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Abstract

Intra-articular injection of hyaluronic acid (HA) as a viscosupplement is used to treat osteoarthritis 

(OA), yet HA is cleaved by hyaluronidase and clears out of the joint after several days, resulting in 

only short-term benefit. Therefore, we developed a new polymer biolubricant based on poly-

oxanorbornane carboxylate to enhance joint lubrication for prolonged time. Rheological and 

biotribological studies of the biolubricant reveal viscoelastic properties and coefficient of friction 

equivalent and superior to that of healthy synovial fluid, respectively. Furthermore, in an ex vivo 
bovine cartilage plug model, the biolubricant exhibits superior long-term reduction of friction and 

wear prevention compared to saline and healthy synovial fluid. ISO 10993 biocompatibility tests 
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demonstrate that the biolubricant polymer is non-toxic. In an in vivo rat medial meniscal tear OA 

model, where the performance of the leading HA viscosupplement (Synvisc-one®) is comparable 

to the saline control, treatment with the biolubricant affords significant chondroprotection 

compared to the saline control.
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INTRODUCTION

Osteoarthritis (OA) is a painful, chronic disease of synovial joint structure and function[1] 

that afflicts more than 200M individuals worldwide and has doubled in prevalence over the 

last half-century.[2] OA affects synovial joints by progressively breaking down hyaline 

cartilage, the hydrated tissue that provides a smooth, nearly frictionless surface which 

distributes loads applied to articulating joint surfaces.[3-5] Most of the pathologic changes 

observed in OA patients result from mechanical injury to the hyaline cartilage as a 

consequence of high body mass, joint instability, skeletal malalignment, direct trauma, 

and/or persistent joint incongruity. Individuals who suffer traumatic joint injuries (e.g., 

ligament or mensical injury[6, 7]) are at especially high risk for developing post-traumatic 

OA.[8-10] Clinically, OA is characterized by pain, joint deformity, and limitation of motion. 

Anatomically, OA is characterized by loss of cartilage volume, focal erosions, subchondral 

bone sclerosis, cyst formation, and marginal osteophytes.[11] Initially, patients suffering 

from OA are treated by a variety of non-surgical interventions[12-15] including activity 

modification, weight loss, brace support, exercise, and physical therapy in conjunction with 

anti-inflammatory drugs and/or intra-articular corticosteroid injections. Although anti-

inflammatory drugs are analgesic, they do not ameliorate OA progression, and their 

extended use has been associated with serious side effects.[16] Surgical treatment to 

stabilize or re-align articular joint surfaces have moderate success in early-stage OA, but 

when these methods fail, the last option is total joint arthroplasty.

Healthy synovial fluid (SF) is a dialysate of blood plasma containing hyaluronic acid (HA), 

lubricin, and surface-active phospholipids, all of which contribute to joint lubrication.[17],

[18] An important pathophysiologic change associated with OA is a decrease in the lubricity 

of SF owing at least in part to a decrease in both the concentration and molecular weight of 

HA, which adversely affect its rheological properties.[17, 19-21] Common wear patterns on 

osteoarthritic cartilage surfaces suggest inadequate lubrication occurs.[22] Predicated on the 

theory that supplementing the deficient HA will improve the rheological properties of 

osteoarthritic SF, viscosupplementation using gel-like HA derivatives injected intra-

articularly into affected joints has been developed and commercialized.[23] However, a 

growing number of randomized controlled studies have challenged the efficacy of this 

procedure.[13, 24-27] A meta-analysis of clinical studies showed that HA viscosupplements 

were only 8% more effective than saline control in relieving pain.[13] [28–31] While several 

preclinical technologies have demonstrated protection of cartilage from wear,[32, 33] to 

date, no approved device or pharmacologic intervention imparts chondroprotection or 
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reduces cartilage wear in traumatized or osteoarthritic joints. We hypothesize that 

supplementation of SF with a biolubricant consisting of a synthetic lubricious polymer 

dissolved in water designed to resist enzymatic degradation by hyaluronidase will be 

chondroprotective by reducing the coefficient of friction (COF) between articulating 

cartilage surfaces and thereby preventing wear. This is one approach to lower the COF, and 

other strategies investigated include the use of lubricin,[34-36] lubricin-mimetics,[32, 33, 

