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ABSTRACT
Renal clear cell carcinoma (RCC) is the most common type of kidney cancer and has a high propensity
for metastasis. While treatment with immune checkpoint inhibitors, such as anti-PD-1, have shown
modest improvements in survival for RCC, it is difficult to identify responders from non-responders.
Attempts to elucidate the mechanisms associated with differential response to checkpoint inhibitors
have been limited by small sample size making it difficult to detect meaningful associations. We utilized
existing large datasets from The Cancer Genome Atlas (TCGA) to first find predictors of disease
aggressiveness in the tumor microenvironment (TME) and hypothesized that these same predictors
may influence response to immunotherapy. We found primary metastatic (M1-stage IV) tumors exhibit
high immune infiltration, and high TP53-inactivation induced senescence activity compared to non-
metastatic
(M0-Stage I/II) tumors. Moreover, some TME features inferred from deconvolution algorithms, which
differ between M0 and M1 tumors, also influence overall survival. A focused analysis identified interac-
tions between tumor TP53-inactivation induced senescence activity and expression of inflammatory
molecules in pre-treatment RCC tumors, which predict both change in tumor size and response to
checkpoint blockade therapy. We also noted frequency of inactivating mutations in the protein poly-
bromo-1 (PBRM1) gene was found to be negatively associated with TP53-inactivation induced senes-
cence enrichment. Our findings suggest a mechanism by which tumor TP53-inactivation induced
senescence can modulate the TME and thereby influence outcome from checkpoint blockade therapy.
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Introduction

Renal clear cell carcinoma (RCC) is the most common type of
kidney cancer. It originates from the proximal tubules of the
nephron1 and often presents at late stages of illness, such that
over one-fourth of individuals diagnosed with RCC present
with metastatic disease, which is difficult to treat.2 Limited
success in the treatment of aggressive, late-stage RCC tumors
has been seen with immune checkpoint blockade therapy,
such as Nivolumab, which targets the programmed cell
death-1 receptor (PD-1).3 Few studies have examined tran-
scriptomic changes in RCC treated with anti-PD-1 therapy.4,5

The small size of prior studies and limited application of
transcriptome analytical tools has made it difficult to find
meaningful associations predictive of response to checkpoint
blockade therapy.

RCC tumors are known to have increased lymphocytic
infiltrates compared to other tumor types with a similar
mutation burden, and these high immune infiltrates in
RCC tumors are associated with an unfavorable disease
prognosis.6,7 Previous studies in RCC have shown
CD8 + T cell infiltrates characterized by high expression
of immune checkpoint molecules in the absence of active

dendritic cells are associated with poor prognosis, while
tumors characterized by presence of active dendritic cell
infiltration are associated with a good prognosis.8 In RCC
as well as other tumor types, tumor-immune interactions
can lead to alterations in the cellular state of immune cells
in the TME. For example, senescent tumor cells are known
to secrete cytokines, which results in the recruitment of
innate immune cells as well as the promotion of premalig-
nant tumor growth9 and activation of hypoxic pathways,10

which promote PD-L1 expression and subsequent T cell
dysfunction.11 Recent works on the role of cellular senes-
cence activity in tumors point to the induction of a senes-
cence-associated secretory phenotype (SASP) as playing a
major role in inducing tumor inflammation.12,13

Specifically, senescence activity is modulated by the innate
immunity cystolic DNA-sensors cyclic GMP-AMP synthase
(cGAS) and stimulator of interferon genes (STING), which
induce SASP.14,15 Moreover, SASP, can lead to immune
mediated clearance of senescent tumor cells. This clearance
is dependent on CD4 + T cell activity as well as activation
of dendritic cells (DC) by cGAS, as DC activation increases
antigen presentation to CD8 + T cells.
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Understanding tumor immune interactions, such as those
between senescent tumor cells and immune cells in the TME,
is essential for determining immunotherapy outcome.
However, immunotherapy datasets often suffer from small
sample size (e.g. Miao et al., 2018 with n = 33) making it
difficult to discern mechanisms associated with differential
response to treatment despite the availability of multi-omics
data. To address this limitation, we first aimed to determine
predictors of disease aggressiveness from the much larger
dataset of RCC available through The Cancer Genome Atlas
(TCGA).16 We hypothesized that the same predictors of dis-
ease aggressiveness may also predict response to checkpoint
blockade therapy. Specifically, we examined immune infiltra-
tion and pathway enrichment differences in primary meta-
static (M1/Stage IV) and non-metastatic (M0/Stage I-II) RCC
tumors in the TCGA dataset to determine predictors of dis-
ease aggressiveness. We then used the identified predictors to
perform a focused analysis of the Miao et al. dataset, which
contains RNA-seq and whole exome seq data on pre-
treatment tumors from patients in two cohorts treated with
checkpoint blockade therapy, in order to explore mechanisms
underlying immunotherapy response in RCC.

Materials and methods

Code and TCGA data availability

Level three RNA-seq and whole exome sequencing data-
sets from pre-treatment primary renal clear cell carci-
noma (denoted KIRC by TCGA)16 and cutaneous skin
melanoma (SKCM),17 as well as their corresponding clin-
ical variables were used in this article and can be
obtained from The Cancer Genome Atlas (TCGA)
Network (last update: 05/27/2016) via FireBrowse. All
statistical calculations were done using R 3.1.018 and
figures were generated using R packages ggplot2,19 corr-
plot, and pheatmap, and Adobe Illustrator version 22.0.1.
Code for statistical calculations and figures are available
upon request.

