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ABSTRACT
Nanomaterials have gained a rapid increase in use in a variety of applications that pertain to many
aspects of human life. The majority of these innovations are centered on medical applications and a
range of industrial and environmental uses ranging from electronics to environmental remediation.
Despite the advantages of NPs, the knowledge of their toxicological behavior and their interactions with
the cellular machinery that determines cell fate is extremely limited. This review is an attempt to
summarize and increase our understanding of the mechanistic basis of nanomaterial interactions with
the cellular machinery that governs cell fate and activity. We review the mechanisms of NP-induced
necrosis, apoptosis and autophagy and potential implications of these pathways in nanomaterial-
induced outcomes.

Abbreviations: Ag, silver; CdTe, cadmium telluride; CNTs, carbon nanotubes; EC, endothelial cell; GFP,
green fluorescent protein; GO, graphene oxide; GSH, glutathione; HUVECs, human umbilical vein
endothelial cells; NP, nanoparticle; PEI, polyethylenimine; PVP, polyvinylpyrrolidone; QD, quantum dot;
ROS, reactive oxygen species; SiO2, silicon dioxide; SPIONs, superparamagnetic iron oxide nanoparticles;
SWCNT, single-walled carbon nanotubes; TiO2, titanium dioxide; USPION, ultra-small super paramagnetic
iron oxide; ZnO, zinc oxide.
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Introduction

The prefix ‘nano’ means dwarf in Greek, and the term ‘nano-
technology’ refers to advanced technologies on the nanometer
scale that present potentials to revolutionize many aspects of
human biology. Nanotechnology encompasses topics ranging
from nanodevices, nanosensors and nanorobots to nanome-
dicines. Nanoparticles (NPs) are defined as particles with at
least one dimension less than 100 nm. Nanomaterials demon-
strate high surface-to-volume ratios, which renders unlimited
surface modification and optical abilities [1–3]. Due to their
unique physico-chemical characteristics, NPs have attracted
huge attention in the field of nanomedicine. Advantages of
NPs in this context include their ability to easily penetrate
across cell barriers, preferential accumulation in specific orga-
nelles and cells, and theranostic (both therapy and diagnostic)
properties, as well as their capacity for fine tuning [4,5]. Given
these astonishing properties, NPs are under extensive investi-
gation in order to utilize them as a carrier for genes or drugs,
in imaging, for tissue engineering and even as single thera-
peutic agents to treat human diseases [6].

Despite these advantages, the interactions of NPs with living
cells are complex and still far from fully understood [3]. NPs not

only enter the cells at the site of deposition but can also reach
distant organs through a variety of mechanisms [7]. NPs from
many different compositions, such as metals, metal oxides, car-
bons, silica, and quantum dots show cytotoxic effects in different
biological systems [3,8–11]. NP-induced cytotoxic effects correlate
with NP composition, concentration, size, surface charge, surface
area, functionalization, dispersion states and protein corona
[11,12].

In this review, we discuss the interaction of NPs with cell
fate pathways (necrosis/necroptosis, apoptosis, and autop-
hagy) in order to provide a comprehensive state-of-the-art
review on their eventual adverse and/or positive effects in
human cells and on their therapeutic potentials in human
diseases.

Cell death: why and how?

Since the advent of nanotechnology, the pathophysiological and
possible cytotoxic effects of NPs are major concerns that have
resulted in uncertainties about their benefits [13]. On the one
hand, based on their doses and physico-chemical characteristics,
NPs have the capability of producing reactive oxygen species
(ROS) or otherwise initiating signaling pathways that in addition
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Table 1. Physico-chemical characteristics of nanoparticles affect necrosis.

Nanoparticles Particle size Shape Charge Dose Exposure time Cell lines/in vivo models
Major

outcomes Ref

Ag NPs 10–200 nm 1–50 µg/ml 4 h, 24 h L-929 fibroblast cells Necrosis and
apoptosis.

[110]

Ag NPs 15 nm EC50:
8.75 µg/ml

48 h Mouse spermatogonial
stem C18–4 cells

Reduction in
mitochondrial
function and
finally necrosis.

[111]

Ag NPs 7–20 nm 6.25–60 µg/ml 24 h Human fibrosarcoma HT-
1080 and skin/carcinoma
A431 cells

Reduced cell
viability,
oxidative
stress, necrosis.

[77]

Ag NPs 7–20 nm 25–100 µg/ml 24 h Primary mouse fibroblasts
and liver cells

Oxidative
stress and
necrosis at
high doses
(100 μg/mL in
primary
fibroblasts and
500 μg/mL in
primary liver
cells).

[112]

Ag NPs 30–50 nm Spherical, multi-
facetted or
slightly
elongated
shapes.

2.5–15 µg/ml 24 h A549 human lung
carcinoma epithelial-like
cell line

Increase in
necrosis/late
apoptosis

[113]

PVP-coated Ag
NPs

69 ± 3 nm Approximately
spherical, multi-
facetted, or
slightly
elongated
shapes.

0 to 7.5 µg/ml 0–24 h Human leukemia THP-1
cells

ROS-induced
apoptosis.

[76]

Au NPs 1.4 and 15 nm 100 mM 24 h, 48 h Human cervical cancer
HeLa cells

Oxidative
stress,
mitochondrial
damage and
triggered cell
death by
necrosis.

[82]

Au NPs 10–50 nm 10- and 20-nm
GNPs show
spherical shape
whereas the 50-
nm GNPs show
a hexagonal
shape.

50 or 100 µl 3 or 7 days Male Wistar-Kyoto rats Glutathione
depletion, ROS
generation,
and necrosis.

[114]

Au NPs 0.8–15 nm 30 to 56 µM 24 h, 48 h Connective tissue
fibroblasts, epithelial
cells, macrophages, and
melanoma cells

Rapid cell
death by
necrosis.

[83]

Au NPs 1.5 nm Positively
charged,
neutral,
and
negatively
charged.

10 µg/ml and
the neutral at
25 µg/ml.

- Human epidermal
keratinocyte HaCaT cells

Charged NPs
induce cell
death through
apoptosis
whereas
neutral NPs
lead to
necrosis.

[84]

Fullerene/C60 100 nm Spindle-like
shape.

0.25 and
1 μg/ml

24 h Rat glioma cell line C6
and the human glioma
cell line U251

Reactive
oxygen
species-
mediated
necrotic cell
damage.

[74]

Fullerene/C60 96.3 nm Nano-C60
(0.25 μg/ml) or
C60(OH)n
(250 μg/ml)

24 h L929 mouse fibroblast
cells

Oxidative
stress followed
by rapid
necrotic cell
death.

[115]

Fullerene/C60 291 and
282 nm

Net zero
charge on
the fullerol
in all
solvents.

0–50 μM 24 h Human lens epithelial
cells (HLE B-3)

Necrosis. [116]

(Continued )
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to regulating autophagy, can eventually modulate different cell
fates, including necrosis, necroptosis, apoptosis, and mitotic cata-
strophe (Figure 1 and Tables 1–3) [4,6]. Thus, understanding
nanotoxicity mechanisms is very important for the safe design of
NP-based systems.

On the other hand, there is emerging evidence that cytotoxic
potentials of NPs might be exploited in the treatment of multiple
diseases and disorders, because dysregulation of cell death path-
ways is a common feature of cancer, neurodegenerative and neu-
rological diseases [14,15] and thus cell death modulatory effects of

NPs may have therapeutic value [6,16]. Apoptosis, necrosis,
necroptosis and autophagy, are the focus of current research for
new therapeutic pathway discovery in human diseases.

Regulated cell death pathways

Necrosis

Necrosis has long been considered to be the result of non-
specific cell injury resulting from trauma. Accordingly, it was

Table 1. (Continued).

Nanoparticles Particle size Shape Charge Dose Exposure time Cell lines/in vivo models
Major

outcomes Ref

1 nm >25 μM 72 h Human embryonic lung
fibroblasts (HELFs)

Necrosis is the
dominant
mechanism of
death.

[117]

ZnO 20 nm 1, 5, 10, 40 or
80 m g/cm2

4 h, 24 h Murine macrophage RAW
264.7. cells, Primary
macrophages obtained
from bone marrow of
NCF1/p47 phox NADPH
oxidase- and NFE2L2-
deficient mice

Oxidative DNA
damage
followed with
necrosis.

[107]

ZnS NPs 80–120 nm Symmetric,
spherical.

Negative
surface
charge.

25 and 50 μg/
ml

24 h Human acute myeloid
leukemia KG1a cells

Disruption of
the
mitochondrial
membrane and
ATP depletion
followed by
necrosis.

[118]

ZnO NPs 40–100 nm 10, 15, 20, 25,
30 μg/mL

12 h, 24 h SH-SY5Y human
neuroblastoma

Necrosis by
LOX-mediated
ROS
production
elevation.

[119]

ZnO NPs <150 nm 15, 30, 100 μg/
mL

24, 48, 72, 96 h Human epidermal
keratinocyte HaCaT cells
and human cervical
cancer HeLa cells

Acute
cytoskeletal
collapse that
triggers
necrosis.

[109]

Realgar quantum
dots (RQDs)

5.48 nm 10, 20, 40, 80,
and 160 µg/ml

48 h Human endometrial
cancer JEC cells

ER stress- or
mitochondrial-
dependent
apoptosis and
necrosis.

[120]

Ag(2)S QDs 5.4 nm Negative
charge.

6.25,12.5, 25,
50 and 100 µg/
ml

72 h L929 mouse fibroblast
cells

ROS-
dependent
apoptosis/
necrosis.

[121]

Cationic quantum
dots

16 and 9 nm Cationic. Up to 1.2 μM 24 h Human cervical cancer
HeLa cells

Physical cell
membrane
rupture/
necrosis that
can lead to
inflammation
and
subsequent
cell death.

[122]

Realgar quantum
dots

5.48 ± 1.09 nm 20, 40 and
80 μg/ml

6 h Human hepatocellular
HepG2 cells and human
normal liver (L02) cells

Apoptosis and
necrosis.

[123]

Si/SiO2 quantum
dots

6 and 8 nm Spherical. 25 and 200 μg/
mL

24–72 h Lung fibroblast cells MRC-
5 cell line

Apoptosis rate
was much
higher than
the necrosis
rate.

[124]

CdTe quantum
dots

2–10 nm Negative. 0, 25, 50, 100,
200 nmol/L

24 h Human embryonic kidney
cells (HEK293) and human
cervical cancer HeLa cells

Mitochondrial
permeability
transition
(MPT) and
necrosis.