37-39] liposomes,[40, 41] and other high-molecular-weight lubricious polymers.[42-45] 

These and other efforts to improve the biotribological properties of articular cartilage have 

been reviewed recently.[46, 47] The design criteria and rationale for the biolubricant 

described herein include: lack of glycosidic linkages to prevent degradation; a molecular 

weight greater than 1 MDa to increase joint resident time; hydrophilic repeat units within the 

polymer for water solubility inspired by hyaluronic acid; an overall polymer negative charge 

to maintain the polymer at the cartilage surface; shear thinning properties to allow for 

delivery using a small gauge needle; low COF to reduce wear, and preparation of the 

polymer via chemical synthesis giving a well defined polymer. Specifically, we synthesized 

poly(7-oxanorbornene-2-carboxylate) and formulated biolubricant solutions at two different 

concentrations, and here we report their rheological and biotribological properties, 

biocompatibility, and chondroprotective capabilities. The biolubricant’s in vivo efficacy to 

ameliorate OA is demonstrated using a rat meniscal tear OA model.

RESULTS

Synthesis

The polymer (poly(7-oxanorbornene-2-carboxylate); see Figure 1, right inset) was 

synthesized via ring opening metathesis polymerization (ROMP) to afford a polyanion with 

a Mn of 2,400,000 g/mol (PDI − 1.2) as measured via size exclusion chromatography (SEC).

[48, 49] After freeze-drying, a white fibrous polymer was obtained that was subsequently 

dissolved in deionized water (water soluble from pH=6 to 12) at either 0.5 or 2 w/v% (wt%), 

pH adjusted to 7.4 with sodium hydroxide, and sterilized via filtration through a 0.2 micron 

filter to form the biolubricants used for the following studies.

Cytotoxicity and inflammation

The polymer at 0.5 and 2 wt% was not cytotoxic to human chondrocytes, as the results were 

comparable to the untreated control (see Figure SI-1). Similar results were observed for 0.5 

and 1 wt% using NIH3T3 mouse fibroblasts (see Figure SI-2). Upon exposure to 

macrophages for 5 or 24h, no significant inflammatory response, as measured by NO 

production, was observed for the polymer at 2 wt% (see Figure SI-3). NO production was 

similar to untreated controls and Synvisc®, and significantly different from the positive 

control response observed after treatment with lipopolysaccharide.

Biocompatibility

The results of the ISO 10993 biocompatibility tests, conducted at Toxikon, are summarized 

in Table SI-1. The biolubricant did not evoke an adverse response in the sensitization, 

irritation, genotoxicity, two week muscle implantation, agar diffusion, or fourteen-day 

subacute / subchronic toxicity tests.
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Hyaluronidase degradation

The biolubricant, HA, and Synvisc® were exposed to hyaluronidase. After 24 hours, the 

samples were analyzed by gel electrophoresis. Both Synvisc® and HA were completely 

degraded by hyaluronidase, whereas the polyoxanorbornene biolubricant was not degraded 

by the enzyme, owing to its lack of glycosidic linkages (see SI). This result was confirmed 

in an independent experiment using a separate technique via GPC of the biolubricant before 

and after treatment with hyaluronidase (see SI). As the biolubricant lacks amide linkages it 

is unlikely that it will be degraded by proteases, such as matrix metalloproteinases, but this 

will need to be determined.

Mechanical properties of biolubricant

Healthy synovial fluid (SF) is a non-Newtonian fluid that serves both as a lubricant and 

shock absorber.[50, 51] At high shear loading rates such as jumping, hyaluronic acid (HA) 

exhibits increased elastic stiffness and reduced viscosity; at low shear loading rates such as 

walking, the opposite occurs. Using these properties as a reference, we evaluated the 

mechanical properties of the biolubricant at various concentrations.