TCGA RCC clinical data

Tumors were categorized as either M0, M1, or were not
included in the study. The following criteria were met for all
samples categorized as M0: tumors were pathologically diag-
nosed via TNM staging as M0 and with a pathological grade
of stage 1 or stage 2. The following criteria were met by all
samples categorized as M1: tumors were pathologically diag-
nosed via TNM staging as M1, M1a or M1b, and had a
pathological grade of stage 4. We excluded all stage III tumors

from the initial analysis as there is often uncertainty asso-
ciated with whether these tumors are metastatic or not,
whereas stage I/II tumors are clearly non-metastatic. From
TCGA, 499 KIRC (M1: 79, M0: 297, stage III: 123) were
examined.

RCC immunotherapy cohorts

RNA-seq and whole exome sequencing data on pre-treatment
stage 4 metastatic RCC tumors from n = 33 patients were
published by Miao et al., 20185 and were used in this study to
evaluate the relevance of our findings from the TCGA M0 vs.
M1 RCC analysis. The Miao et al., 2018 study comprised
16 patients in the discovery cohort and 17 patients in the
validation cohort. The discovery cohort was part of the
NCT01358721 clinical trial,4 while the validation cohort con-
sists of patients and samples from multiple institutions.
Although all tumor tissue samples were analyzed prior to
immunotherapy treatment, we note significant clinical
(Table 1) and immunological differences (Fig. S2) between
the validation and discovery cohorts. Therefore, we adjust for
cohort membership, (discovery vs. validation cohort) in all of
our regression models and note if enrichment of specific
pathways or expression of key molecules differs between the
two cohorts (Fig. S2).

In the Miao et al., 2018 study, treatment response was
categorized using the best RECIST categorization20 and the
standard benefit response categorization (clinical benefit,
intermediate benefit, or no benefit). In our study, we also
categorize response as a binary metric, which groups the
best RECIST categories into either Response or Disease. We
binned the “clinical response” and “partial response” RECIST
categories as “Response”, and the “partial disease” and “stable
disease” RECIST categories as “Disease”.

Immune infiltration scores

To determine the degree of immune infiltration in M0 and
M1 samples in RCC, we applied the BASE deconvolution
algorithm,21 which infers immune infiltration level from
bulk tumor gene expression data using immune cell gene
expression profiles from the Immunological Genome Project
(ImmGen) as a reference.22 Specificity of some immune infil-
tration scores was confirmed previously by correlating
immune infiltration scores with flow cytometry fractions
from immune cell mixtures, as well as with tumor purity, as
described previously.21,23 We eliminated all immune infiltra-
tion scores that positively correlated with tumor purity. To
increase our resolution further, we examined how immune
cell subtype-specific gene sets were weighted by BASE when

Table 1. Discovery and validation cohort characteristics. Clinical characteristics for all individuals in the discovery and validation immunotherapy cohorts are shown.
All patients (n = 33) were diagnosed with stage IV metastatic disease and were treated with immunotherapy agents. RNA-seq and whole exome sequencing (WES)
was performed on n = 33 tumor samples prior to immunotherapy treatment. Patients from the discovery cohort belonged to the clinical trial published by Choueiri
et al., 2016, while patients from the validation cohort belonged to multiple institutions.

Cohort Sample Size Site of Biopsy Age

Sex First-line treatment

Immunotherapy Treatment

Therapy Dose

M F Y N 0.3 mg/kg 2 mg/kg 10 mg/kg

Discovery n = 16 Soft tissue metastases 62.88 n = 13 n = 3 n = 3 n = 13 Nivolumab n = 16 n = 4 n = 5 n = 10
Validation n = 17 Multiple Locations 63.06 n = 11 n = 6 n = 7 n = 10 Nivolumab n = 11

Atezolizumab n = 2
Nivolumab + ipilimumab n = 4

Unknown
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calculating the infiltration score for each ImmGen cell type.
Of the 226 ImmGen cell phenotypes, we eliminated all
immune infiltration scores that positively correlated with
tumor purity, and selected cell phenotypes based on their
marginal association with metastatic-status (FDR correction
at Q = 0.05). To increase our resolution further, we examined
how immune cell subtype-specific gene sets were weighted by
BASE when calculating the infiltration score for each
ImmGen cell type. We correlated ImmGen based weights
with the average gene expression of gene sets defining a
specific cell type from an external dataset.24 Of the 226
ImmGen cell phenotypes, this resulted in 48 immune cell
types in RCC which were inputs for least absolute shrinkage
and selection operator (LASSO) penalized regression25 which
identifies a parsimonious set of independent immune cell type
predictors of metastatic status.

