilibrium. This is a reasonable 

assumption in medical applications, because surgical continuum robots usually move slowly 

compare to their mechanical bandwidth [3]. The quasistatic configuration of a continuum 

robot can be calculated either by solving the constitutive equations, or by minimizing the 

potential energy. This work extends the potential energy minimization formulation in [26] to 

include a surface constraint. The quasistatic configuration of the catheter given external 

forces and actuation currents is calculated by minimizing the potential energy of the catheter 

subjected to the surface constraint as follows,

min
θ ∈ c

1
2θTKθ − ∑

i
Fi

T pi θ − ∑
j

B j θ Tμ j u j , (3a)

s.t..h θ ≤ 0. (3b)

The first term in the objective function (3a) is the potential energy due to the internal 

stiffness of the catheter, where K is a constant, positive definite spring stiffness matrix. The 

next term is the work done by external forces, where Fi is a conservative force acting on the 

catheter at pi(θ). The effect of gravity can also be expressed as conservative forces acting on 

the center of masses of the links. The last term is the summation of the work from the 

magnetic moments from the actuators [29], where Bj(θ) is the MRI’s magnetic field vector 

written in the jth actuator body frame, µj is the magnetic moment of the jth actuator 

expressed in its body frame, and uj are the currents sent to the jth actuator.

The surface is represented by the inequality constraint (3b). The constraint is defined such 

that when the catheter is in contact with the surface, h(θ) = 0, and when the catheter is not in 
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contact, h(θ) < 0. This inequality constraint makes it possible to use the optimization 

problem (3) to calculate the equilibrium configuration of the catheter both when it is in 

contact as well as in free space.

IV. MOTION PLANNING

Let the position of the catheter’s tip in the workspace be denoted by x ∈ ℝ3.The Jacobian of 

the mapping from actuations to tip positions can be written as a production the Jacobian of 

forward kinematics and the Jacobian of the quasistatic motion model using the chain rule as 

follows,

dx = ∂x
∂θ
Jk

∂θ
∂u
Jq

du, (4)

where Jk is the forward kinematics Jacobian, and Jq is the quasistatic Jacobian. The 

derivation of the forward kinematics and the quasistatic Jacobians are presented in Section 

IV-A and IV-B, respectively. Task-space motion planning of the catheter is presented in 

Section IV-C, where the aforementioned Jacobians, combined with the Jacobian of the 

surface, yield a linear relationship between the differential of the end-effector position of the 

surface and the differential of the actuation.

A. Forward Kinematics Jacobian

Recall that the configuration of a frame attached to the catheter can be written as a product 

of exponentials, as described in (2).

x
1 = e

ξ
∧

1e
ξ
∧

2e
ξ
∧

3 ⋅ ⋅ ⋅ e
ξ
∧

n
x0

1
, (5)

Where x ∈ ℝ3 is the position of the end-effector given all the joint angles, and x0 ∈ ℝ3 is the 

initial tip position when all the joint angles are zeros. Since the mapping from the joint 

angles to the end-effector position only depends on the kinematic model, its partial 

derivative can be calculated algebraically. To simplify the calculation, Jk is partitioned into 

columns as follows,

Jk = ∂x
∂θ1, 1

⋅ ⋅ ⋅ ∂x
∂θi, j

⋅ ⋅ ⋅ ∂x
∂θn, 3

, (6)

where i ϵ { 1, 2, . . ., n} is the joint number, and j ϵ { 1, 2, 3} is the jth degree of freedom of 

the joint. Each column of the right-hand side of (6) is obtained by differentiating (5) with 

respect to the corresponding joint angle as follows,
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∂x
∂θi, j

0
= e

ξ
∧

1 ⋅ ⋅ ⋅ e
ξ
∧

i − 1 ∂e
ξ
∧

i

∂θi, j
e

ξ
∧

i +1 ⋅ ⋅ ⋅ e
ξ
∧

n
x0

1
, (7a)

= e
ξ
∧

1 ⋅ ⋅ ⋅ e
ξ
∧

i − 1 ∂e
ξ
∧

i

∂θi, j
e−ξ

∧
i

ξ
∧

i, j

e
ξ
∧

ie
ξ
∧

i +1 ⋅ ⋅ ⋅ e
ξ
∧

n
x0

1
, (7b)