[108]
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l

18
h

A3
75

hu
m
an

m
el
an
om

a
ce
ll
lin
e

[1
99
]

Fu
lle
re
ne
/

C6
0

96
nm

in
PB
S,

14
2
nm

in
D
M
EM

Po
ly
hy
dr
ox
yl
at
ed

(fu
lle
re
no

ls
,C

60
[O
H
]n
)

10
–2
00

µM
48
,7

2
h

Lu
ng

ca
rc
in
om

a
A5

49
ce
ll
lin
e

N
ot

cy
to
to
xi
c.

An
tio

xi
da
nt

th
ro
ug

h
in
cr
ea
se

in
N
FE
2L
2.

[2
00
]

C6
0-
bi
s
(N
,N
-

di
m
et
hy
lp
yr
ro
lid
in
iu
m

io
di
de
)

H
L-
60

pr
om

ye
lo
cy
tic

le
uk
em

ia
ce
ll
lin
e

[2
01
]

hy
dr
od

yn
am

ic
si
ze
s
(r
ad
iu
s)
w
er
e

4.
7
an
d
40
.1

nm

H
yd
ro
xy
la
te
d
fu
lle
re
ne

(fu
lle
ro
l)

1,
10

an
d
10
0
µg

/m
l

Ca
en
or
ha
bd
iti
s
el
eg
an
s

[2
02
]

15
0
nm

C6
0
(C
[C
O
O
H
]

2)
2

Ce
re
br
al
m
ic
ro
ve
ss
el

en
do

th
el
ia
lc
el
ls

p-
M
AP

K/
JN
K,

ac
tiv
at
io
n
of

AP
-1

D
ec
re
as
e
in

ap
op

to
si
s.

[2
03
]

(C
on

tin
ue
d
)
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Ta
bl
e
2.

(C
on

tin
ue
d)
.

N
Ps

Si
ze

Sh
ap
e

Fu
nc
tio

na
lg

ro
up

s
D
os
e

Ti
m
e
of

ex
po

su
re

Ce
ll
m
od

el
M
aj
or

ou
tc
om

es
Re
f

G
ra
ph

en
e

G
O
:1

0
nm

~
1
nm

th
ic
kn
es
s

na
no

sh
ee
ts

[2
04
]

Th
ic
kn
es
s:

G
O
:0

.6
nm

rG
O
:0

.9
nm

Si
ze
:

G
O
:2

19
nm

rG
O
:1

22
.4

nm

na
no

sh
ee
ts

0,
10
,2

0,
40
,6

0,
80
,

an
d
10
0
µg

/m
l

6,
12
,2

4,
48

h
Ph

ae
oc
hr
om

oc
yt
om

a
(P
C1
2)

ce
lls

Ce
ll
cy
cl
e
ar
re
st
.

[2
05
]

3.
12
5–
10
0
µg

/m
l

24
,4

8
h

O
st
eo
sa
rc
om

a
ce
ll
lin
es
,H

O
S
an
d

KH
O
S

[2
06
]

G
Q
D
s

1.
5–
5.
5
nm

(m
ea
n:

3.
03

nm
)

1–
20
0
µg

/m
l

24
,4

8
h

TH
P-
1
hu

m
an

m
on

oc
yt
ic
ce
ll
lin
e

RO
S
pr
od

uc
tio

n.
In
cr
ea
se

in
BA

X,
BA

D
,B

EC
N
1,

an
d
LC
3-
I/I
I.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
07
]

Q
ua
nt
um

D
ot
s

2.
2
±
0.
25

nm
3.
5
±
0.
49

nm
Cd

Te
Q
D
s

80
μ
g/
m
l

24
h

L9
29

m
ou

se
fib

ro
bl
as
ts

RO
S
pr
od

uc
tio

n.
U
pr
eg
ul
at
io
n
of

M
AP

K/
p3
8,

M
AP

K/
JN
K,

M
AP

K/
ER
K.

[2
08
]

2.
2
nm

Cd
Se

Q
D
s

2.
2
nm

Cd
Te

Q
D
s

3.
5
nm

Cd
Te

Q
D
s

5.
85
–1
50

μg
/m

l
24

h
L9
29

m
ou

se
fib

ro
bl
as
ts

O
xi
da
tiv
e
st
re
ss
.

G
en
ot
ox
ic
ity
.

[2
09
]

Re
al
ga
r
Q
D
:

5.
48

±
1.
09

nm
7.
5–
60

µg
/m

l
6
h

H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls
,L
02

no
rm

al
liv
er

ce
ll
lin
e

U
pr
eg
ul
at
io
n
of

BA
X.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
10
]

7.
3
±
1.
2
nm

Cd
Te
-Q
D
s

0.
00
1–
10

µg
/m

l
24

h
H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

RO
S
pr
od

uc
tio

n.
U
pr
eg
ul
at
io
n
of

M
AP

K/
p3
8,

M
AP

K/
ER
K,

M
AP

K/
JN
K.

[2
11
]

6.
0
±
0.
5-
nm

Cu
O
Q
D
s

5–
20

µg
/m

l
8,

16
,2

4
h

C2
C1
2
m
yo
bl
as
ts

[2
12
]

2.
0
nm

to
2.
5
nm

Sp
he
ric
al

co
re
/

sh
el
l

Cd
Se

Q
D
s

0.
6–
9.
6
µg

/m
l

M
ou

se
ep
id
er
m
al

ce
lls

(J
B6

ce
lls
)

U
pr
eg
ul
at
io
n
of

AI
F.

G
1/
S
ar
re
st
.

[2
13
]

Re
al
ga
r
Q
D
s:

5.
48

±
1.
09

nm
Re
al
ga
r
(A
s4
S4
)

10
–1
60

µg
/m

l
48

h
H
um

an
en
do

m
et
ria
lc
an
ce
r
JE
C
ce
lls

U
pr
eg
ul
at
io
n
of

H
SP
A5
/H
SP
A5

(g
en
e/
pr
ot
ei
n)
.

ER
st
re
ss
.

[1
20
]

3.
5
nm

Cd
Se

Q
D

15
0
an
d
30
0
nM

IM
R-
32

hu
m
an

ne
ur
ob

la
st
om

a
ce
ll
lin
e

U
pr
eg
ul
at
io
n
of

BA
X
an
d
p-
M
AP

K/
JN
K.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
,p

-M
AP

K/
ER
K,

H
SP
90
,

RA
F1
,R

AS
.

[2
15
]

Iro
n
O
xi
de

25
nm

fo
r
24

h
25
,5

0
an
d
10
0
g/
m
l

A4
31

hu
m
an

ep
id
er
m
oi
d
ca
rc
in
om

a
an
d
lu
ng

ca
rc
in
om

a
A5

49
ce
ll
lin
e

[2
16
]

21
.5

nm
D
SP
E-
PE
G
m
ic
el
le
s

2,
3,

7
an
d
14

da
ys

5
m
g
Fe
/k
g
bw

an
d

15
m
g
Fe
/k
g
bw

Ra
t
lu
ng

tis
su
e

U
pr
eg
ul
at
io
n
of

BA
X.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
17
]

41
.5

nm
M
ag
ne
tic

iro
n

ox
id
e

na
no

pa
rt
ic
le
s
(M

-
Fe
N
Ps
)

24
h

6.
25
,1

2.
5,

25
,a
nd

50
μg

/m
l

RA
W
26
4.
7
m
ac
ro
ph

ag
e
ce
ll
lin
e

U
pr
eg
ul
at
io
n
of

BC
L2
,S
Q
ST
M
1,

LC
3,

ER
N
1,

p-
ER
N
1,

D
D
IT
3,

an
d
SO

D
2.

D
ow

nr
eg
ul
at
io
n
of

BE
CN

1
an
d
BA

X.

[2
18
]

Co
ld

at
m
os
ph

er
ic

pl
as
m
a
an
d
iro

n
na
no

pa
rt
ic
le
s

24
h

1.
48
–7
50

pp
m

H
um

an
br
ea
st
ca
nc
er

ce
lls

(M
CF
-7
)

U
pr
eg
ul
at
io
n
of

BA
X.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
19
]

24
,4

8
h

10
,3

0,
60
,a
nd

12
0
μg

/m
l

H
um

an
br
ea
st
ca
nc
er

ce
lls

(M
CF
-7
)

[2
20
]

Fe
3O

4
24

h
10
0
μg

/m
l

H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

an
d

lu
ng

ca
rc
in
om

a
A5

49
ce
ll
lin
e

U
pr
eg
ul
at
io
n
of

TP
53
.

[2
21
]

(C
on

tin
ue
d
)
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Ta
bl
e
2.

(C
on

tin
ue
d)
.

N
Ps

Si
ze

Sh
ap
e

Fu
nc
tio

na
lg

ro
up

s
D
os
e

Ti
m
e
of

ex
po

su
re

Ce
ll
m
od

el
M
aj
or

ou
tc
om

es
Re
f

Se
N
Ps

Ch
-S
eN

Ps
40
–6
0
nm

Sp
he
ric
al

0.
1–
5
m
g/
l

72
h

H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

Sl
ow

m
ig
ra
tio

n
ra
te
.

N
o
ap
op

to
si
s
in
du

ct
io
n.

Ce
ll
cy
cl
e
ar
re
st

at
S-
G
2/
M

ph
as
e.

In
hi
bi
tio

n
of

CD
K1
.

[2
22
]

Tf
-S
eN

Ps
72
h

M
CF
-7

br
ea
st
ca
nc
er

ce
lls
,

H
um

an
he
pa
to
m
a
H
ep
G
2
ce
lls
,A

37
5

hu
m
an

m
el
an
om

a
ce
ll
lin
e,
H
U
VE
Cs

RO
S
pr
od

uc
tio

n.
[2
23
]

Sp
he
ric
al

80
µg

/m
l

H
K-
2
no

rm
al

hu
m
an

ki
dn

ey
ce
lls

H
ig
h
m
ito

ch
on

dr
ia
la
ct
iv
ity
.

N
o
cy
to
to
xi
ci
ty
.

[2
24
]

10
–2
0
(1
2.
4)

nm
0–
10
0
µM

24
h

48
h

Lu
ng

ca
rc
in
om

a
A5

49
ce
ll
lin
e,
M
CF
-7

br
ea
st
ca
nc
er

ce
lls
,a
nd

ro
ge
n-

in
de
pe
nd

en
t

pr
os
ta
te

ca
nc
er

ce
ll
D
U
-1
45
,

an
dr
og

en
-d
ep
en
de
nt

LN
Ca
P,

em
br
yo
ni
c
ki
dn

ey
H
EK
-2
39

Su
pp

re
ss
io
n
of

AR
(a
nd

ro
ge
n
re
ce
pt
or
)
th
ro
ug

h
ph

os
ph

or
yl
at
io
n
of

AK
T.