A LASSO penalized logistic regression model was esti-
mated for RCC with metastatic status (M0/M1) as the depen-
dent variable and 48 immune cell infiltration scores as
penalized predictors with age and sex as unpenalized predic-
tors. We selected the immune cell types with non-zero coeffi-
cient estimates in the LASSO model at the penalization
threshold with minimal prediction error via 10-fold cross
validation. The tuning parameter selected gives the minimum
mean cross-validated error. The LASSO predictors and the
clinical covariates age and sex were subsequently utilized in
unpenalized multivariate Cox-proportional hazards regression
modeling. We then determined if each of the LASSO-selected
immune cell types interacted with metastatic status to influ-
ence survival. Based on the Cox regression modeling, hazard
ratios were determined for each immune cell type with an
overall measure of significance for the regression model com-
puted via a likelihood ratio test, where the null model adjusted
for age and sex. Additionally, immune infiltration scores of
the LASSO predictors were segregated into high and low
scores based on the median distribution to determine if
enrichment or depletion of specific immune cell types in the
microenvironment was predictive of survival. Difference in
high-low scores was determined using a log-rank test.

In order to develop a predictive model of survival based on
immune infiltration, we implemented backward selection on
the output from LASSO to further reduce the number of
predictors in our Cox regression survival models. LASSO
predictors were generated based on finding the best linear
combination of immune cell types, which predict disease
status. Although LASSO is a useful tool for prediction of
disease status, it can result in overfitting for individual level
variable evaluation, which we address by using backward
selection, where predictors were retained in our regression
model if they both minimized the Akaike Information
Criterion (AIC) and were found to be significant predictors
of overall survival. To further evaluate the survival model
resulting from backward selection, we ran a sensitivity analy-
sis on all M0 tumors, including stage III tumors, which were
not used to develop our immune infiltration based survival
model.

We applied the CIBERSORT deconvolution algorithm for
additional confirmation of the immune cell types present in
the TME.26 As CIBERSORT examines only 22 immune cell

types, we did not implement LASSO on CIBERSORT outputs.
CIBERSORT nicely complements the BASE algorithm, as it
provides estimates of immune cell proportions in the TME as
opposed to degree of immune infiltration provided by BASE,
which does not allow for comparisons of immune infiltration
levels between different immune cell types but allows com-
parison of immune infiltration scores between samples.
CIBERSORT was implemented on filtered (p-value for
Pearson correlation coefficient (R) < 0.05) immune cell frac-
tions for each individual. Similar to BASE, all regression and
Cox survival models using CIBERSORT were adjusted for age
and sex.

Gene set enrichment analysis

We performed Gene Set Enrichment Analysis (GSEA)27

using RNA-seq data and examined the human oncogenic
(MSigDB Version 6.1 C6) and immunological (MSigDB
Version 6.1 C7)28,29 gene set signatures. Based on the onco-
genic and immune signature profiles in RCC, we specifically
examined senescence and exhaustion pathways from
MSigDB C2, and compared them between M0 and M1 sam-
ples. We also performed single-sample GSEA (ssGSEA)30,31

for specific pathways, as the ssGSEA scores served as inputs
for generalized linear regression and Cox regression models.

Immune checkpoint and immune activation markers

For all gene expression analyses, log10-normalized expression
was used. Expression of key immunomodulatory factors was
compared between M0 and M1 tumors using Wilcoxon-rank
sum tests. Additionally, we assessed the association between
the expression of key immune checkpoint molecules and
immune infiltration scores using regression modeling, which
adjusts for age, sex, and tumor purity. Here, the ABSOLUTE
algorithm, which requires copy number data, was used to
determine tumor purity.32 Last, associations between immune
infiltrates and senescence enrichment were assessed using
Spearman rank correlation.

Regression modeling and use of interaction terms

We implemented regression modeling in order to elucidate
predictors of disease aggressiveness by determining the
association of specific co-variates, such as senescence
enrichment, with expression of immunomodulatory mole-
cules. In our regression models we include an interaction
term to determine if the association between senescence
enrichment and expression of immunomodulatory mole-
cules varies based on if the tumor is metastatic or not
(Table 2). We also implemented logistic regression model-
ing with interaction terms to assess if the association
between immunotherapy outcome and expression of immu-
nomodulatory molecules is affected by tumor senescence
enrichment (Table 3). In other words, we asked: does the
synergy between tumor senescence and immune activity
influence response to immune checkpoint blockade ther-
apy? Last, we implemented regression modeling with inter-
action terms to determine if the synergy between tumor
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senescence and immune activity influences percent change
in tumor size from baseline in the immunotherapy cohorts
(Table 4).

BAF/PBAF subunit mutation analysis

BAF/PBAF is a chromatin remodeling complex regulating
expression including selected immune cell types through effects
on the SWI/SNF family.33 Mutation status for each BAF/PBAF
subunit gene was obtained by examining publicly available
somatic variant calls in the mutation annotation format
(MAF) files synthesized from whole exome seq data for each
RCC sample in TCGA. MAF files for each individual were
converted into a binary matrix, where a 1 for a gene indicates
the presence of a mutation in the .MAF file while a 0 indicates
no mutation. Using our binary matrices, we specifically exam-
ined mutation status (presence or absence) in 12 BAF/PBAF
subunits, which are known to be commonly mutated in cancers
and were found to have mutations in RCC.34 These 12 subunits
are: ARID2, BCL7A, BRD7, PBRM1, PHF10, SARC4A,
SARCB1, SARCC2, SARCC1, SARCCA2, SARCD3, SS18. We
also examined if having a mutation in any one of the BAF/
PBAF subunits associates with senescence activity by pooling
mutation status information on the 12 BAF/PBAF subunits and
examining its association with senescence.