= e
ξ
∧

1 ⋅ ⋅ ⋅ e
ξ
∧

i − 1ξ
∧

i, je
ξ
∧

ie
ξ
∧

i +1 ⋅ ⋅ ⋅ e
ξ
∧

n
x0

1
, (7c)

e
ξ
∧

1 ⋅ ⋅ ⋅ e
ξ
∧

i − 1ξ
∧

i, je
−ξ

∧
i −1 ⋅ ⋅ ⋅ e−ξ

∧
1 x

1 , (7d)

= Ad
e

ξ
∧

1 ⋅ ⋅ ⋅ e
ξ
∧

i − 1
ξi, j

∧

x
1 ⋅ (7e)

B. Quasistatic Jacobian

The quasistatic Jacobian can be obtained from the Jacobian of the implicit function defined 

by (3). Let ℒ:𝒞 ℝ denote the Lagrangian of the optimization problem (3). Suppose θ is a 

(local) minimizer, then it satisfies the first-order optimality condition

∇ℒ θ = Kθ + N θ + ∇h θ λ − τ θ, u = 0, (8)

Where

N θ = − ∑
i

Fi
T ∂ pi/ ∂θ ,
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τ θ, u = ∑
j

μ j
T u j ∂B j/ ∂θ .

Define a vector-valued function f :𝒞 × 𝒰 ℝ3n as

f θ, u : = ∇ℒ θ = Kθ + N θ + ∇h θ λ − τ θ, u . (9)

Then (8) is simply f (θ, u) = 0, which defines the implicit function between θ and u. If ∂f /∂θ 
is nonsingular, then Jq can be calculated as follows,

Jq = ∂θ
∂u = − ∂ f

∂θ
−1 ∂ f

∂u . (10)

Note that ∂f /∂θ is simply the Hessian of the Lagrangian. The Hessian can be calculated 

using automatic differentiation, the finite difference method, or symbolic differentiation. In 

this work, the Jacobian of the Lagrangian is calculated analytically, and the Hessian is 

obtained by differentiating the Jacobian using the finite difference method. The other term 

on the right- hand-side of (10) is ∂f /∂u. Since the only term in f that is a function of u is τ, 

which is linear with respect to u (see Appendix A), hence ∂f /∂u is a matrix function of θ but 

not is independent of u.

C. Actuation Calculation

Let h(θ, y) = 0 denote the surface constraint with explicit dependency on the surface 

coordinates, denoted by y ∈ ℝ2. The tangent space of the constraint is defined by

∂h
∂θ dθ + ∂h

∂y dy = 0.

The constraint can be written as h(θ, y) = p(θ) - q(y) where p maps joint angles to tip 

positions in the workspace, and q maps surface coordinates to workspace position, i.e., x = 

p(θ) and x = q(y). Therefore, the forward kinematics Jacobian can be written as Jk = ∂p/∂θ = 

∂h/∂θ. Let the Jacobian of q be denoted by GT = ∂q/ ∂y = − ∂h/ ∂y, then the differential 

constraint above becomes

Jkdθ = GTdy . (11)

Substituting (10) into (11) yields the desired linear relationship

JkJqdu = GTdy .
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In the case that the actuators have more degrees of freedom than the task, it is possible to 

have an actuation that moves the catheter in such a way that the end-effector remains at the 

same position of the surface. This type of motion is known as internal motion. Let He be the 

matrix whose rows are in the null space of Jk and are mutually orthogonal amongst 

themselves, then the internal motion, denoted by dv, can be obtained from the following 

linear relationship,

Jk
He

Jqdu = GT 0
0 I

dy
dv

The redundancy of the actuation with respect to the task can be resolved by the following 

optimization problem,

min
du, dv

1
2 du 2 + γ dv 2 , (12a)

s.t.
Jk

He
Jqdu = GT 0

0 I
dy
du

, (12b)

where the desired tip motion on the surface is expressed as the constraint, and γ is the 

weight of the internal motion. Note that (12) is a quadratic programing, and consequently 

has a closed-form solution [30].