[2
25
]

50
nm

Ag
gr
eg
at
e:

44
2
nm

Sp
he
ric
al

4–
20

µg
/m

l
72

h
H
um

an
ce
rv
ic
al
ca
nc
er

H
eL
a
ce
lls
,H

K-
2
no

rm
al

hu
m
an

ki
dn

ey
ce
lls

[2
26
]

Si
lic
a

19
,4

3,
68

nm
10
0
μ
g/
m
l

24
h

H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

U
pr
eg
ul
at
io
n
of

M
AP

K/
JN
K
an
d
TP
53
.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
27
]

15
,3

0
nm

10
an
d
15

μg
/m

l
24

h
H
aC
aT

ke
ra
tin

oc
yt
es

U
pr
eg
ul
at
io
n
of

SE
RP
IN
B5

[2
28
]

21
nm

20
0–
60
0
μg

/m
l

12
&
24

h
L0
2
no

rm
al

liv
er

ce
ll
lin
e

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
29
]

20
nm

50
–2
00

μg
/m

l
24

h
H
U
VE
Cs

U
pr
eg
ul
at
io
n
of

M
AP

K/
JN
K
an
d
TP
53
.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
30
]

20
nm

16
0
an
d
32
0
μ
g/
m
l

24
h

H
um

a
he
pa
to
m
a
H
ep
G
2
Ce
lls

U
pr
eg
ul
at
io
n
of

TP
53
.

[2
31
]

20
nm

1
m
g/
m
l

24
h

Bu
ffa
lo

ra
t
liv
er

ce
lls

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
32
]

14
nm

1–
20
0
μg

/m
l

24
h

H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[1
32
]

15
nm

25
–2
00

μg
/m

l
72

h
Ep
id
er
m
oi
d
ca
rc
in
om

a
A4

31
ce
lls

[2
33
]

20
nm

62
.5
–2
50

μg
/m

l
48

h
H
um

an
he
pa
tic

ce
ll
lin
e
(H
L-
77
02
)

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
34
]

43
nm

25
–1
00

μg
/m

l
24

h
H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

Re
le
as
e
of

CY
CS

in
to

th
e
cy
to
so
l.

D
ow

nr
eg
ul
at
io
n
of

BC
L2
.

[2
35
]

(C
on

tin
ue
d
)
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Ta
bl
e
2.

(C
on

tin
ue
d)
.

N
Ps

Si
ze

Sh
ap
e

Fu
nc
tio

na
lg

ro
up

s
D
os
e

Ti
m
e
of

ex
po

su
re

Ce
ll
m
od

el
M
aj
or

ou
tc
om

es
Re
f

Zn
O

21
,3

4
nm

15
μ
g/
m
l

24
h

H
um

an
he
pa
to
m
a
H
ep
G
2
ce
lls
,l
un

g
ca
rc
in
om

a
A5

49
ce
ll
lin
e,
hu

m
an

br
on

ch
ia
le

pi
th
el
ia
lB

EA
S-
2B

ce
lls

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
36
]

22
.5

nm
20

an
d
25

μg
/m

l
24

h
BJ

hu
m
an

ne
on

at
al
fo
re
sk
in

TP
53

(a
ft
er

TP
53

kn
oc
kd
ow

n,
th
e
ce
lls

be
co
m
e

m
or
e
re
si
st
an
t
to

N
P-
in
du

ce
d
ce
ll
de
at
h,

an
d

th
ey

in
cr
ea
se

ce
ll-
cy
cl
e
pr
og

re
ss
io
n)
.

[2
37
]

23
,4

7
nm

2.
5,

10
,2

5,
50
,a
nd

10
0
μ
g/
m
l

4,
24

h
H
um

an
de
rm

al
fib

ro
bl
as
t

U
pr
eg
ul
at
io
n
of

M
AP

K/
p3
8
an
d
TP
53
.

[2
38
]

30
nm

20
μ
g/
m
l

12
h

H
um

an
he
pa
to
m
a
H
ep
G
2
Ce
lls

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
39
]

17
nm

5,
10
,a
nd

20
μg

/m
l

24
–4
8
h

H
um

an
sk
in

m
el
an
om

a
(A
37
5)

[2
40
]

52
nm

5,
10
,2

5,
50

an
d

10
0
μ
g/
m
l

24
–4
8
h

Lu
ng

ca
rc
in
om

a
A5

49
ce
ll
lin
e

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BI
RC

5/
su
rv
iv
in

an
d
BC

L2
.

[1
34
]

40
nm

at
60

m
g/
L,

an
d
60

nm
at

12
0
m
g/
L

60
,9

0,
or

12
0
m
g/
L

na
no

-Z
nO

96
hp

f
Ze
br
af
is
h
em

br
yo
s

[2
41
]

20
nm

30
μ
g/
m
l

12
h

H
um

an
ov
ar
ia
n
ca
nc
er

ce
lls

(S
KO

V3
)

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
42
]

70
nm

8,
15
,2
5
an
d
50

μ
g/
m
l
12

h
H
um

an
ao
rt
ic
en
do

th
el
ia
lc
el
ls

U
pr
eg
ul
at
io
n
of

BA
X
an
d
FA

S.
D
ow

nr
eg
ul
at
io
n

of
BC

L2
.

[2
43
]

60
nm

0,
2.
5,
5.
0
an
d
10
.0
μ
g/

m
l

2
h

Re
tin

al
ga
ng

lio
n
RG

C-
5
ce
lls

[2
44
]

13
nm

50
μ
g/
m
l

24
h

H
um

an
he
pa
to
m
a
H
ep
G
2
ce
lls

U
pr
eg
ul
at
io
n
of

BA
X
an
d
TP
53
.D

ow
nr
eg
ul
at
io
n

of
BC

L2
.

[2
45
]

AUTOPHAGY 11



Ta
bl
e
3.

Ph
ys
ic
o-
ch
em

ic
al
ch
ar
ac
te
ris
tic
s
of

na
no

pa
rt
ic
le
s
af
fe
ct

au
to
ph

ag
y.

Ph
ys
io
ch
em

ic
al

pr
op

er
tie
s

D
os
e
an
d
tim

e
of

ex
po

su
re

Si
gn

al
in
g
pa
th
w
ay
s/
m
ec
ha
ni
sm

N
an
om

at
er
ia
ls

Si
ze

H
yd
ro
-

dy
na
m
ic

si
ze

Sh
ap
e

Ch
ar
ge
/z
et
a

po
te
nt
ia
l

Fu
nc
tio

na
l

gr
ou

ps
D
os
e

Ti
m
e

(h
)

Ce
ll
m
od

el
s

U
pr
eg
ul
at
ed

D
ow

nr
eg
ul
at
ed

Au
to
ph

ag
y

flu
x
or

bl
oc
ka
ge

Re
f

Ag
N
Ps

8–
14

nm
Sp
he
re

-
PV

P
8
µg

/m
l;

do
se

de
pe
nd

en
t

24
M
ur
in
e
IL
3-
de
pe
nd

en
t
pr
o-
B

ce
ll
lin
e
(B
a/
F3

ce
lls
)

LC
3-
II,
RO

S
SQ
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viewed as being primarily accidental and an uncontrolled type
of cell death that was not driven by specific signaling events.
Various pathological conditions, such as trauma, exposure to
toxins, ischemia, viral or bacterial infection and neurodegen-
erative disorders can induce necrotic cell death.

There is initially a sublethal phase in the pathogenesis of cell
injury fromwhich a cell can recover or, alternatively, cellsmaypass
a ‘point of no return’ (permeabilization of the mitochondrial
membranes) [17]. Morphologically, the cell displays a series of
changes in the early (reversible) stage that includes ‘change of
hydropic’, ‘degeneration of feathery’, ‘cloudy swelling’ or ‘vacuolar
degeneration’ [9,14]. The point of no return is associated with a
crucial separation between the outer and inner mitochondrial
membranes followed by the irreversible loss of oxidative phos-
phorylation capacity [17]. Finally, in the late stages of necrosis, the
cytoplasm loses contents and takes on a homogeneous eosinophi-
lic appearance (as with ground glass), irregularities in the mem-
brane of cytoplasmic organelles, mitochondrial swelling, increased
matrix density, the formation of vacuoles, and the deposit of
calcium phosphates. At the nuclear level, chromatin patterns are
seen with pyknosis (chromatic condensation), karyorrhexis
(nuclear fragmentation) and karyolysis (complete chromatin dis-
ruption) [18,19].

Necroptosis
Recent research has revealed the existence of caspase-independent
cell death pathways that occur in response to a wide range of
stimuli, and are initiated as a result of specific signaling events
[20]. In this context, regulated necrosis (necroptosis) is a complex
process that is not triggered by one signaling cascade but rather is
caused by the interactions resulting from the activation of several
signaling pathways; in turn, these various pathways may be pro-
voked by a wide range of stimuli (Figure 2). The term necroptosis

is one form of necrosis that involves death receptor activation and
that can be inhibited by blocking the kinase activity of RIPK1
(receptor interacting serine/threonine kinase 1) [21,22]. In other
words, necroptosis is a regulated process of cell death that involves
ligand binding to TNF (tumor necrosis factor) death domain
receptors (Figure 2). A common element of these receptor systems
are proteins containing a RIPK homology interaction motif that
recruits and activates RIPK3, leading to the activation of MLKL
(mixed lineage kinase domain like pseudokinase). With regard to
the TNF family members, the initiator is RIPK1; TICAM1/TRFI
plays this role for TLR3 (toll like receptor 3)-TLR4, whereas for
ZBP1/DAI (Z-DNA binding protein 1), there is a RIPK homology
interaction motif domain within the cytosolic sensor [23]. Entry
into necroptosis can occur as part of many human pathologies
ranging fromviral infections toneuronal excitotoxicity, which lead
to neurological disorders such as Huntington, Parkinson, and
Alzheimer diseases [24]. The same ligands that can activate apop-
tosis including TNF/TNFα, FASLG/FasL, and TNFSF10/TRAIL
(TNF superfamily member 10), can induce necroptosis [25], typi-
cally through the action of RIPK1 andRIPK3 [26]. RIPK3 interacts
with andmodulates RIPK1 kinase activity; RIPK1 in the context of
a RIPK1-RIPK3 complex (necrosome) activates RIPK3, which in
turn activates MLKL to trigger necroptosis. A wide range of
necrotic mediators are activated through RIP1 kinase activity. In
other cases, the same mediators can be activated by the triggering
of TLR3, TLR4 and NLRP33 or by DNA damage [27].