Validation of tumor senescence and immune interactions
in melanoma

We further demonstrate the value of incorporating senescence
immune interactions in predicting outcome from immu-
notherapy in melanoma, which is known to be highly immu-
nogenic and often responsive to checkpoint inhibition
therapy. We validated our RCC findings using TCGA mela-
noma (denoted SKCM) RNA-seq and clinical data
(n = 469),17 as well as one RNA-seq dataset published by
Hugo et al., 2016 on metastatic melanoma pre-treatment
tumor lesions from patients treated with anti-PD-1

Table 2. TP53-inactivation induced senescence differentially influences the tumor
microenvironment in M0 and M1 tumors. We developed age and sex adjusted
regression models using single-sample GSEA (ssGSEA) enrichment scores from
TCGA RCC tumors, M0 (n = 297) and M1 (n = 79), to determine whether the
TP53-inactivation induced senescence pathway, SENESCENCE_TP53_TARGETS_UP,
associates with VHL-induced hypoxia and expression of key immune markers
linking cellular senescence and immune infiltration. In models 1–4, we show the
association between senescence enrichment and cGAS (M1), STING (M2), PRF1
M3ð Þ, and GZMA M4ð Þ expression by regressing SENESCENCE_TP53_TARGETS_UP
enrichment scores on the log10 normalized gene expression of these markers. In
model 5 M5ð Þ we show the association between senescence enrichment and
hypoxia (MANIA_HYPOXIA_VHL_UP) enrichment in M0 and M1 RCC tumors. Our
regression models adjust for age and sex and specifically examine if there is an
interaction between SENESCENCE_TP53_TARGETS_UP enrichment and metastasis
status in order to determine if tumor senescence activity associates with markers of
inflammation differently based on M0 or M1 status.

Model Outcome Variable β̂ SE p-value

M1 E g½ �, cGAS ESsenescence UP 1.365 0.3475 0.000102
ESsenescence UP � M −2.714 0.7275 0.000221

M2 E g½ �,STING ESsenescence UP 1.660 0.2838 1.08*10−08

ESsenescence UP � M −1.551 0.5942 0.00941
M3 E g½ �,PRF1 ESsenescence UP 2.397 0.5247 6.66*10−06

ESsenescence UP � M −3.236 1.098 0.00342
M4 E g½ �,GZMA ESsenescence UP 2.054 0.6228 0.00106

ESsenescence UP � M −2.930 1.303 0.0252
M5 E p½ �,PHypoxia ESsenescence UP 0.7909 0.09713 5.97*10−15

ESsenescence UP � M −0.5865 0.2033 0.00415

M1� M4 : E g½ � ¼ β̂1ESsenescence UP þ β̂2Mþ β̂3ESsenescence UP � Mþ β̂4aþ β̂5s
M5 : E p½ � ¼ β̂1ESsenescence UP þ β̂2Mþ β̂3ESsenescence UP � Mþ β̂4aþ β̂5s where-

E g½ � is the expected log10 normalized gene expression of cGAS (MB21D1),
STING, PRF1, or GZMA, ESsenescence UP is SENESCENCE_TP53_TARGETS_UP path-
way enrichment scores, E p½ � is the expected pathway enrichment score of
PHypoxia , the MANIA_HYPOXIA_VHL_TARGETS_UP pathway, M is metastasis
status, a is age, and s is sex.

Note: SE is standard error

Table 3. Predictive effect of senescence immune interactions on immunotherapy
response. Logistic regression modeling was implemented on the Miao et al.,
2018 immunotherapy dataset (n = 33), which consists of the discovery (n = 16),
and validation (n = 17) cohorts, to determine if senescence immune interactions
were predictive of response to immune checkpoint inhibitors. We specifically
focused on immunological factors that interact with senescence enrichment to
predict immunotherapy response. Best RECIST score was binned as a binary
variable – Response (CR/PR = 1) and Disease (PD/SD = 0) and this was the main
outcome. We also compared the performance of our senescence-immune inter-
action predictors M1�M5ð Þ to the immunophenotype score (IPS) M6ð Þ. All
models M1�M6ð Þ were adjusted for age and cohort status (discovery vs.
validation) and were compared to the null model (M0), which also adjusts for
age, and cohort status.

Model Predictors β̂ SE p-value AIC
Model
p-value

M1 ESsenescence UP −53.80 28.43 0.0580
cGAS −101.5 50.67 0.0451
ESsenescence UP � cGAS 157.7 80.61 0.0504

43.83 0.01266
M2 ESsenescence UP −29.07 12.68 0.0219

PDCD1 −91.35 39.09 0.0195
ESsenescence UP � PDCD1 146.1 62.69 0.0198

41.19 0.00371
M3 ESsenescence UP −32.00 19.05 0.0930

GZMA −18.97 10.37 0.0675
ESsenescence UP � GZMA 29.72 16.19 0.0665

48.09 0.08661
M4 ESsenescence UP −24.5609 15.0025 0.101

PRF1 −26.028 15.197 0.0868
ESsenescence UP � PRF1 39.661 22.965 0.0842

48.77 0.1168
M5 ESsenescence UP −100.901 45.30 0.0259

PHypoxia −130.121 59.72 0.0294
ESsenescence UP � PHypoxia 206.31 91.424 0.0294

40.97 0.00335
M6 IPS 0.4435 0.4275 0.299

49.52 0.2846

M0 Nullð Þ : logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2c
M1: logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4cGASþ
β̂5ESsenescence UP � cGAS