The task-space motion planning algorithm is summarized in Algorithm 1. The algorithm 

takes as inputs the initial joint angles (θ0), a sequence of via points on the desired end-

effector trajectory y1:n  , and a step size (σ). The algorithm iteratively drives the tip of the 

catheter towards the next via point in the sequence. Once the via point is reached, the 

algorithm moves on to the next via point. The algorithm works as follows. In Line 3, the

forward_kinematics

function calculates the end-effector position from the initial joint angles using the forward 

kinematics equation described in (2). The end-effector position is projected onto the surface 

coordinates in Line 4. The algorithm loops over all the via points between Lines 5 and 19. 

For each via point, the algorithm tries to bring the end- effector to the via point through a 

sequence of actuations. First, the end-effector motion, denoted by dy, is calculated in Line 6. 

The end-effector motion is compared to the step size in Line 7. If the end-effector motion is 

larger than a fraction of the step size, i.e., dy > ασ, 0 < α < 1, the algorithm continues to 

move the end-effector toward the via point, otherwise it continues to the next via point. 

Between Lines 8 to 10, the end- effector motion is normalized if it is larger than the step 

size. In Line 11, the
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inverse_kinematics

function calculates an actuation update, denoted by du, from dy by solving the optimization 

problem (12). A new actuation is calculated from the previous actuation and the actuation 

update in Lines 13. The

simulate

function in Line 14 integrates the equations of motion described in [27] with the new 

actuation to obtain a new joint angle vector. A new end-effector position in the spatial frame 

calculated from the new joint angle vector in Line 15 is projected onto the surface 

coordinates in Line 16, and a new end-effector motion is calculated from the new end- 

effector position in Line 17. Once all the via points are visited, the algorithm returns the 

resulting actuation sequence.

V. EXPERIMENTAL VALIDATION

A. Setup

The experimental setup is similar to the one reported in [26], with two notable changes. 

First, the catheter prototype in this work has two actuators, where each actuator has three 

mutually orthogonal coils. The body of the catheter is made of a silicone rubber tube with 

the outer diameter of 3.2 mm and the length of 104.0 mm (Part number: T2011, QOSINA). 

The coils are made of heavy insulated 38-gauge solid core enameled copper wire (Adapt 

Industries, LLC, Salisbury, MD, USA). The catheter is mounted on top of an aquarium that 

is placed on a foam pad. The other notable addition to the setup is a rectangular piece of 

acrylic mounted on the bottom of the aquarium that serves as the task space. Experiments 

are conducted with the catheter setup placed at the isocenter of a 3- T MRI scanner (Skyra, 

Siemens Medical Solutions, Erlangen, Germany). A 60 fps high definition camera with a 

resolution of 1080 1920 pixels (Flea3 FL3-U3–32S2C by Point Grey, Richmond, BC, 

Canada) is used to capture the images of the catheter during the experiments. For safety 

reasons, the camera is placed at the far end of the MRI suite, approximately 6 m away from 

the isocenter of the scanner. A mirror is placed on the foam pad next to the catheter at 

approximately 45 degree angle measured from the side of the aquarium. By placing the 

mirror at an approximately 45 degree angle, the mirror serves and a virtual camera that view 

the catheter from the side. The catheter setup is shown in Figure 3.
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Algorithm 1 Task‐Space Motion Planning Algorithm for the 
RoboticCatheter

1: procedure taskspace_plannining θ0, y1:n, σ

2: t = 0
3: xt = forward_kinematics θ0
4: yt = project Xt
5: for all i = 1, 2, ..., n do
6: dy = yi − yt
7: while dy > ασ do
8: if dy > σ then
9: dy = σ dy/ dy

10: end if
11: du = inverse_kinematics θt, dy

12: t = t + 1
13: ut = ut − 1 + du

14: θt = simulate θt − 1, ut

15: xt = forward_kinematics θt

16: yt = project xt
17: dy = yi − yt
18: end while
19: end for
20: return ut, ∀t

21: end procedure

Three trajectories, namely rectangular, rhomboid (diamond- shaped), and circular 

trajectories, are considered in the experiment. The rectangular and the rhomboid trajectories 

demonstrate the capability of the catheter to move in straight lines in different directions, 

while the circular trajectory represents a common trajectory found in applications such as 

catheter ablation. The trajectories are discretized into via points. The catheter is assumed to 

be perfectly straight initially, i.e., θi = 0, ∀i. Then the catheter moves toward the surface and 

make contact. Once the catheter is in contact with the surface, the catheter moves its tip 

toward the center of its workspace on the surface, then the catheter’s tip is driven along the 

desired trajectories with actuation trajectories generated using Algorithm 1. The PRB model 

used in the experiment has nine joints, where the two actuation coils are on individual links, 

and the rest of the catheter is divided equally into the remaining seven links. The step size in 

Algorithm 1 is set to 2 mm, which is slightly smaller than the outer diameter of the catheter. 