Apoptosis

The concept of apoptosis was first introduced to describe a
morphologically distinct type of cell death that occurs in
hepatocytes under physiological conditions [28,29].
Morphological signs of this type of cell death are described

Figure 1. NPs, based on their doses and physico-chemical characteristics, can modulate different cell fates including necrosis, apoptosis, and autophagy. (a)
Nanoparticles can induce cell death or foster cell survival. (b) Physicochemical properties of nanoparticles affect cell fate.
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as membrane blebbing, cell shrinking, chromatin condensa-
tion and inter-nucleosomal DNA fragmentation, and forma-
tion of small vesicles named apoptotic bodies (Figure 3)
[30,31]. In particular, a plasma membrane phosphatidylserine
flip-flop from the inner layer to the outer side represents the
signal that is detected by macrophages for engulfing apoptotic
cells [29,32].

Mechanism(s) of apoptosis in mammalian cells
Apoptosis occurs by 3 distinct pathways, involving death
receptors, mitochondria, or the endoplasmic reticulum (ER)
(Figure 3) [29–34]. The activation of effector cysteinyl aspar-
tate proteases (caspases), including CASP8 (caspase 8),
CASP9, and CASP12 lead in turn to executor enzymes
CASP3, CASP6 and CASP7 [35]. All morphological and bio-
chemical changes related to apoptosis are mediated by these
caspases.

In the death receptor or extrinsic apoptotic pathway, the
superfamily of death receptor transmembrane proteins,
including TNFRSF1A/TNFR1 (TNF receptor superfamily
member 1A), FAS/CD95 (Fas cell surface death receptor),
TNFRSF10A/TRAILR-1 (TNF receptor superfamily member

10a) and TNFRSF10B/TRAIL-R2 mediate the death signaling.
Upon ligand binding, trimerization and clustering of recep-
tors occurs to recruit adapter proteins such as FADD (Fas
associated via death domain) and facilitates their binding to
proCASP8 to form the death-inducing signaling complex/
DISC [30–32,34]. Autocatalytic activation of CASP8 leads to
cleavage and activation of CASP3, resulting in initiating the
execution phase of apoptosis (Figure 3).

The intrinsic pathway of apoptosis is initiated bymitochondrial
membrane permeabilization, various types of oxidative stress
including hypoxia, DNA damage, and growth-factor deprivation
[36]. Various members of the BCL2 superfamily of proteins can
control mitochondrial integrity. These proteins are classified as
pro-apoptotic and anti-apoptotic. BAX, BID, BAK1, BAD,
PMAIP1/Noxa, and BBC3/Puma aremembers of the pro-apopto-
tic family, and BCL2, BCL2L1/Bcl-xl, MCL1, and BCL2A1 are
members of the anti-apoptotic family proteins [37]. Pro-apoptotic
BAX and BAK1 dimerize, and insert into the outer mitochondrial
membrane, triggering the intrinsic pathway of apoptosis.
Following mitochondrial permeabilization, CYCS (cytochrome c,
somatic), is released into the cytosol, where it binds to APAF1
(apoptotic peptidase activating factor 1) that starts the formation

Figure 2. Signaling pathways that induce necroptosis. During necroptosis, different stimuli are sensed by the cell receptor apoptotic signaling pathway including,
TNF/TNFα, FASLG/FasL, and TNFSF10/TRAIL that subsequently lead to the activation of RIPK1 and RIPK3 kinases. The process is followed through different signaling
pathways, such as ROS generation, mitochondrial hyperpolarization, lysosomal impairment, and finally ends up with signs of necrotic cell death. NPs can induce
necroptosis by stimulation of DNA damage and organelle dysfunctions as well as ROS production.
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of the apoptosome [38]. The apoptosome aids in the recruitment
and activation of CASP9, which subsequently activates the down-
stream caspases CASP3, CASP6, and CASP7, and ultimately leads
to apoptosis [30,31,34,39].

The third pathway of apoptosis is activated by various
injuries from ER stressors. To cope with the ER stress, an
adaptive response—the unfolded protein response (UPR)—is
activated, and if the stress cannot be resolved the UPR leads to
apoptosis [33,34,40]. It is thought that ER-induced apoptosis
is mediated through activation of CASP12 in rodents
(Figure 3). The human homolog of CASP12 was silenced
during evolution and CASP4 may fulfill its function. ER-
resident BCL2-family proteins regulate apoptosis through
either direct or indirect (ER Ca2+ signaling) pathways [33,34].

Induction of apoptosis
It has become evident that there is complex and close cross-
talk between different apoptotic pathways. For example, the
extrinsic pathway can activate the mitochondrial pathway,
and alternatively the cell death receptor pathway may active

the intrinsic pathway of apoptosis. This amplification loop
occurs by the CASP8-mediated cleavage of BID, a pro-apop-
totic BCL2 family protein [41]. Also, recent evidence suggest
that BBC3/Puma and PMAIP1/Noxa both contribute to ER-
mediated apoptosis via crosstalk with the mitochondrial apop-
totic pathway [32,40].

A wide variety of stimuli can induce apoptosis [42,43].
These include different physico-chemical stresses such as
chemicals, DNA damaging agents, removal of nutrients,
free radical-generating compounds (e.g., H2O2), oxygen,
certain growth factors, and pro-inflammatory cytokines,
in addition to normal physiological processes such as
development and aging [43–49]. Some chemicals play a
role in activating pro-apoptotic BCL2 members such as
BAX or BAK1 [41,50–52]. ROS—including hydrogen per-
oxide (H2O2), free hydroxyl radicals (OH•), superoxide
anions (O2

•-), and nitric oxide (NO•), as well as new
species produced by combinations of ROS (i.e., NO• and
O2•-)—also have a major role in this process [53–57]. The
particular response depends on the specific stimuli, which

Figure 3. Signaling pathways by which NPs induce apoptosis. Apoptosis is mediated through 3 main apoptotic pathways including cell receptor, mitochondria and ER, that
converge upon activating caspases. Mitochondria are central during apoptosis and can act as amplifiers of the cell receptor pathway through CASP8-mediated BID clevage
(truncated BID, tBID) and BAX or BAK1 activation. NPs can induce apoptosis via organelle dysfunction, ROS generation, ER stress and DNA damage.
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will in turn result in the production of different ROS
species [58].

Autophagy

Autophagy definition and classification

Autophagy is primarily an adaptive process in cells, serving a
cytoprotective function with the goal of survival under conditions
of nutrient starvation and ATP deficiency. There are 2 fundamen-
tal types of autophagy, selective and nonselective; the selective
process canbe further categorized basedon the cargo andmechan-
ism of sequestration. Briefly, macroautophagy is the best charac-
terized and perhaps the primary autophagic pathway (Figure 4). In
this process, cytoplasmic cargos are sequestered through the action
of a phagophore, which expands and matures to form a double-
membrane vesicle (autophagosome). The autophagosome may
fuse with an endosome and ultimately with a lysosome (or the
vacuole in yeast or plants) to form an autolysosome. In micro-
autophagy the cargo is directly engulfed by protrusion and/or
septation of the lysosome/vacuole membrane. Macroautophagy
in particular can be nonselective, but it can also be highly selective,
whereas microautophagy has been characterized primarily as a

selective process. The selectivity of macroautophagy depends on
receptor proteins that typically bind ligands on the target, or are
integral within the target membrane. A scaffold or adaptor then
links the receptor with the autophagic machinery, usually via
interaction with an Atg8-family protein, providing a physical
connection with the phagophore. The type of sequestered cargo
is used as the basis for naming the different types of selective
autophagy, such as mitophagy and pexophagy for the selective
autophagic degradation ofmitochondria andperoxisomes, respec-
tively. There are several models formitophagy inmammalian cells
involving different receptor proteins including BNIP3, BNIP3L/
NIX, FUNDC1 and PRKN/PARK2/Parkin, depending on the
stress condition and cell type [59]. There are also distinct types
of selective autophagy that use protein machinery that does not
overlap with that used for macroautophagy or microautophagy.
One example of such a process is chaperone-mediated autophagy
(CMA). During CMA, which is induced as a secondary starvation
response after macroautophagy, cytosolic proteins with a particu-
lar recognition motif bind the HSPA8/HSC70 chaperone leading
to unfolding (which is one significant distinction relative to
macroautophagy). The unfolded substrates are translocated
directly across the lysosome surface through a channel formed
by LAMP2A (lysosomal associated membrane protein 2A) in a

Figure 4. Autophagy signaling pathways induced by NPs. During autophagy, specific intracellular cargo is sequestered by phagophores. Autophagy is initiated by the
activation of ULK1 and subsequent induction of a nucleation complex, including the class III PtdIns3K. Maturation and elongation require conjugation of ATG12 to
ATG5, and of Atg8-family proteins including LC3 to phosphatidylethanolamine. The completed phagophore forms an autophagosome; subsequent fusion with the
lysosome, releases its contents into the lumen where the cargo is degraded and the resulting macromolecules are released back into the cytoplasm. Autophagy
induction may lead to cell survival or cell death, depending on the cell content or type of stimuli. NPs can induce autophagic cell death through modulation of the
MTOR pathway or may trigger autophagy blockage via lysosomal impairment.
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process that involves lumenal HSPA8; the substrate protein is
subsequently degraded [60]. The remainder of this review focuses
on macroautophagy, which we refer to as autophagy.

Molecular signaling pathways towards autophagy

There are various molecular signaling pathways that regulate
the induction and magnitude of autophagy. Some of the
principle players include MTOR (mechanistic target of rapa-
mycin kinase), which is the primary negative regulator of
autophagy, and 2 autophagy-promoting kinases, 5ʹ AMP-acti-
vated protein kinase (AMPK) and the class III phosphatidyli-
nositol-3-kinase (PtdIns3K) (Figure 4). Based in large part on
the data from yeast, a general model for autophagy involves a
cascade starting with one or more phagophore assembly sites
(i.e., nucleation sites for the phagophore membrane) that
involve the recruitment of an initiation complex consisting
of ULK1, ATG13, ATG101 and RB1CC1/FIP200 and the
PtdIns3K complex (BECN1, PIK3C3/VPS34, PIK3R4/VPS15/
p150, ATG14 and NRBF2) [61]. Following the nucleation
stage, which is still not well understood, the cascade leads to
phagophore expansion and autophagosome formation; the
expansion process is relatively unique and provides tremen-
dous flexibility with regard to cargo capacity. The expansion
and maturation stage are traditionally thought to involve 2
ubiquitin-like conjugation systems comprised of ATG12–
ATG5-ATG16L1, an Atg8 family protein (an LC3 or
GABARAP isoform) and the processing, activating or conju-
gating enzymes ATG4, ATG7, ATG3 and ATG10 (Figure 4).
Recent work suggests that in mammalian cells these compo-
nents may be involved in a late stage of autophagy [62]. The
completed autophagosome may fuse with an endosome to
form an amphisome, and either compartment then fuses
with a lysosome. The amphisome is a single-membrane com-
partment, whereas if a double-membrane autophagosome
fuses directly with the lysosome the inner membrane is sub-
sequently degraded [63–65]. The cargo is broken down by
hydrolases and the products are released into the cytosol
through permeases [66]. In mammalian cells transport of an
autophagosome towards a lysosome occurs via microtubules
and the motor protein dynein [67,68].