Viscoelasticity of the biolubricant—The viscoelastic properties of SF are dependent 

upon the size, concentration, conformation, and interactions of HA molecules within the 

fluid.[52, 53] The viscosity of the biolubricant at 2 wt% was similar to healthy SF[17] (ca. 1 

Pa·s) with decreasing viscosity at higher shear rates (>102 s−1) (Figure 2a). At 0.5 wt%, the 

biolubricant exhibited viscosity an order of magnitude lower (0.1 Pa·s) due to less polymer 

entanglement. For reference, the viscosity of normal bovine synovial fluid (BSF) is 

approximately 0.05 Pa·s over the shear rate range evaluated.

The unique rheological properties of SF are its storage modulus (G’) and loss modulus (G”), 

which are compared for varying concentrations of the biolubricant, Synvisc-one®, normal 

bovine synovial fluid (BSF, representing healthy SF) and human OA SF (Figure 2b). OA SF 

has lower storage and loss moduli than normal SF. Synvisc-one®, by design, has a much 

higher storage modulus than normal SF (110 vs. 23 Pa), thereby imparting increased 

elasticity compared to OA SF. The storage modulus of the 2 wt% biolubricant was 

comparable (12 Pa) to normal SF (23 Pa), but the loss modulus was slightly higher (16 vs 7 

Pa).[48] The 0.5 wt% biolubricant exhibited relatively lower storage and loss moduli.

Biolubricant lubrication characteristics—The coefficients of friction (μstatic, μstatic_eq, 

and μkinetic) of the biolubricant were measured using a cartilage-on-cartilage rotational 

friction test comprised of torsionally articulating apposed bovine osteochondral plugs 

excised from the patella and femoral groove surfaces. There was no statistical difference in 

μstatic_eq between saline and Synvisc-one®, while BSF and 0.5 and 2 wt% biolubricant 

solutions demonstrated statistical differences compared to Saline (Figure 3). The 

biolubricant (2 wt%) demonstrated significantly (p<0.05) lower μstatic_eq (0.117) compared 

to Saline (0.308) and Synvisc-one® (0.267). The 2 wt% biolubricant solution exhibited 

significantly lower μstatic (0.056) compared to all other solutions (p<0.05): saline (0.149), 

Synvisc-one® (0.113), BSF (0.108) and 0.5 wt% biolubricant solution (0.108). Finally, the 
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0.5 wt% biolubricant solution exhibited significantly (p<0.05) lower μkinetic (0.015) 

compared to saline (0.035).

The ability of the 2 wt% biolubricant to reduce wear was evaluated using a long-duration, 

torsional wear test. Long-duration testing of bovine osteochondral plug pairs lubricated with 

the biolubricant exhibited the lowest μmean values compared to the other test solutions, being 

significantly lower (p<0.05) for all time points after 2560 s compared to plugs lubricated 

with saline, which had the greatest μmean results (Figure 4a). For all time points after 3840 s, 

samples lubricated with the biolubricant had significantly lower (p<0.05) μmean values 

compared to plug pairs lubricated with BSF. Additionally, the articulating cartilage surfaces 

of plug pairs lubricated with the biolubricant had 75.0% and 74.7% fewer circular wear 

grooves (“rings,” see Figure 4b inset) compared to samples lubricated with saline or BSF 

(p<0.05, Figure 4b), respectively. Following wear testing, the articular surfaces of samples 

lubricated with the biolubricant had noticeably less roughness than those lubricated with 

saline or BSF (Figure 5a). Comparing the surface roughness for the femoral groove articular 

specimens before and after wear testing, the percent change in surface roughness was 

statistically significantly lower for samples tested in the biolubricant compared to samples 

tested in saline (Figure 5b).

Intraarticular residence time study

Prior to performing the efficacy study, the intra-articular residence time of the 2 wt 

biolubricant was determined in a healthy rabbit joint. Approximately 75% of the 

biolubricant remained in the joint at 11 days after intra-articular injection as determined by 

agarose gel electrophoresis and visualization by Stains-All (see SI).