M2: logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4PDCD1þ
β̂5ESsenescence UP � PDCD1

M3: logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4GZMAþ
β̂5ESsenescence UP � GZMA

M4: logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4PRF1þ
β̂5ESsenescence UP � PRF1

M5: logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4PHypoxia þ
β̂5ESsenescence UP � PHypoxia

M6: logit PðY ¼ 1ð ÞÞ ¼ β̂1aþ β̂2cþ β̂3IPS; where Y ¼ 1 is assosciated
with response, a is age, c is cohort status (discovery vs. validation),
ESsenescence UP is SENESCENCE_TARGETS_UP pathway enrichment score,
PHypoxia is MANIA_HYPOXIA_VHL_TARGETS_UP pathway enrichment score,
cGAS and PDCD1 are log10 normalized gene expression values for the cGAS
(MB21D1), PDCD1, GZMA, and PRF1 genes respectively, and IPS is the
immunophenotype score (IPS). All models were compared with the Null
to determine significance.

Note: SE is standard error and AIC is Akaike Information Criterion
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(n = 26).35 For the Hugo et al., 2016 dataset, we converted all
fragments per kilobase of transcript per million (FPKM)
expression values into transcripts per million (TPM) using
the equation: TPM ¼ FPKMiP

j
FPKMi

� 106 in order to maintain con-

sistency with the Miao et al., 2018 dataset.

Comparison with immunophenotype score (IPS) in RCC
and melanoma

To evaluate the performance of our senescence immune inter-
action predictors in predicting outcomes from checkpoint
blockade therapy, we compared our predictors with the
immunophenotype score (IPS), which characterizes tumor
immunogenicity.36 All predictors, including IPS, were incor-
porated as covariates into logistic regression models which
adjust for age and sex or cohort status (discovery vs. valida-
tion for RCC).

Results

M1 RCC tumors are inflamed compared to M0

RCC M1 tumors have high CD4 + T cell-2 and CD8 + T cell-1
infiltrates (see Table S1 for description of BASE immune cell
types) while M0 tumors exhibit stronger macrophage, dendri-
tic cells (DC), monocyte, and B cell infiltrates (Figure 2A). Of
the 11 immune cell types predictive of metastasis based on

penalized regression, three cell types, including activated DC
and CD8 + T cell-1, interact with metastasis status to influ-
ence survival (Figure 2C, Fig. S5). Individual level evaluation
of immune predictors using backward selection shows three
immune cell types, CD8 + T cell-1, CD4 + T cell-2, and
activated DC (DC Active), are predictive of survival in an
age and sex-adjusted cox regression model (Figure 2B).
CD8 + T cell-1 and CD4 + T cell-2 infiltrates negatively
associate with survival, while DC Active infiltration is asso-
ciated with improved overall survival. Sensitivity analysis in
all M0 tumors, including stage III, which were excluded in our
initial analysis to determine immune predictors, shows
CD4 + T cell-2 infiltration is predictive of overall survival in
M0 RCC patients. Based on these results, we focused on
CD8 + T cell-1, CD4 + T cell-2, and activated DC (DC
Active), as CIBERSORT and GSEA (Fig. S3-S4, Table S2-S4)
analyses have also confirmed their association with metastasis
status and survival (Figure 2B, Table S2). Specifically,
CIBERSORT and GSEA confirm that the CD4 + T cell-2
signature in BASE is detecting CD4+ memory T cells, while
the activated DC and CD8 + T cell signatures in BASE are
indeed detecting activated DCs and CD8 + T cells respectively
(Fig. S3-S5, Table S3-S5).

Due to the increased immune activity observed in M1
tumors compared to M0, we examined the expression of
immune checkpoint and activation markers, and found M1
tumors exhibit increased expression of both immune check-
point and activation markers (Fig. S6). Moreover, the positive

Table 4. Predictive effect of senescence immune interactions on percent change in tumor size from baseline. Regression modeling was implemented on the Miao
et al., 2018 immunotherapy dataset (n = 33), which consists of the discovery (n = 16), and validation (n = 17) cohorts, to determine if enrichment of the TP53-
inactivation induced senescence pathway, SENESCENCE_TP53_TARGETS_UP, interacts with immune markers to influence percent change in tumor size from baseline
in patients who received immune checkpoint blockade therapy. We assessed if the interaction between SENESCENCE_TP53_TARGETS_UP pathway enrichment and
cGAS M1ð Þ, PDCD1 M2ð Þ, GZMA M3ð Þ, PRF1 M4ð Þ, or GZMB M5ð Þ expression influenced change in tumor size from baseline. We compared the performance of our
senescence immune interaction predictors M1� M5ð Þ to the immunophenotype score (IPS) M6ð Þ. All regression models were adjusted for age and cohort status and
were compared to the null model, which also adjusts for age and cohort status to determine model significance.