In other words, during starvation and other conditions
that induce autophagy such as stress, infection, develop-
ment and differentiation, the autophagy cascade will start
in part by the activation of AMPK, which will phosphor-
ylate components of the ULK1 kinase and PtdIns3K com-
plexes, and the inhibition of MTOR (which otherwise
phosphorylates these components at inhibitory sites);
however, other mechanisms in addition to those involving
AMPK and MTOR can play a role. One important link
between autophagy and apoptosis is BCL2, an anti-apop-
totic protein that inhibits the function of BECN1 in
autophagy. Under short-term stress conditions MAPK8/
JNK1 phosphorylation of BCL2 causes its dissociation
from BECN1, allowing activation of the PtdIns3K and
progression of autophagy; long-term phosphorylation
may cause additional inactivation of BCL2 leading to
apoptosis [69].

Cell fates triggered by NPs

Overall, structural and physicochemical properties of NPs
(Tables 1, 2 and 3) can influence the modalities of cell death
that are induced by them. Although the mechanisms of toxi-
city of NPs based on surface charge, crystallinity, ligand
specificity, and surface chemistry, are complex, much research
is underway to determine properties and functional groups
that can have an influence on cellular outcomes and biological
responses of NPs. In most cases, the cytotoxic potential of
NPs can be dictated by their crystal structure [70], but also by
shape, size, surface reactivity, composition of chemical, sur-
face charge, presence of transition metals [71], nano-topogra-
phy and surface roughness [72]. Therefore, in order to more
safely design and manufacture NPs, it is necessary to ensure
extensive characterization of their physico-chemical proper-
ties [73,74].

The specific cell response to the presence of NPs is com-
plex and determined by many diverse factors. For example
low concentrations of silver (Ag) NPs induce necrosis and
apoptosis, whereas necrosis alone is triggered at higher con-
centrations [75]. Also the exposure time of the Ag NPs dictate
the mode of cell death (apoptosis or necrosis) in different
experimental models, such as human skin, fibrosarcoma, and
testicular carcinoma cells [76–78]. It should also be men-
tioned that the mode of cell death that is induced is cell
type-specific [79,80].

In the present review a comprehensive literature survey on
the cell fate induced by NPs and the molecular mechanisms
involved will be reported.

Necrosis triggered by NPs

NPs and necrosis and/or necroptosis
There are conflicting examples in the literature about necrotic
effects of NPs because on the one hand most reports only
studied losing cell viability without focusing on the exact
mode of cell death, and on the other hand in some conditions
apoptosis can be followed by secondary necrosis, thus leading
to an incorrect interpretation [70].

For instance, it was found that both crystal structure and
size affect the mechanism of cell death induced by titanium
dioxide (TiO2) NPs in mouse keratinocyte cells [81]. This
study demonstrated that TiO2 NPs with 100% anatase crystal
structure elicit necrosis in a size-independent manner,
whereas TiO2 NPs with rutile crystal structure induce apop-
tosis. In a systematic study by Pan et al., gold NPs show size-
dependent cytotoxicity; smaller-sized NPs (< 1.4 nm) are
more cytotoxic and induce necrosis, whereas NPs larger
than 1.4-nm particles often induce apoptosis [82,83].
Interestingly, the 15-nm gold NPs do not show any cytotoxic
effects in different cell lines and are actually inert with regard
to toxicity. Moreover, surface charge can also be a major
factor in determination of the cell death modalities induced
by NPs. Schaeublin et al. [84] showed that charged gold NPs
induce apoptotic cell death, whereas neutral NPs trigger
necrosis. Another study demonstrated that cationic carrier-
induced cell necrosis is dependent on the nanocarrier surface
cationic charge [85]. The toxicity is related to the shape of
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polyaniline (PANI). NPs with 4 various aspect ratios were
assessed with regard to their effect on fibroblast cells of
human lung and it was shown that low-aspect ratio PANI
NPs induce necrosis more than the others [86].

Moreover, recent evidence shows that cytotoxic effects of
germanium NPs (4 nm) are blocked by necrostatin-1, suggest-
ing that NPs may also induce necroptosis [87]. A very recent
paper reports that selenium (Se) NPs induce ROS-mediated
necroptosis in PC-3 cells following cellular internaliza-
tion [88].

Other parameters that may affect the triggering of necrosis
include exposure time and concentration (Table 1). For exam-
ple, nano-C60 fullerene at high doses induces ROS-mediated
necrosis, whereas an ROS-independent autophagic cell death
is observed with low-dose NPs in glioma cells [74].

Pathways of NP-triggered necrosis
From the presented information, it is clear that advances in
knowledge concerning the causes that may influence NP-
induced necrosis will need more accurate and precise studies
[89–91]. Nevertheless, a pro-oxidant pathway is one of the
main mechanisms involved in NP-induced necrosis. Indeed,
various NPs exhibit toxicity dependent on oxidative stress.
ROS produced by NP exposure can lead to lipid peroxidation,
protein denaturation and oxidative DNA damage. Excess free
radical generation causes the reduction of mitochondrial
membrane potential and leads to mitochondrial membrane
damage, causing necrotic cell death [71,87]. For example,
water-soluble germanium NPs trigger necrosis through an
increase of the cellular calcium level, which subsequently
leads to an increase at the level of ROS. Also, gold NPs
(1.4 nm) induce necrosis through mitochondrial damage
and oxidative stress, resulting not only from ROS but also
induce a decrease in the intracellular antioxidant defense
system as seen in HeLa cells [82]. Similar data have been
presented by Liu et al. who reported that necrosis is an
essential mechanism of cell death induced by gold NPs in
lung cancer cells with a low level of intracellular glutathione
(GSH). Therefore, there is evidence that triggering necrosis
induced by NPs can be a beneficial approach for treating
cancer [92].

High concentrations of Ag NPs induce necrosis in the
breast cancer MCF-7 cell line [75] and can have a toxic effect
on the respiratory system through reduced GSH levels, and
increased ROS generation [93]. Generally, Ag NP cytotoxicity
depends on dose, time, temperature, surface coatings, size and
cell type [94]. Ag-NP exposure causes reduction in antioxi-
dant enzymes such as GSH, in elevated levels of intracellular
ROS and the consequent elevated expression of ROS-respon-
sive genes, and lipid peroxidation, leading to DNA damage,
necrosis and apoptosis [95,96]. Both Ag NP degradation into
ions, and ROS generation depend on size; and polyvinylpyr-
rolidone (PVP)-coated Ag NP size negatively correlates with
ROS level, necrosis and apoptosis and decreased cell viability
[97]. ROS generation and silver ion release are 2 crucial
factors mediating cytotoxicity that lead to Ag NP-mediated
necrosis and apoptosis. Although both Ag NPs and Ag ions
result in increased ROS and oxidative stress throughout the

cell, Ag NPs cause stronger oxidative damage in cellular
membranes and organelles, such as mitochondria, lysosomes
and the nucleus, which directly leads to apoptosis or necrosis
[94]. In the presence of oxygen, Ag ions catalyze ROS gen-
eration and Ag NPs themselves can induce a process to release
Ag ions, in addition to generating ROS and causing oxidative
stress in vitro [98]. The studies show that Ag NPs (15 and
100 nm) induce a significant depletion of reduced GSH, and
cause an increase in ROS levels and reduced mitochondrial
membrane potential in BRL 3A rat liver cells and rat alveolar
macrophages [99,100]. Furthermore, 25-nm Ag NPs cause a
significant increase in ROS both in vitro and in vivo. Recently,
ROS generation was detected in the MC3T3-E1 and PC12 cell
lines in a manner dependent on particle size and concentra-
tion [79,101]. As already stated, NP size can influence the cell
response. Citrated coated Ag NPs of 13 nm induce higher cell
membrane damage and ROS production while having a stron-
ger bacteriostatic potential than the same particles of 17 nm.
Thus, these NPs may be considered in cancer therapy [102].

Zinc oxide (ZnO) NPs increase basic ROS levels of macro-
phages and induced oxidative DNA damage-mediated necro-
sis. Therefore, clinically, ZnO NPs through this mechanism
can help the immune system in the clearance of inhaled
particulates during inflammation [87]. A novel mechanism
by which cationic nanocarriers such as polyethylenimine
(PEI), cationic liposomes, and chitosan, lead to rapid necrosis
is related to their positive surface charges. In fact, acute
cationic nanocarrier-induced necrosis occurs via an interac-
tion with the Na+/K+-ATPase and is associated with the
exposure of molecular patterns dependent on mitochondrial
damage that lead to inflammatory responses. Although the
toxicity of nanocarriers with positive surface charges hinders
their clinical applications, the understanding of cationic car-
rier-induced acute cell necrosis can assist in the better and
safer design of nanocarriers in drug delivery systems and also
the development of screening assays and rapid assessment of
biomaterials [84].

Another mechanism involved in necrosis induced by NPs
is induction of endothelial cell (EC) dysfunction through
release of VWF (von Willebrand factor). EC dysfunction
induced by NPs, can also be due to the formation of ROS,
inflammatory cytokines including IL6 (interleukin 6) and IL8
and/or the activation of the system of coagulation that causes
pulmonary and ischemic cardiovascular diseases [87]. Many
studies revealed that silica NPs induce pulmonary inflamma-
tion through dysfunction of ECs with the clotting cascade
activation that leads to increase of blood coagulability in
vivo [103]. In addition, silica NPs participate in ROS produc-
tion and inflammatory responses in vitro [104–107].

Another pathway involved in necrosis triggered by NPs is
the rapid degradation of NPs in lysosomes and the subsequent
destabilization of this organelle that will allow the toxic sub-
stance to enter into the cytosol, and finally lead to cell necro-
sis. For example, cadmium telluride (CdTe) quantum dots
(QDs) induce mitochondrial permeability transition via the
increase of ROS, which leads to swelling of mitochondria and
collapse of the membrane potential. Because of their large
surface:volume ratios, adding QDs into the culture medium
causes serum proteins to attach to the QD surface. This
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absorption alters the properties of surface and size, and leads
to the cellular uptake of the QDs through the endocytic path-
way mediated by clathrin. After that, QDs translocate in cells
via endocytic vesicles and then are rapidly degraded in lyso-
somes, leading to cell necrosis. Therefore, considering the
cytotoxicity mechanism of CdTe QDs can provide valuable
data for the safe use of QDs in the future [108].