Rat meniscal tear OA model

The efficacy of the biolubricant to impart chondroprotection was evaluated using the rat 

knee meniscal tear OA model, which induces cartilage wear within several weeks of 

destabilization.[54] It is assumed that non-physiologic joint loading contributes to 

mechanical damage of the articular cartilage in proportion to the deviation of the applied 

loads and shear from baseline. This model has been previously used to successfully 

demonstrate efficacy of novel OA treatments.[55, 56] The right hindlimb’s medial collateral 

ligament and the medial meniscus were transected to destabilize the knee joint, leading to 

mechanical wear of the medial condyle against the tibial plateau. One week after the 

induction of mechanical instability, the SF of the operated knee was augmented by intra-

articular injection of either 0.5 wt% or 2 wt% of the biolubricant or saline (n=20 per group) 

using a 26G needle. Both knee joints of the animals were histologically examined three 

weeks after the injection, and a number of pathological criteria relevant to OA progression 

were histologically evaluated – total joint score, substantial cartilage degradation width, and 

osteophyte score (Figure 6). The percent change in histological scores for joints treated with 

the biolubricant were standardized relative to the saline controls. Significant 

chondroprotection was observed in the destabilized knee treated with the biolubricant 

solutions compared to saline. Representative changes induced in the medial femoral-tibial 

joint space compared to a non-operated knee are shown in Figure SI-4a and -4b, 

respectively.
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At the 2 wt% and 0.5 wt% doses, respectively, substantial cartilage degradation width was 

31% and 29% better than saline control, and the total joint score was 24% and 20% better 

than the saline control (all p<0.05). Unbalanced catabolic-anabolic activities contribute to 

osteophyte formation in arthritic joints, and osteophyte formation was decreased by 26% for 

destabilized knees treated with the 2 wt% biolubricant.

In an independent animal study, Synvisc-one® (Sanofi/Genzyme) was evaluated for its 

chondroprotective efficacy compared to saline control (n=20 per group). Using the same 

histologic criteria to evaluate chondroprotective efficacy as the present study, there was no 

statistical difference between Synvisc-one® and the saline control (Figure 6e-h).

DISCUSSION

Most current therapies for OA focus on pain control and improved function, but to date, no 

non-surgical therapy has demonstrated chondroprotection. Viscosupplementation, by the 

intra-articular injection of HA (or its derivatives) to restore the lubricating and load 

dissipating characteristics of synovial fluid (SF), has only been shown to provide analgesic 

effect equivalent to NSAIDs. The clinical efficacy of HA viscosupplementation has been 

challenged[57] due to its poor lubricity and short in vivo half-life of a few days.[52, 53] 

Healthy SF is a non-Newtonian liquid that possesses nonlinear, shear-rate-dependent, elastic, 

and shear thinning effects. SF exhibits viscosities of 1-40 Pa·s, which decrease significantly 

at high shear rates (>102 s−1). We hypothesized that a SF supplement that imparted the 

rheological and tribological properties of healthy SF over an extended time period will 

reduce the symptoms associated with OA and protect the cartilage from continued 

degradation. We successfully synthesized a biolubricant that resists enzymatic degradation 

by hyaluronidase and that replicates the non-Newtonian fluid characteristics of SF, including 

thixotropy (shear-thinning behavior). These unique rheological properties allow the 

biolubricant to be injected through a 26-gauge needle to minimize patient discomfort 

compared to injection of highly viscous HA products, which require larger 18-20g needles 

for intra-articular administration. The biolubricant also demonstrates superior tribological 

and wear-preventive properties compared to healthy BSF. Using mated, apposing chondral 

surfaces, the biolubricant exhibits lower coefficients of friction than BSF in both short-term 

and long-term torsional friction tests. As a result of the reduced friction, the biolubricant 

prevents cartilage wear significantly better than BSF and saline (negative control), as 

evidenced by both the lesser number of wear rings and preservation of surface smoothness. 

These data provide the first direct, ex vivo evidence that the synthetic biolubricant prevents 

cartilage wear.

