Skip to main content
. Author manuscript; available in PMC: 2018 Dec 10.
Published in final edited form as: Genet Med. 2018 Jun 8;21(1):71–80. doi: 10.1038/s41436-018-0018-4

Table 2.

Performance of in silico prediction models with optimized thresholds for classification of BRCA1 and BRCA2 missense variants

Gene Model Optimal
Threshold
AUC (95%CI) FN / FP / TP / TN MCC

 BRCA1 NVM-Validation ≥9 0.94 (0.897–0.983) 5 / 8 / 25 / 79 0.719
Vest3RankScore ≥0.85546 0.9 (0.849–0.95) 8 / 24 / 51 / 153 0.678
Vest3Score ≥0.868 0.9 (0.849–0.95) 8 / 24 / 51 / 153 0.678
RF ≥0.298 0.92 (0.879–0.96) 8 / 26 / 51 / 151 0.663
AlignGVGDPrior ≥0.29 0.88 (0.829–0.931) 7 / 37 / 54 / 150 0.614
PERCHnoMAF ≥0.206316 0.87 (0.814–0.924) 10 / 31 / 51 / 156 0.614
PERCH ≥0.239853 0.87 (0.819–0.922) 10 / 32 / 51 / 155 0.607
Polyphen2HvarRankScore ≥0.91584 0.89 (0.845–0.93) 11 / 30 / 48 / 147 0.593
Polyphen2HvarScore ≥0.999 0.89 (0.845–0.93) 11 / 30 / 48 / 147 0.593
MetaSVMRankScore ≥0.9083 0.89 (0.844–0.928) 11 / 34 / 48 / 143 0.565

BRCA2 NVM-Validation ≥4 0.89 (0.826–0.963) 6 / 9 / 29 / 59 0.683
PERCH ≥0.295957 0.89 (0.847–0.939) 11 / 21 / 60 / 115 0.672
PERCHnoMAF ≥0.272149 0.88 (0.832–0.929) 12 / 23 / 59 / 113 0.642
RFModel ≥0.371 0.9 (0.843–0.947) 12 / 24 / 59 / 111 0.633
MetaSVMRankScore ≥0.93181 0.87 (0.824–0.923) 15 / 29 / 56 / 107 0.555
MetaSVMScore ≥0.7002 0.87 (0.824–0.923) 15 / 29 / 56 / 107 0.555
MetaLRRankScore ≥0.92107 0.87 (0.823–0.922) 16 / 30 / 55 / 106 0.535
MetaLRScore ≥0.7679 0.87 (0.823–0.922) 16 / 30 / 55 / 106 0.535
Vest3RankScore ≥0.79963 0.83 (0.776–0.893) 16 / 30 / 55 / 106 0.535
Vest3Score ≥0.811 0.83 (0.776–0.893) 16 / 30 / 55 / 106 0.535

FN: False negative; FP: False positive; TP: True positive; TN: True negative

AUC: Area under the curve from Receiver Operator characteristic analysis

MCC: Matthew Correlation Coefficient