Nine links are chosen for its balanced trade-off between computation time and accuracy 

based on the previous work [31]. Algorithm 1 is implement in MATLAB on a computer 

running macOS 10.13.6 with 2.8 GHz Intel Core i7 CPU and 8 GB of memory. The position 

of the end-effector of the catheter on the surface is read from a piece graph paper with 2-mm 

grid affixed to the surface, as observed from the camera images.
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B. Results

The initial deflection of the catheter with zero actuation is often not perfectly straight, and it 

is difficult to accurately predict the initial deflection prior to the experiment. Consequently, 

the initial shape recorded during the experiment is estimated and included in the simulations 

as the shape that minimizes the potential energy with zero actuation. The results are shown 

in Figure 4, which compares the simulated trajectories of the catheter’s end-effector on the 

surface without initial deflection, the simulated trajectories where initial deflection is taken 

into account, and the actual trajectories obtained from the experiment. The root-mean-square 

errors between the observed trajectories and the simulated trajectories with initial deflection 

are 6.03 mm, 7.86 mm, and 7.68 mm for the rectangular, the rhomboid, and the circular 

trajectories, respectively. The trajectories take 13.8 s, 9.2 s, and 14.2 s to complete. While 

the errors are high compared to the human anatomy, it is to be expected since the trajectories 

are executed as open-loop trajectories, which are susceptible to offset and drift types of 

errors. Note that the errors are lower than the errors of the free-space trajectories of the 

previous prototype presented in [26]. The two main computational intensive tasks in 

Algorithm 1 are inverse kinematics in Line 11 and the simulation in Line 14. It takes 0.1330 

second on average to calculate the Jacobians and solve (12) for a new actuation in Line 11, 

and 1.045 second on average to simulate the catheter using MATLAB’s ode45.

A possible source of the offset error is the mismatch in the initial conditions of the catheter, 

such as the initial deflection of the catheter at rest, the pose of the surface etc., between the 

current experiments and the experiment in which the model parameters are obtained. The 

effect of the mismatch in the initial shape can be seen when comparing the trajectories 

computed prior to the experiment without the initial deflection and the trajectories computed 

with the initial deflection obtained from the experiment. Note that when the initial deflection 

is taken into account, the model predicts similar shifts along the x-axis in Figure 4. The error 

along the y-axis is likely due to the errors in the distance and the slope of the surface, which 

is mounted at the bottom of the aquarium independently of the catheter. A calibration routine 

executed at the beginning of each experiment will be useful in reducing such error and is a 

part of future work.

The model of the catheter is another possible source of both offset and drift errors. Since the 

PRB model approximates the continuum body of the catheter with discrete links, some offset 

between the model and the observed results is likely. The problem is further complicated 

with the surface, whose nonuniform friction coefficient can cause further drift when the 

trajectories are perform open-loop. However, the three trajectories in Figure 4 demonstrate 

that the Jacobian derived in Section IV can be used to drive the tip of the catheter on the 

surface in all directions. This means the Jacobian can be used in conjunction with a catheter 

localization algorithm as a closed-loop control system that regulates the tip of the catheter 

along the desired trajectory. Closed-loop control has been demonstrated to be effective in 

reducing the errors between desired and actual trajectories [14], [27]. Nevertheless, closed- 

loop control of the catheter requires real-time localization using MRI images, which is 

beyond the scope of this work.
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VI. CONCLUSIONS

This paper presents a motion planning method for the MRI- actuated continuum robot. The 

kinematics of the robot is modeled using the PRB model. The quasistatic motion model of 

the robot is formulated as a constrained potential energy minimization problem, where the 

task space is represented by an inequality constraint. The actuation trajectories that yield the 

desired surface trajectories are calculated using the differential surface constraint, the 

forward kinematics Jacobian, and the quasistatic Jacobian. Experimental results show that 

the motion planning method is capable of generating desired end- effector trajectories in the 

task space. While the experimental trajectories exhibit drift and offset errors, it is expected 

since the trajectories are executed as open-loop trajectories. The present work focuses on 

how to calculate the Jacobian for task-space motion and how to use the Jacobian to drive the 

catheter’s end-effector in desired directions. As a part of future work, a C++ implementation 

of the presented method will be integrated with real-time MRI localization for closed-loop 

control of the catheter. Once closed-loop control is achieved, a comprehensive validation 

with quantitative analysis will be performed.
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APPENDIX A