Definitive chondroprotection of the biolubricant is demonstrated in vivo using the 

destabilized rat knee meniscal tear model of OA. Compared to saline control, the 2 wt% 

biolubricant reduces substantial cartilage degradation width by 31%, decreases the total joint 

score by 24%, and decreases the osteophyte score by 26% via semi-quantitative histological 

analyses (Figure 6, all p<0.05). Synvisc-One®, the most commonly injected 

viscosupplement in the United States, performed equivalent to saline in this model. Using 

this same rat model, the chondroprotective efficacy of intra-articularly administered lubricin 

and an MMP-13 inhibitor has been studied.[55, 56] The biolubricant performance is 
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comparable to the chondroprotective effect and superior to the total joint score for the 

lubricin study. Importantly, the one intra-articular injection of our biolubricant may be more 

convenient than the weekly administration of lubricin or daily administration of MMP-13 

inhibitor required to impart chondroprotection.

The results from the in vitro, ex vivo, and in vivo experiments are encouraging, however 

there are several limitations with this study. First, we used healthy bovine cartilage and 

normal bovine synovial fluid for the ex vivo cartilage-on-cartilage plug study to evaluate 

COF and wear. Additional studies using human OA cartilage and healthy human synovial 

fluid are warranted. When assessing wear of the cartilage plugs, the difference in the 

findings between the ring counting and CECT surface roughness for the saline and BSF 

samples indicates that the ring counting technique does not fully capture the extent of 

surface wear. Nevertheless, gross surface assessment using ring counting is still a useful 

indicator of surface wear without the need for sophisticated equipment. With regards to OA 

in vivo models, we selected the well-established destabilized rat knee meniscal tear model of 

OA as it affords OA in several weeks as a result of trauma. It is not a spontaneous model that 

develops OA over time, but rather a trauma-induced model reflecting more post-traumatic 

OA. At this time, studies in a large OA animal model (e.g., horse or goat) are not justified. 

Third, if the biolubricant reduces friction too greatly, joint laxity may be an issue and this 

will need be to determined in future studies. Finally, the treatment involved a single intra-

articular injection of the biolubricant and the performance outcome from repeated treatments 

of the biolubricant must be investigated as this mirrors the current treatment with hyaluronic 

acid viscosupplement products.

Clinical viscosupplementation is frequently reviewed and subjected to meta-analysis, 

resulting in both recommendations for and against its use.[28, 58-60] Despite the uncertainty 

over HA’s effectiveness, with some randomized controlled trials demonstrating significant 

benefit versus saline placebo while others report that HA is indistinguishable from saline 

placebo, it is generally understood that the clinical mechanism of HA viscosupplementation 

is not directly related to lubrication; several viscosupplement pivotal clinical trials report 26 

weeks of pain relief yet the intraarticular residence time half-life of these products is only 

several days. Thus, a long-lasting biolubricant that resists enzymatic degradation and 

provides tribosupplementary protection of cartilage, such as that reported herein, is a 

potentially improved treatment option for those with OA. While it is encouraging that the 

biolubricant reduces cartilage wear in an in vivo animal model of OA, OA is a complex 

disease that affects the entire synovial joint. The mechanical wear of cartilage may initiate 

the cascade of biological processes contributing to joint destruction, and further study is 

required to demonstrate that intra-articular injection of this biolubricant will delay or 

ameliorate the clinical consequences of OA in humans. Nevertheless, the data herein 

document this synthetic biolubricant provides longer lasting and more effective lubrication 

than a current viscosupplement ex vivo. In an in vivo OA model, where the performance of 

the leading HA viscosupplement (Synvisc-one®) is comparable to the saline control, 

treatment with the biolubricant affords significant chondroprotection compared to the saline 

control. Given the clinical need for OA treatments that address the underlying pathology to 

preserve cartilage tissue and halt disease progression, therapeutic concepts such as this one 

are in high demand to restore patient function and delay the need for surgical intervention.
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MATERIALS AND METHODS

Polymer synthesis

The poly(7-oxanorbornene-2-carboxylate) was synthesized using ring opening metathesis 

polymerization (ROMP).[49] The resulting polymer was dissolved in aqueous solution, 

adjusted to pH 7.4, and sterilized via filtration through a 0.2-micron filter to form the 

biolubricant (see SI).