Model Predictors β̂ SE p-value AIC R2 Model p-value

M1 cGAS 839.8 383.1 0.0392
ESsenescence UP � cGAS −1316 534.9 0.0222

293.0 0.341 0.0340
M2 PDCD1 398.7 205.1 0.0648

ESsenescence UP � PDCD1 −630.1 304.8 0.0507
296.5 0.252 0.172

M3 GZMA 225.5 112.5 0.0575
ESsenescence UP � GZMA −384.0 169.07 0.0333

294.1 0.314 0.059
M4 PRF1 399.2 209.9 0.0704

ESsenescence UP � PRF1 −465.0 242.7 0.0684
294.5 0.304 0.0719

M5 GZMB 425.5 234.5 0.0833
ESsenescence UP � GZMB −777.0 383.3 0.0549

295.8 0.271 0.127
M6 IPS −17.21 8.586 0.0564

293.9 0.214 0.0449

M0 Nullð Þ : MaxΔ ¼ β̂1aþ β̂2c
M1 : MaxΔ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4cGASþ β̂5ESsenescence UP � cGAS
M2 : MaxΔ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4PDCD1þ β̂5ESsenescence UP � PDCD1
M3 : MaxΔ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4GZMAþ β̂5ESsenescence UP � GZMA
M4 : MaxΔ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4PRF1þ β̂5ESsenescence UP � PRF1
M5 : MaxΔ ¼ β̂1aþ β̂2c þ β̂3ESsenescence UP þ β̂4GZMBþ β̂5ESsenescence UP � GZMB
M6 : MaxΔ ¼ β̂1aþ β̂2c þ β̂3IPS; where MaxΔ is the percent change in tumor size from baseline, a is age c, is cohort status, ESsenescence UP is
SENESCENCE_TP53_TARGETS_UP pathway enrichment scores, and cGAS; GZMB; PDCD1; GZMA; and PRF1 are log10 normalized gene expression values for the
cGAS (MB21D1), PDCD1, GZMA, PRF1, and GZMB genes respectively. Lastly, IPS is the immunophenotype score (IPS). All models were compared with the Null model
to determine significance

Note: SE is standard error and AIC is Akaike Information Criterion, and R2 is the R-Squared value for regression the model.

ONCOIMMUNOLOGY e1500106-5



association between immune checkpoint marker expression
(TIGIT, CD38, CTLA4, PDCD1) and CD8 + T cell-1 infiltra-
tion is significantly stronger in M1 tumors compared to M0
(Fig. S7, Table S6). These findings align with previous work
which also demonstrates CD8 + T cells with increased expres-
sion of immune checkpoint markers in the absence of active
DCs are associated with a worse prognosis.8 In order to better
characterize T cell dysfunction in M1 tumors based on bulk
tumor gene expression, we examined pathways defining four
possible T cell states in the bulk M1 tumor, senescence,
anergy, stem-ness, and exhaustion, and examined their asso-
ciation with T cell infiltration. We found no differences in the
expression of T cell-specific senescence and anergy markers/
pathways between M0 and M1 tumors. Based on these results,
we next assessed tumor pathways, such as tumor senescence,
which can lead to tumor inflammation and immune
dysfunction.

We find M1 RCC tumors are highly senescent with four
out of eight senescence pathways enriched in M1 tumors
(Figure 2D) compared to M0. Moreover, high oncogenic
activity was observed in M1 tumors (Table S7) including a
TP53 inactivation oncogenic pathway which associates with
increased senescence activity (Fig. S8). This suggested to us
that the tumor itself rather than surrounding immune cells
is senescent. Differential expression of genes in the TP53-
inactivation induced senescence gene sets was also exam-
ined to confirm differential enrichment (Fig. S9). Therefore,
we focused on senescence pathways induced by TP53 inac-
tivation as mutations in TP53 are in the top 10 most
common mutations found in RCC with a mutation fre-
quency of 2.88% based on TCGA mutation analysis,37 and
unlike other senescence pathways, we can say with greater
confidence that TP53-inactivation induced senescence activ-
ity derives from the tumor itself rather than surrounding
non-tumor cells. Despite the relatively low TP53 mutation
rate in RCC, TP53 mutations are associated with poor
prognosis,38 and expression of the KIF2C (kinesin family
member 2C) protein, which regulates cellular senescence of
human primary cells via a p53-dependent pathway, is higher
in TP53 mutated cancers,39 including RCC.40 Given the
increased senescence and inflammation signatures observed
in M1 tumors, we wanted to determine if senescence activ-
ity associates with inflammation and T cell checkpoint
marker expression and if these associations are different
between M1 and M0 tumors.

Tumor senescence associates with inflammation inducers
differently in M0 tumors compared to M1

In order to determine if the association between TP53-inacti-
vation induced senescence enrichment and immune cytolytic
activity varies based on tumor aggressiveness, we implemen-
ted multivariate regression modeling. In other words, we
wanted to know if the effect of senescence enrichment on
expression of key molecules and pathways depends on
whether senescence enrichment is observed in M0 or M1
tumors. Specifically, we examined hypoxia pathways, which
are known to induce inflammation (Table 2, Table S10), and
the expression of the cystolic DNA sensors cGAS and STING,

which directly link senescence activity with immunity. We
also examined the expression of PRF1 and GZMA,
which are known predictive markers of immune cytolytic
activity across multiple cancer types as demonstrated by
Rooney et al.41 Hypoxia (MANIA_HYPOXIA_VHL_UP)42

and senescence (SENESCENCE_TP53_TARGETS_UP)
enrichment associate differently depending on if the tumor
is metastatic or not (Table 2, Table S10). Similarly, the metas-
tasis state of the tumor appears to modify the association
between senescence enrichment and expression of the cystolic
DNA sensors, cGAS and STING as well as expression of the
immune cytolytic markers, GZMA and PRF1 (Table 2,
Table S10). Based on these results, we explored if considering
the combined effect of senescence and inflammation was
predictive of prognosis in individuals who received check-
point blockade therapy.