ACTUATION JOINT TORQUES

Consider the kth actuator. Let Ck ∈ ℝ3 × 3 denote the orientations of the actuator’s coils, 

Sk ∈ ℝ3 × 3 denote a diagonal matrix whose diagonal elements represent the total surface 

areas of the coils, and uk ∈ ℝ3 denote the currents applied to the coils. Then the magnetic 

moments from the actuator is µk = CkSkuk.

Next, we will show that the gradient of the work of the actuator’s magnetic moment in the 

MRI scanner’s magnetic field is precisely the joint torques due to the Lorentz force of the 

magnetic moment. In order to simplify the notations in this part of the derivation, only one 

actuator is considered and the index k is dropped. Let W (θ, u) denote the work due to the 

magnetic moment µb the magnetic field Bb, where the subscript b denotes the body frame 

(and the subscript s denotes the spatial frame). Let the orientation of the actuator with 

respect to the base frame be denoted by gsa(θ) ϵ SE(3), and the rotational part of gsa(θ) and 

gsa(0) are denoted by R and R0, respectively. The work of the magnetic moment is W = Bb
Tμb

The element of the gradient of W due to θi,j is given by,
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∂W
∂θi, j

=
∂Bb

T

∂θi, j
μb =

∂Bs
TR θ

∂θi, j
μb = Bs

T ∂R θ
∂θi, j

μb

= Bs
T e

θ1 ⋅ ⋅ ⋅ e
θi − 1 ∂e

θi

∂θi, j
e
θi +1 ⋅ ⋅ ⋅ e

θnR0 μb

= Bs
T e

θ1 ⋅ ⋅ ⋅ e
θi − 1 ∂e

θi

∂θi, j
e
−θi

ω∧ j, j

e
θie

θi +1 ⋅ ⋅ ⋅ e
θnR0 μb

= Bs
TRR−1 e

θ1 ⋅ ⋅ ⋅ e
θi − 1ω∧i, je

θi ⋅ ⋅ ⋅ e
θnR0 μb

= Bs
TR R0

−1 ⋅ ⋅ ⋅ e
−θiω∧i, je

θi ⋅ ⋅ ⋅ e
θnR0

ω∧i, j
†

μb

= Bb
Tω∧i, j

†
μb = Bb

T ωi, j
† × μb = ωi, j

† μb × Bb .

Note that ωi, j
†  is the rotational part of the body manipulator Jacobian [2]. So, the equation 

above can be written together with the translational part as

∂W
∂θi, j

= ξi, j
†T 0

μb × Bb
.

Therefore, the gradient of W can be written as a wrench due to the Lorentz of the magnetic 

moment acting on the actuator as follows,
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∂WT

∂θ =

ξ1, 1
†T

⋮

ξi, j
†T

⋮

ξn.3
†T

0
μb × Bb

= Jsa
bT 0

μb × Bb
,

Where Jsa
b  is the body manipulator Jacobian at the actuator [2], [26], [32]. Now let Wk(θ, uk) 

denote the work from the kth actuator, then the joint torques from the kth actuator is 

τk θ, uk = ∂Wk / ∂θ, and the total joint torques due to actuation is τ θ, u = k τk θ, uk . Since 

all of the operations is linear with respect to u, τ is also linear in u.
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Fig. 1: 
MRI-actuated catheter with two actuators. Each actuator has three mutually orthogonal coils 

that can generate magnetic moments in any direction. The cross products between the 

magnetic moments and the MRI scanner’s magnetic field are the torques that remotely steer 

the robot.
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Fig. 2: 
The MRI-actuated catheter with two actuators (right) and the corresponding PRB model 

(left).
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Fig. 3: 
Experimental setup.
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Fig. 4: 
Comparisons between the simulated trajectories without initial deflection (blue), with initial 

deflection (red), and the experimental (yellow) trajectories. The trajectories are expressed in 

the surface coordinates.
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