Cytotoxicity and inflammation tests

The polymer was dissolved in media and then incubated separately with NIH3T3 mouse 

fibroblast and human chondrocyte cells for 24 hours at 37 °C. A standard colorimetric MTS 

assay was used to determine the reduction in the number of metabolically active cells as a 

measure of cytotoxicity (see SI).

The production of NO by macrophages was measured using the fluorescent DAF-FM 

diacetate reagent after exposure to the polymer as a measure of inflammatory response 

compared to lipopolysaccharide positive control (see SI).

Biocompatibility tests

A series of biocompatibility tests were conducted by the contract research organization 

Toxikon Corporation (Bedford, MA) according to standard ISO 10993 and FDA G95-1 

guidelines (see SI).

Measurement of Viscoelastic Properties

A TA Instrument RA 1000 controlled-strain rheometer equipped with a peltier temperature 

controlled plate and a 40-mm diameter aluminum plate with a 2° angle was used to measure 

viscosity of the biolubricant under nitrogen gas. An oscillatory strain sweep (strain 

amplitude from 0.01 to 10%) at fixed frequency (1 Hz) was applied to the sample to 

determine the Pseudo-Linear Viscoelastic Region (LVR). Steady state flow (shear stress 

amplitude from 0.01 to 60 Pa) at 25 °C was applied to the samples to determine their 

dynamic viscosity.

Preparation of osteochondral plugs for ex vivo friction studies

Osteochondral plugs were excised from the femoral groove and patellar surfaces of bovine 

cadaver knees. Twenty-four femoral groove plug pairs (Group 1) were used for the short-

term friction experiment, while fourteen mated, patellar-groove pairs (Group 2) were used 

for the long-term friction and wear experiment. All the cartilage surfaces were photographed 

(PL-B681CU, PixeLINK, Ottawa, ON) to ensure they were comparably smooth and 

consistent articular surfaces. The plugs from Group 2 were then immersed in a cationic, 

iodinated contrast agent (CA4+) at 12 milligrams of iodine per milliliter (mgl/mL) for 24 

hrs. The samples from both groups were imaged on a μCT scanner (μCT40, Scanco Medical 

AG, Brüttisellen, Switzerland).[61-63] The μCT data were post-processed in Analyze™ 

(Analyze Direct, Overland Park, KS) using previously validated protocols (see SI). The 

thickness of the segmented cartilage was then measured at 5 points across the width of the 
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tissue for all coronal slices. Following imaging, CA4+ was washed from the Group 2 

samples in saline for 24 hrs.

Measurement of short-term friction properties

An Enduratec 3230 (BOSE, Eden Prairie, MN, USA) was used to measure the torsional 

COF of each plug pair from Group 1 (see SI).[64] During COF testing, the cartilage surfaces 

were completely immersed in test solution. Three established COFs representative of the 

performance of articular cartilage[64] (μstatic, μstatic_eq, and μkinetic) were calculated to 

evaluate the efficacy of the lubricants.

Measurement of long-term friction and wear properties

Each plug pair from Group 2 was subjected to the same short-term torsional friction test 

described above to ensure comparable baseline performance across groups. The plug pairs 

were then randomly immersed in the biolubricant (n=5), BSF (n=5), or saline (n=4) for >4 

hrs prior to long-duration testing. For the long-duration torsional test, the plugs from the 

femoral groove were rotated against the plugs from the patella at 360°/s for 10,080 

alternating rotations (Enduratec 3230, see SI). The plugs were allowed to recover for >16 hrs 

in saline, after which, each cartilage surface was photographed again and immersed in CA4+ 

at 12 mgI/mL for 24 hrs for contrast-enhanced CT (CECT) analysis using μCT.

After the long-duration torsional tests, circular wear grooves (rings) developed on some of 

the samples, indicating surface wear. Two blinded observers counted the number of rings on 

the cartilage surface photographs of the groove plugs at baseline (no rings present) and after 

wear testing. Additionally, five sequential coronal and five sequential sagittal CECT images 

pre- and post-long-duration testing were evaluated to measure the change in cartilage surface 

roughness for each plug[65] using Analyze (see SI).