Combined effect of tumor senescence and inflammation
influence response to checkpoint blockade therapy

We implemented regression modeling to determine if the
interactions between senescence pathway activity
(SENESCENCE_TP53_TARGETS_UP) and specific
immune markers, such as PDCD1, MB21D1 (cGAS),
GZMA, and PRF1 influence response to checkpoint
blockade therapy as measured by percent change in
tumor size from baseline and best RECIST score
(Table 3–4). The molecules PDCD1, cGAS, and GZMA,
PRF1, and GZMB were specifically examined because
cGAS is known to induce SASP in tumor cells, PDCD1
is targeted by anti-PD-1 therapy and is expressed by both
exhausted and activated T cells, and expression of GZMA,
PRF1, and GZMB, is indicative of cytolytic immune activ-
ity. Tumors with increased expression of immuno-
modulatory molecules but low SENESCENCE_TP53
_TARGETS_UP enrichment are associated with poor
response to checkpoint blockade therapy, while tumors
with both increased SENESCENCE_TP53_TARGETS_UP
enrichment and increased expression of immunomodula-
tory molecules are associated with good response to
checkpoint blockade therapy. These findings are high-
lighted in Table 3 (M1-M5), which shows senescence
enrichment alone and expression of immunomodulatory
molecules alone are associated with poor response to
treatment (β̂ is negative), while the interaction between
senescence enrichment and immunomodulatory molecules

is associated with good response to treatment (β̂ is posi-
tive). This suggests high SENESCENCE_TP53
_TARGETS_UP activity coupled with immune activation
is predictive of positive response from checkpoint block-
ade therapy in RCC. To further evaluate these results, we
examined the association of senescence immune interac-
tions with percent change in tumor size from baseline in
the immunotherapy cohort and observed similar results
(Table 4). Moreover, we compared the performance of
our senescence immune interaction predictors with the
immunophenotype score (IPS), which characterizes
tumor immunogenicity. Overall, senescence immune
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interactions were superior predictors of checkpoint block-
ade response in RCC than IPS, as assessed by the AIC
and R2 values of the regression models (Table 3–4).

Next, we examined the relationship between senescence
and overall survival in patients who either did or did not
receive checkpoint blockade therapy. We hypothesized that
senescence activity alone may negatively influence survival,
while senescence activity coupled with increased immune
activation, such as through checkpoint blockade therapy,
may improve overall survival. Therefore, senescence activity
in individuals treated with checkpoint blockade therapy
should display a positive association with survival compared
to individuals who did not receive immunotherapy as check-
point blockade therapy boosts immune activation.

High tumor senescence activity associates with improved
overall survival in individuals who have received
checkpoint blockade therapy, but it associates with worse
overall survival in individuals who have not received
checkpoint blockade therapy

We examined the role of TP53-inactivation induced senes-
cence activity on survival in individuals who did (Miao et al.
dataset) and did not (TCGA cohort) receive immunotherapy.
We computed senescence enrichment scores for all M0 and
M1 samples and segregated tumors into high and low scoring
based on the median for the distribution. In the TCGA
cohort, the SENESCENCE_TP53_TARGETS_DN pathway
was predictive of overall survival (Figure 3A) such that
increased SENESCENCE_TP53_TARGETS_DN enrichment
is associated with worse survival even after adjusting for
metastasis status (Table S8).

In the immunotherapy cohorts, and in the discovery
cohort specifically, increased enrichment of the SENE
SCENCE_TP53_TARGETS_UP pathway was predictive of
survival (Figure 3B-C), while the SENESCENCE_
TP53_TARGETS_DN pathway was only predictive of overall
survival in the discovery cohort (Figure 3G). In the validation
cohort alone, we did not find any differences in survival due
to high vs. low senescence enrichment. Furthermore, Cox
regression, which adjusts for age, sex, and cohort status
shows increased SENESCENCE_TP53_TARGETS_DN enrich
ment associates with improved survival in the immunother-
apy cohorts (Table S9). Of note, we did not find any
differences between the discovery and validation cohorts
with respect to SENESCENCE_TP53_TARGETS_UP43 or
SENESCENCE_TP53_TARGETS_DN43 activity (Fig. S2).

Increased senescence enrichment is predictive of worse
overall survival in the TCGA dataset. However, in the immu-
notherapy cohorts and in the discovery cohort specifically, we
find increased senescence enrichment improves survival. This
reversal in the association between survival and senescence
activity based on checkpoint blockade therapy matches our
hypothesis, which states senescence activity alone may nega-
tively influence survival, while senescence activity coupled
with immune activation, such as via checkpoint blockade
therapy, may improve overall survival.