Tubulin and actin are 2 factors involved in necrosis
induced by certain NPs such as different nanostructures of
ZnO, including ZnO commercial NPs and custom-made
nanowires of ZnO. Extra levels of cytoplasmic zinc have
cytotoxic effects. Moreover, tubulin and actin, important cel-
lular cytoskeleton proteins involved in migration, cell division
and maintenance of cellular architecture, control zinc home-
ostasis in the cells. Following ZnO intracellular dissolution,
actin microfilaments and microtubules undergo dramatic
structural modifications and an acute cytoskeletal collapse
that trigger a rapid necrotic process in most cells. There
might be possible health risks for these NPs on skin and
mucosa in children that cause significant cell damage and
aneuploidies that eventually lead to cell transformation and
cancer [109].

Apoptosis triggered by NPs

NPs induce intrinsic and extrinsic apoptotic pathways
ROS generation induced by NPs causes damage to DNA,
proteins and organelles, including mitochondria. Damaged
mitochondria lead to induction of intrinsic and then extrinsic
apoptosis pathways [125]. The central role of ROS in various
cellular functions, including cell cycle regulation, prolifera-
tion, self-renewal, differentiation and apoptosis is well
known [126]. TP53/p53 can protect the genome during stress-
ful conditions, such as ROS-mediated DNA damage. The
primary function of this bodyguard of the genome is to
induce cell cycle arrest in order to allow time for repairing
damage. If the DNA damage cannot be repaired the cell
responds by shifting to apoptosis [127]. Apoptosis is regulated
by the BCL2-family proteins that are comprised of pro-apop-
totic and anti-apoptotic members as discussed above (see
Mechanism(s) of apoptosis in mammalian cells) [128]. The
BAX:BCL2 ratio determines the threshold of cell death in
response to an apoptotic stimulus. An increase in the BAX:
BCL2 ratio decreases the cellular resistance to apoptotic sti-
muli, leading to caspase-mediated apoptosis [129,130].

NPs can induce oxidative stress in cells through different
mechanisms: (i) direct generation of ROS by their physico-
chemical properties, (ii) indirect generation of ROS and reac-
tive nitrogen species (RNS) by stimulating inflammatory cells,
(iii) indirectly through changes on mitochondrial integrity
such as through effects on NADPH oxidase or cellular cal-
cium homeostasis, and (iv) ROS generation by releasing ions
or soluble compounds from certain types of NPs (e.g., metal
oxides) [131].

Similar to necrosis, NP-induced apoptosisis is also a func-
tion of the NPs physico-chemical structure (Table 2). For
example, metal NPs, such as copper oxide/CuO, cadmium
oxide/CdO, and TiO2 NPs, exhibit different apoptotic
potency [32].

NP-induced apoptosis is size, concentration and time
dependent. Ahmad et al. [132], reported that 14-nm silica
NPs induce a dose-dependent depletion of GSH and ROS-
mediated apoptosis response in human liver HepG2 cells. In
addition, the cell cycle regulatory gene TP53 and apoptotic
genes (BAX and CASP3) are upregulated, whereas BCL2 is
downregulated in cells exposed to silica NPs in a dose-depen-
dent manner [132].

Ye et al. [229] reported that silicon dioxide (SiO2) NPs
regulated the expression of the TP53 and BAX genes, in an NP
dose-, size- and exposure time-dependent manner. SiO2 NPs
show ROS-mediated oxidative stress and consequently apop-
tosis in L-02 cells [229].

ZnO NPs dose and time dependency was shown by
Ahamed et al. who reported ZnO NP upregulation of BAX
and downregulation of BIRC5/survivin and BCL2 in lung
cancer cells (A549 cells) [134]. Ag NPs induce oxidative stress
resulting in genotoxicity in a TP53/p53-dependent manner in
a variety of experimental systems such as adult cells, stem cells
and cancer cells [135–138].

Liu et al. [139] showed that high doses of superparamag-
netic iron oxide nanoparticles (SPIONs)-induce mitochon-
drial apoptosis by increasing the BAX:BCL2 ratio, by the
activation of CASP9 and CASP3 and by downregulating
HSPA/HSP70 and HSP90 survival factors [139].

NPs induce mitochondrial apoptosis
The mitochondrial pathway of apoptosis is one of the impor-
tant mechanisms that contributes to the cytotoxic effects of
NPs. Several NPs such as TiO2, CuO, ZnO, SPIONs and silica
NPs affect mitochondrial pathways [130,140–143]. Yan et al.
[206] showed that graphene and single-walled carbon nano-
tubes (SWCNT) are more cytotoxic than graphene-SWCNT
hybrids, and the 3D nanostructures induce a ROS-mediated
mitochondrial apoptotic pathway in osteosarcoma cells. Low-
dose exposure to silica NPs causes epigenetic toxicity asso-
ciated with mitochondrial apoptosis in human bronchial
epithelial BEAS-2B cells. Zou et al. [145] showed that the
silica NPs over 30 passages significantly hypermethylate the
promoters of the CREB3L1 and BCL2 genes.

Ag NPs trigger activation of the TP53 protein, which in
turn increases the expression level of BAX, BAD and BAK1,
causing mitochondrial membrane leakage and release of
CYCS. In parallel, the apoptosis inducer MYC/c-MYC is
upregulated, and anti-apoptotic genes, such as BCL2 and
BCL2L1, are downregulated. These signaling pathways trigger
cell blebbing [136]. In another study, Hsin et al. reported that
Ag NPs induce mitochondrial apoptosis in NIH3T3 cells. The
NPs generate ROS and trigger a JUN/c-Jun N-terminal
kinase-dependent mechanism [115].

Permeabilization of the outer mitochondrial membrane
occurs by exposing cells to graphene, resulting in a change
in mitochondrial membrane potential [146]. Graphene, by
increasing ROS generation, affects the MAPK and TGFB/
TGF-β signaling pathways and activates CASP3. The carbon-
based nanomaterial induces mitochondria-mediated apoptosis
[147,148]. Similarly, low doses of reduced graphene oxide
induce an early apoptosis via death-receptor and canonical
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mitochondrial pathways [149]. Graphene can act in different
ways: GO leads to an ROS-dependent apoptotic pathway, and
GO-COOH activates an ROS-independent apoptotic pathway.
T lymphocytes undergo apoptosis after the membranes have
been damaged by exposure to GO-PEI [150,151]. Gadolinium
oxide induces mitochondrial apoptosis with increasing doses
and exposure time in human neuronal (SH-SY5Y) cells.
Ahmad et al. [152] demonstrated that the number of apopto-
tic cells is increased with an increase of the concentrations of
nickel NPs in mouse epidermal JB6 cells.

NPs induce ER-mediated apoptosis
The ER has pivotal functions in cells for controlling protein
folding and calcium homeostasis. The release of calcium into
the cytosol from the ER occurs upon ER stress [153].
Transcription factor CREB phosphorylation, which induces
the transcription of PPP2 (protein phosphatase 2), is induced
by an increase in the calcium concentration. PPP2 regulates
various critical cellular processes [154]; therefore, ER stress-
inducible regulation of PPP2 contributes to the cytotoxicity of
NPs [155].

High doses of NPs can generate ROS, damage membrane
and disrupt calcium homeostasis to cause cell death [156,157].
Ag NPs induce transient changes in intracellular calcium in
human lung fibroblasts [158]. Additionally, TiO2 NPs increase
intracellular free calcium [159]. Cytotoxic NPs trigger ER
stress, and the associated changes in calcium homeostasis
may be an important aspect of the response that results in
apoptosis [155].

ER stress causes accumulation of misfolded protein aggre-
gates and triggers apoptosis through the blocking of nutrient
transport to retinal cells [160], and occurs in response to ZnO
NPs in human umbilical vein endothelial cells (HUVECs)
[161], and also as a result of exposure to poly(lactic-co-gly-
colic acid) [162] and gold [163] NPs in human chronic mye-
logenous leukemia cells.

As suggested by the references above, ER stress can result
in apoptosis. ATF4 induces DDIT3/CHOP (DNA damage
inducible transcript 3) expression, and the expression of the
apoptotic genes BCL2L11/BIM and BBC3/PUMA is induced
by DDIT3 [155]. The ERN1/IRE1 pathway may induce apop-
tosis through the activation of MAP3K5/ASK1 (mitogen-acti-
vated protein kinase kinase kinase 5) and through interaction
with TRAF2 (TNF receptor associated factor 2). Therefore,
SiO2-NPs may exert hepatotoxic activity through ER stress.
PMAIP1/Noxa [164], is another factor that can induce apop-
tosis—in this case through the USP9X-MCL1 pathway—in
response to ER stress [165].

Multiple signaling pathways regulate inflammatory and
immune responses. Among them are the NFKB and MAPK
signaling pathways, involving MAPK1/ERK2-MAPK3/ERK1,
which regulate inflammatory and immune responses [166]. The
MAPK signaling pathway also plays an important role in cancer
development and apoptosis [155].

TiO2 damages DNA and activates TP53 by being deposited in
themembrane of the nucleus inHEK-293 cells [167]. TP53 is a key
tumor suppressor that blocks the cell cycle in the G1/S phase.
Through TP53, DNA damage causes the initiation of apoptosis
[168]; SiO2 NPs significantly downregulate TP53 in Huh7 cells.

Transcriptional downregulation of TP53 could contribute to the
apoptotic or carcinogenic activity of SiO2 NPs [155].

In one study, Simard et al. reported that Ag NPs cause
protein misfolding, leading to ER stress in MCF-7 and T47-D
cells. The NPs activate several caspases leading to apoptosis
through constant activation of the UPR pathway [169]. Chen
et al. [161] reported significant cellular ER stress induced by
ZnO nanorods at noncytotoxic concentration. ZnO nanorods
change both the transcriptome and proteome of HUVECs.
The NPs in higher dosage (240 μM) result in an ER stress
response before apoptosis induction [161]. Yang et al. [171]
showed that hepatotoxicity of orally delivered ZnO NPs is
mediated through an ER stress-mediated apoptotic signaling
pathway and increased translation of related proteins in mice.
In another study Kuang et al. [172] reported that ER stress-
mediated apoptosis triggered by ZnO NPs is size dependent,
and smaller ZnO NPs are more toxic than 90-nm ZnO NPs in
murine liver.