Rat meniscal tear OA model

The study design and animals used were approved by the Institutional Animal Care and Use 

Committee at Boulder BioPATH (Boulder, CO). Male Lewis rats weighing 275 to 300 grams 

(n=20 per group) were randomized to treatment group based on body weight after ≥2 days 

acclimation. The medial collateral ligament was transected and a full thickness cut was made 

through the anterior horn of the medial meniscus to simulate a complete tear and induce 

mechanical instability to produce traumatic OA. One week post surgery, the biolubricant 

(0.5 wt% or 2 wt%), saline, or Synvisc-One® (evaluated in an independent study with its 

own saline control group) was injected intra-articularly through an insulin syringe (40μL; 

n=20). The animals were euthanized three weeks later for histological evaluation of the 

destabilized and contra-lateral knee joints (see SI).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of intra-articular injection of (poly(7-oxanorbornene-2-carboxylate) of 2.4 MDa 

molecular weight. The polymer is dissolved in deionized water at 0.5 or 2 wt% to afford a 

viscous, chondroprotective biolubricant with viscoelastic properties similar to those of 

synovial fluid.
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Figure 2. 
a) Shear thinning effects of the biolubricant at 0.5 and 2 wt% compared to Synvisc-one®. b) 
Storage and loss moduli at frequency of 2.5 Hz for normal bovine synovial fluid (BSF), and 

OA human synovial fluid, biolubricant at 0.5 and 2 wt%, and Synvisc-one® (n=3 each).
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Figure 3. 
Coefficients of friction for 0.5 wt% and 2 wt% biolubricant, Synvisc-one®, Saline, and 

normal bovine synovial fluid, BSF, (n=6 each) obtained by torsional cartilage-on-cartilage 

friction testing. *= vs. Saline p<0.05, **= vs. BSF p<0.05, ***= vs. Synvisc® p<0.05, ## = 

vs. 0.5 wt% biolubricant p<0.05.
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Figure 4. 
a) Coefficients of friction (μmean) for bovine cartilage plug pairs (patella against femoral 

groove) tested in three lubricants (saline, BSF, and 2 wt% biolubricant) during the long-

duration torsional friction regimen (>10,000 rotations). * = Biolubricant vs. Saline p<0.05, 

**= Biolubricant vs. BSF, #= BSF vs. Saline, ↑ indicates pause for lubricant extraction 

(plugs held apart for about 30-60 sec). b) Total number of rings on cartilage plug surfaces 

from each pair tested (example photo from saline test shown in inset) following long-

duration torsional friction testing in three lubricants. * = vs. Saline p<0.05, ** = vs. BSF 

p<0.05. n>3.
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Figure 5. 
a) Representative CECT color maps of femoral groove plugs subjected to long-duration 

torsional friction testing using saline, BSF, and 2 wt% biolubricant. b) Percent increase in 

cartilage surface roughness following long-duration torsional friction testing in the same 

three lubricants. *= vs. Saline p<0.05.
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Figure 6. 
Summary of histological evaluation of rat knee joints exposed to different treatments 

following medial meniscal tear. One week after inducing the tear, the knees were intra-

articularly injected with either the biolubricant (0.5 wt% or 2 wt%), saline, or Synvisc-One® 

and were harvested 3 weeks later for histological analysis. Effect of the biolubricant vs. 

saline (a, b, c and d) at two different concentrations (0.5 and 2 wt/v%). Effect of Synvisc-

One® vs. saline (e, f, g and h). The differences (in percent) were standardized against the 

saline control. *P<0.05 vs. saline control, n=20 per group. Baseline healthy values for an 

animal not receiving the medial meniscal tear nor treatment via intra-articular injection for 

each endpoint are as follows: Substantial cartilage degeneration width (a, e), 0 μ m; total 

joint score (b, f), 1; osteophyte score (c, g), 1; and bone score (d, h), 0.[34]
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