Two-fold role of autophagy and dysregulated
autophagy as a cytoprotective mechanism and death
signal triggered by NPs

How do you set up an autophagy investigation for
nanomaterials and what markers do you use?

The size of NPs, their functionalization and surface charge
influence autophagy pathways and must be carefully evaluated
before in vitro and in vivo investigations. In some cases
(eventually as a biodegradation mechanism) [246,247], catio-
nic NPs more than anionic ones [248] and some functionali-
zations such as arginine-glycine-aspartic acid (RGD) induce
autophagosomes at higher levels [249]. However, other stress-
ful factors that trigger autophagy such as cell membrane
damage, and ROS production must be evaluated to give
more information on the mechanism. After the characteriza-
tion of NPs and evaluation of some eventual risk factors, to
track autophagy, autophagosomes as double-membrane vesi-
cles might be monitored via electron microscopy [250].

To accurately evaluate autophagy activity, the analysis
should be categorized into 2 separate elements: static and
dynamic measurements. The importance of differentiating
between dynamic and static measurements is easily seen
when considering the most common types of assays that are
used for monitoring autophagy—the presence of autophago-
somes based on fluorescence and electron microscopy, and
the level of LC3 based on western blot. In particular, the
increase or accumulation of these autophagic markers can
be an indication of autophagic induction; however, because
both autophagosomes and LC3 are degraded in the terminal
stages of autophagy, an increase of either component can also
be the result of a block in turnover or flux, resulting from a
defect in autophagosome or amphisome fusion with the lyso-
some or in degradation within the lysosome.

Nonetheless, static measurements can be useful if used appro-
priately. For example, the phosphorylation status ofMTOR,BCL2,
AMPK, and ULK1 at specific sites as assessed by western blot
correlate with autophagy induction. In addition, the evaluation of
gene expression via real-time PCR can provide another valid
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method for assessing induction when used in combination with
other assays. Monitoring the complete process of autophagy
requires an assessment of flux. This can be achieved by examining
the turnover of LC3 and cargo proteins such as SQSTM1/p62 by
western blot in the presence and absence of fusion, acidification or
lysosomal protease inhibitors, or by following long-lived protein
turnover [251]. Fluorescence techniques can be used that rely on
tandem mRFP/mCherry-green fluorescent protein (GFP)-LC3 or
the more recent GFP-LC3-RFP-LC3ΔG [252]. Thus, similar
approaches can be used to determine the effects of NPs on auto-
phagic flux. In particular, cells exposed or not to NPs can also be
treated with fusion inhibitors such as bafilomycin A1, alkalinizing
agents such as chloroquine, or protease inhibitors includingE64-d,
leupeptin and pepstatin A. It is also important to note that some
NPs are sequestered into the lysosome and may induce lysosomal
dysfunction. Thus, when using NPs it may be worthwhile to
monitor lysosomal pH and degradative capacity. Neutral red,
acridine orange and LysoSensor dyes can be used as pH-depen-
dent lysosomotropic indicators, whereas DQ-BSA and Magic
Red™ can be used to follow degradative activity [253].

NPs and autophagy

Autophagy has a close crosstalk with other cell death and signaling
pathways; thus, cellular outcomes induced by autophagic NPs are
very complex [250]. Although NPs primarily induce macroauto-
phagy, based on the increased formation of and detection of NPs
within autophagosomes, it is difficult to classify autophagic effects
of NPs as a cell death mechanism at first glance [4,250,254]. In
most cases, cells respond to NPs as an endosomal pathogen; the
NPs are ubiquitinated leading to sequestration by a phagophore.
Interestingly, size and concentrations of the nanomaterials influ-
ence the autophagic response [4,254]. This fact may explain why it
is typical to observe a particle present in autophagosomes on the
nano rather than micro scale [255–257]. The consequence of
internalization of NPs and their accumulation within autophago-
somes can be the disturbance of autophagy flux via interference
with vesicle trafficking and the cytoskeleton, and a decrease or
inhibition of lysosomal stability and enzyme activity. All these
events suppress fusion of autophagosomes with lysosomes and
ultimately induce autophagy blockage. The cumulative result of
NP-induced autophagy blockage can be an accumulation of
damaged DNA, proteins and organelles that in turn can increase
the risk of cancer [258] and neurodegenerative diseases [259,260].

Conversely, some NPs, such as manganese NPs [261], core-
shell of Fe@Au NPs and TiO2 NPs [4,262], induce a functional
autophagy response in cells that may terminate in cell death. This
autophagy flux response is mostly reported for those NPs that can
augment ROS levels in the cells and subsequently may stimulate
mitochondria-dependent autophagic cell death, depending on
their physico-chemical properties (Table 3) [4,254]. In this sce-
nario, autophagic effects of NPs may have therapeutic value
[4,263].

The role of different types of NPs in inducing the
autophagy pathway

NPs are taken up into cells and treated almost the same as a
bacterium or any other particulate pathogen with a goal of

degrading them. These NPs are ubiquitinated allowing them
to interact with receptor proteins such as SQSTM1/p62; the
latter typically contain an LC3-interacting region, a short motif
that allows them to bind LC3 or another Atg8-family protein,
resulting in sequestration by a phagophore [264]. Based on the
above discussion, the influence of NPs on autophagy may be
categorized in 2 distinct parts: An increase of auto-phagosome
formation and flux, or autophagic dysfunction. In both cate-
gories, the NPs typically increase the LC3-II protein; however,
in the case of dysfunction there will also be an increase in
SQSTM1/p62, which is no longer degraded via autophagy. For
example, SWCNT [265], carboxylated multi-walled carbon
nanotubes [266], graphene oxide, PAMAM dendrimer [248],
gold [267] and iron oxide [255] NPs induce autophagosome
accumulation and block autophagy flux. Other NPs that lead to
the accumulation of autophagosomes and autophagy blockage
as can be seen with fullerene and its derivatives, Au NPs [260],
may even disrupt lysosomal trafficking [268]. Interestingly,
autophagosome activation resulting from exposure to graphene
oxide NPs involves the TLR pathway [269]. However, fullerene
at nanocytotoxic concentration may induce autophagy and
increase the killing potential of chemotherapeutics, and even
may be influential in treatment of neurodegenrative disorders.
In fact, the effects of NPs show two-fold behavior based on
concentration—they may either disrupt autophagy or induce
auto-phagy [250].

Cationic dendrimers, nano-scale and non-agglomerated
quantum dots, alumina NPs, fullerenes, negatively charged
zinc oxide NPs [270], Au NPs (22 nm), silica NPs, carbon
nanotubes (CNTs), TiO2 NPs, ultra-small super paramagnetic
iron oxide (USPION) NPs, palladium NPs and some others
induce autophagy in part by inhibition of MTOR or by indu-
cing the expression and/or phosphorylation of autophagy-
related and BCL2-family proteins involved in autop-
hagy [259].

Because one of the triggering mechanisms of autophagy
activation is via ROS production, metallic NPs such as Ag
[271], Au [272] and Cu may be involved. Au NPs induce autop-
hagy but act through different mechanisms such as perturbation
of the cytoskeleton, blocking fusion, and alkalinization of the
lysosome, causing lysosomal dysfunction and subsequent autop-
hagy blockage [255]. Iron core and gold shell NPs induce a
transient loss of mitochondrial membrane-potential in normal
cells and irreversible ones in cancer cells as a mechanism that
triggers autophagy by ROS production and involvement of the
MTOR signaling pathway [262]. Nano alumina results in an
increase in the permeability of the blood-brain barrier due to
decreased expression of tight-junction proteins that is related to
the triggering of autophagy and cytotoxicity [273]. However, this
NP is considered as a candidate in anti-tumor therapy due to its
being scavenged as an antigen by T cells, so that less antigen is
needed overall to provoke adequate T cell production [246].
Similarly, Ag nanowire, manganese NPs, neodymium(III)
oxide (Nd2O3), samarium oxide, europium oxide, gadolinium
oxide, cerium dioxide, lanthanum oxide and terbium oxide NPs
also induce autophagy [250].

Fullerenes induce the production of ROS and damage to
mitochondria [274] and the ER, resulting in autophagy induc-
tion. Autophagy activation by fullerenes and its derivatives,
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especially C60(Nd) [275], makes them ideal NPs for cancer
therapy in combination with drugs such as doxorubicin; these
NPs can induce cell mortality in the breast cancer MCF-7 cell
line by the involvement of ATG5 and ROS production [274].

It should be mentioned that the autophagic effects of NPs
are highly dependent on their physico-chemical characteriza-
tion, including size, dispersity and surface charge and as well
as their concentrations. One of the best examples is TiO2, a
principle component of cosmetics, that induces both auto-
phagy flux and blockage in a size-dependent manner [276].
NP functionalization also affects cancer cell viability. For
example, Liu et al. showed that COOH-CNT induces autop-
hagy and mortality in human lung adenocarcinoma through a
decrease of phosphorylated (i.e., active) MTOR, whereas
PABS-CNTs and PEG-CNT do not have this effect [227].
Besides, specific surface characteristics such as nanotopogra-
phy (vertical aligned nanotubular surface in the range of
approximately 100 nm) as compared to flat surface dictates
a reversible and temporal MTOR-independent autophagy in
osteoblast cells to modulate differentiation via cell membrane
stretch [277].

Increase and decrease of autophagic flux by NPs

Increase of autophagic flux by NPs and their
functionalization
Increase and decrease of autophagy flux is defined by the
increase and decrease in autophagic degradation activity
[95]. It seems that increase of acidification in impaired lyso-
somes leads to restoration and increase of autophagic flux.
Based on this finding, polymeric NPs such as PLGA NPs are
favorably taken up by lysosomes and their degradation pro-
duces an acidic pH [278]. Trudeau et al., prepared a photo-
activable NP that in the presence of water and UV irradiation
turns to an acidic NP. They demonstrated that an increase of
acidic pH in impaired lysosomes leads to an increase of pH
and restoration and increase of autophagic flux along with a
decrease of SQSTM1 [279]. In addition, graphene QDs
increase auto-phagy flux when irradiated by 470-nm blue
light as assessed by LC3-II increase and SQSTM1 decrease
[280]. Furthermore, QDs increase autophagy flux based on
their chemical formulation; CdSe QDs induce a stronger
autophagy flux than InGa QDs, while the size of the former
was larger than that of the latter [281].

Another important point is that some NPs increase autop-
hagy flux to compete with oxidative stress. As a result, for
gold NPs there are different reports on its decrease [282] and
increase [283] of autophagy flux. Fe@AuO NPs increase
autophagy flux through the MTOR signaling pathway in
response to ROS production. Of greater interest, however, is
that Fe@AuO NPs behave selectively in normal and tumor
cells and lead to tumor cell death [267]. Among ZnO, FeO
and TiO2 NPs, only TiO2 NPs increase autophagy flux in
response to oxidative stress in a size-dependent manner [276].

Functionalized fullerene (poly ethylene glycol [PEG] or
pentoxifylline) may induce autophagy and increase autophagy
flux that may lead to elimination of β-amyloid, resulting in
inhibition of Alzheimer symptom development [284]. Finally,
studies indicate that there are different behaviors of

functionalized CNTs. Although, COOH-CNT induces autop-
hagy flux through the AKT-MTOR pathway both PEG and
poly-aminobenzene sulfonic acid CNTs do not induce autop-
hagy [227].

Decrease of autophagy flux by NPs
Nanoparticles lead to autophagy dysfunction through disrup-
tion of microtubules and actin. The cascade of autophagy
may be disrupted via interfering with delivery to the lysosome
due to microtubule and or motor protein dynein destruction.
It has been disclosed that disturbance in actin polymerization
influences autophagosome trafficking. A variety of NPs such
as TiO2, polystyrene, silicon, Au NPs [285], CNT [286] and
USPION [287] possess binding affinity to actin, resulting in
alterations in its polymerization potential. Studies indicate
that fullerene [288], TiO2 [289] and Au NPs [290] inhibit
microtubule polymerization by the formation of hydrogen
bonds with tubulin heterodimers. SWCNT [291], fullerol
[260] and silicon dioxide NPs [292], alter autophagy directly
via bonding or indirectly via expression of actin modulatory
proteins. However, in some studies, it was disclosed that Au
NPs cause damage to the cytoskeleton but not via tubulin and
actin [285], and Fe2O3 NPs decrease the number of actin
filaments [293], whereas Fe3O4 NPs—via bonding to tubulin
dimers—change microtubule polymerization [294], also
resulting in a decrease of VCL (vinculin) spots and disorga-
nized tubulin and actin structures, along with autophagy
dysfunction in blood outgrowth endothelial cells, HUVECs,
and neural progenitor cells as a possible reason for toxicity
[287,295].

Lysosomal dysfunction by NPs. As indicated above, NPs tend
to become trapped within autophagosomes and lysosomes due
to their size, ubiquitination and similarity in some aspects to
particulate pathogens. Thus, they can directly and indirectly
induce dysfunctionality in autophagy that may lead to cell
death and many pathological conditions [259].

Lysosomal dysfunction by NPs may be derived from lyso-
some membrane permeabilization. Oxidative stress by lysoso-
mal-iron mediation and release of lysosomal hydrolases and
cathepsins can lead to permeabilization of the mitochondrial
outer membrane [253] that in turn, via ROS production,
induces apoptosis or necrosis. In addition, lysosomal dysfunc-
tion by NPs may be due to a lack of vacuolar-type H+-ATPase
activity, increase of pH, bio-persistence and inhibition of
functional lysosomal enzymes, which can lead to lysosomal
storage disorders, such as sphingolipidoses [296] as reported
for fullerenes [297] and dendrimers [298].

Based on the literature, those NPs that cause lysosomal
dysfunction include CNT, negative-charge Au NPs (5 nm),
negative-charge Ag NPs (25 nm), negative and neutral TiO2

NPs (5–500 nm), fullerenes (150 nm), PEGyated NPs, ZnO
NPs, positive-charge dendrimers (5 nm) and positive-charged
polystyrene (110 nm) [259]. Cationic NPs, such as cationic
dendrimers (G5) [299], act, at least in part, as ‘proton
sponges’, resulting in the accumulation of protons in the
lysosome and subsequent organelle osmotic swelling followed
by lysosomal rupture [80]. Other NPs destabilize the lysosome
and induce dysfunctionality in different ways [272,300]. For
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instance, ZnO NPs (release of Zn2+) [300], TiO2 [301] and
polystyrene NPs [302], induce intracellular ROS production,
fullerol blocks lysosomal trafficking by affecting actin [260],
and Au NPs alkalinize the lysosome (acting as a proton pump
inhibitor) and block fusion with autophagosomes [255].

In any form, dysfunctionality of lysosomes may influence
autophagy by inhibiting fusion between lysosomes and auto-
phagosomes, leading to overloading and accumulation of autop-
hagosome in cells [11,303]. Along these lines, autophagic dys-
function may be derived from excessive induction of autophagy
and/or blockade in its flux, which can lead to cell death and some
pathologies such as Parkinson [305], Alzheimer [306], and
Crohn diseases, as well as amyotrophic lateral sclerosis [253].
Accordingly, dysfunctionality of auto-phagy as a type of cell
death may result in apoptosis and in some cases necrosis.
However, in normal conditions there are some shared factors
that maintain homeostasis in cells. For example the activation of
MAPK8/JNK1 as a kinase to phosphorylate BCL2 induces
autophagy (via BECN1 release) in the short term, but can ulti-
mately induce BAX and BAK1 leading to apoptosis [307].
Blocking autophagy through inhibition of BECN1 function
may result in cancer as seen in breast, ovarian and prostate
cancers, eventually due to accumulation of ROS, inflammation
and stressful conditions in the affected cells [258]. It is worth
noting that although autophagic dysfunction increases the
chance of cancer, administration of an autophagy blocker
along with chemotherapeutic anti-cancer drugs synergistically
improves anti-tumor efficacy in part by decreasing the tolerance
of cancer cells to starvation and stress [308].

In conclusion, NPs are taken up into cells as a particulate
external material often resulting in a stress response that
induces autophagy. However, the physiological condition of
the cell may be changed due to the existence of the NP, which
causes a block in autophagy. In turn, this block can lead to the
accumulation of damaged, depolarized and dysfunctional
mitochondria and an increase in ROS resulting in further
cellular damage and finally NLRP3 inflammasome activation
[269,309]. However, it must be considered that, in a thera-
peutic context, lysosomal dysfunction is not always a disad-
vantage; for example, as seen with drug delivery to a target site
in cells by nano carriers via an endosomal escape pathway
similar to gene delivery by cationic dendrimers or chitosan
NPs [310], delivery of alumina NPs with a special antigen on
the surface as a targeted vaccine to dendritic cells to enhance
anti-tumor effects via lysosomal dysfunction [227], adminis-
tration of Au NPs and SPION for cancer treatment, and
successful co-administration of fullerene and doxorubicin in
killing breast cancer cells [311].

Size-dependent effects of NPs on autophagy

Because physico-chemical properties of NPs such as their
functionalization, and the chemical structure of NPs have
been discussed in the above sections, in the present section
the influence of particle size on autophagy will be discussed
separately. It is worth mentioning that when the effect of
particle size on autophagy is investigated, it is critical to
consider cellular uptake and to compare different NPs in
normalized conditions. For example Kenzaoui et al.,

investigated the effect on autophagy of FeO (8–9 nm), silica
NPs (25 and 50 nm), TiO2 (21 nm) and PLGA NPs (150 nm).
The results showed that just uncoated FeO and TiO2 NPs
induce autophagy, whereas these NPs induced oxidative stress
in human brain-derived endothelial cells [276]. The important
point is that only silica, FeO and TiO2 had been internalized
so it is not appropriate to suggest that larger PLGA NPs of
150 nm do not induce autophagy; PLGA NPs of 150 nm could
not induce autophagy because they were not internalized into
cells. The authors emphasized that those NPs that induce
aggregation and oxidative stress (uncoated FeO and TiO2) in
cell culture medium, are more potent to induce autophagy
and their autophagic potentials were not in good agreement
with DNA damage [276]. Stern et al., reported that larger QDs
of CdSe (5.1 nm) induce significantly higher autophagy activ-
ity (increase of LC3-II) as compared to InGa QD (3.7 nm) at
their IC50 concentration. However, it is not clear as to
whether their cellular uptake profiles are similar or not; none-
theless they postulated that this effect is related to the severity
of induction of oxidative stress in cells [281]. Li et al., com-
pared cytotoxic and autophagic potential of 3 silica NPs of 40,
60 and 200 nm. The results showed that the smallest NPs
induce significantly higher cell mortality than others with the
highest cellular uptake, whereas 60-nm NPs give the second
highest score. However, this trend continues in ROS produc-
tion and dynamic autophagic index of LC3-I to LC3-II con-
version as well, and they are completely size dependent [312].
The important point is that it is not clear whether the increase
of higher autophagy potential by 40-nm particle size is related
to its autophagic potential or to higher cellular uptake that
results in a higher load of NPs within cells.

In contrast, others demonstrated that smaller QDs
(QD525) are more efficient in autophagy induction than
larger QDs (QD605) as a cytoprotective mechanism and
may not be useful for prolonged cell tracking relative to
QD605 [256]. An interesting point is related to the indepen-
dence of vacuolization and autophagy in which larger-sized
particles of rare earth oxides of ~800 nm can induce both
autophagy and vacuolization, whereas smaller ones of
~200 nm only induce autophagy [313]. Thus, consideration
of just vacuolization by TEM without a dynamic (i.e., flux)
investigation may led to an incorrect interpretation.

Based on the above-mentioned findings, it might be said
that the decision on the influence of particle size on autop-
hagy is strongly dependent on other techniques that are per-
formed in parallel as part of the investigation, and the analysis
should be not only by static investigation (i.e., TEM) but also
should include dynamic autophagic assays, analysis of cellular
uptake, and consideration of IC50.

Conclusions and remarks

Nanoparticles as building blocks of nanotechnology have led
to rapidly increasing applications in different fields. NPs can
affect important cellular outcomes, including cell cycle, pro-
liferation, differentiation and cell death. Although under-
standing the mechanisms of these pathways is important as
we discussed in the Introduction, it should be noted that
cytotoxic effects of NPs are highly dependent on their
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physico-chemical properties including, dispersity state, size,
shape and charge. Also, some NPs may induce different forms
of cell death pathways, depending on their physico-chemical
properties. For example, TiO2 NPs can induce all 3 pathways
of apoptosis in a dose-, size- and shape-dependent manner.
Another important issue that should be taken into account is
that the effects of NPs can change in biological systems due to
effects of proteins and other compounds. This so-called ‘pro-
tein corona’ effect is an important topic in nontoxicity. The
protein corona can have an effect on size and act as a protec-
tive shield against toxic effects of NPs such as inflammation
and ROS-induced toxicity in the cell. All these things suggest
that more research and optimized systems are need to define
the exact mode of toxicity of a certain type of NP, and many
cautions should be considered in deciphering the effects on
NPs, particularly when we are going to use them as therapeu-
tic tools.
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