Validation of senescence immune predictors in melanoma

To validate the senescence immune findings from RCC, we
evaluated our senescence immune predictors on TCGA
SKCM tumors and on the pre-treatment metastatic melanoma
anti-PD-1 therapy dataset published by Hugo et al., 2016.35

We show that senescence SENESCENCE_TP53_
TARGETS_DN enrichment alone is both a strong predictor
of survival and immunotherapy response in metastatic mela-
noma and it is also a better predictor of immunotherapy
response than IPS. However, our senescence immune
interactions did not predict immunotherapy response in
metastatic melanoma with the exception of STING
and SENESCENCE_TP53_TARGETS_UP (see Fig. S11,
Table S11).

SENESCENCE_TP53_TARGETS_DN activity is negatively
associated with mutations in the BAF/PBAF subunits

As mutations in the PBRM1 gene are associated with T
cell-mediated tumor killing,44 delayed onset of tumor
senescence,45 and benefit from immunotherapy, we won-
dered if PBRM1 mutations are associated with senescence
enrichment. Using regression modeling, we found a nega-
tive association between
SENESCENCE_TP53_TARGETS_UP enrichment and
PBRM1 mutation allele frequency in the RCC immu-
notherapy dataset (Fig. S12E). Next, we looked through
TCGA RCC mutation data to determine if mutations in
BAF/PBAF subunits, including PBRM1, are associated
with reduced senescence activity. We found having a
mutation in any of the 12 commonly mutated BAF/PBAF
subunits associates with reduced senescence activity
(Fig. S12A). Moreover, we found three BAF/PBAF subu-
nits, PBRM1, SS18, and BRD7, which independently
associate with reduced senescence enrichment (Fig. S12
B-D). Our findings lead us to hypothesize that PBAF/
BAF subunit mutations may influence immunotherapy
outcomes via their effects on tumor senescence.

Senescence activity correlates with CD4 + T cell-2
infiltration

We find both immune infiltration and senescence activity
vary with metastasis status. Therefore, we examined if
immune cell types predictive of disease aggressiveness
(i.e. metastasis) also correlate with TP53-inactivation induced
senescence activity. We found CD4 + T cell-2 infiltration
positively correlates with the SENESCENCE_TP53_
TARGETS_UP enrichment in the TCGA (ρ= ~ 0.49) and
validation (ρ= ~ 0.55) cohorts, but not in the discovery cohort
(Figure 3I-L). In addition, we examined the effect of immune
infiltration on overall survival in the immunotherapy cohorts,
which revealed CD8 + T cell-1 infiltration may be associated
with worse survival (trending towards significance p = 0.06)
while CD4+ Tcell-2 and activated DC infiltration do not affect
overall survival (Figure S5).
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Figure 1. Outline of methods and relationship between senescence and immune cells in the tumor microenvironment. A) TCGA renal clear cell carcinoma RNA-seq
and whole exome sequencing data were used in combination with tumor staging and survival information to discern differences between metastatic (M1-stage
IV, n = 79) and non-metastatic (M0-stage II/III, n = 297) tumors. Five different analyses were performed to determine immune infiltration, pathway activity, and
mutation status. Outputs from these analyses were used in regression models to characterize and assess the role of the tumor microenvironment in metastatic
disease. B) A diagram outlining a potential mechanism by which high oncogenic activity can lead to senescence induction, which has both pro and
anti-tumorigenic effects.

Figure 2. Renal clear cell carcinoma tumor immune microenvironment characterization A) Shown are 12 out of 13 BASE-generated immune cell types found to be
predictors of metastasis status for RCC based on penalized regression modeling. B) Results from backward selection applied to penalized regression predictors show
three immune cell types, CD8 + T cell-1, DC Active (Activated DC), and CD4+ Memory T cell are significant predictors of overall survival in an age and sex adjusted
cox proportional hazards model. Sensitivity analysis shows the effect of immune predictors on overall survival in all M0 tumors (stage I/II, n = 297, stage III, n = 123).
C) Immune scores for three predictors, CD8 + T cell-1, CD4 + T cell-2, and Macrophage-3, which interact with metastasis status in regression models of survival, were
binned as high or low. The effect of these three immune infiltration scores on survival is shown. D) We performed GSEA analysis for all senescence pathways in the
MSigDB database. The normalized enrichment score (NES) is displayed on the x-axis. Pathways shown are significant for M1 post-FDR correction (Q-values are shown
with Q < 0.2).
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Discussion

Our first goal was to determine predictors of disease aggres-
siveness by comparing M0 and M1 tumors. We found meta-
static tumors (M1) are inflamed and senescent compared to
non-metastatic (M0) tumors, and they also exhibit increased
expression of immune checkpoint markers, which was con-
sistently associated with CD8 + T cell-1 infiltration.
Furthermore, we show CD8 + T cell-1 infiltration continues
to be associated with poor survival even in individuals treated
with checkpoint blockade therapy (Figure S5). These findings
align with previous studies, which show CD8 + T cells with
increased expression of immune checkpoint markers are asso-
ciated with poor survival. In addition, M1 tumors potentially
show uncoupling of TP53-inactivation induced senescence
activity and its downstream pro-inflammatory signals. Our
focused analysis of the Miao et al. data suggests this may
have implications for response to immunotherapy and overall
survival (Figure 1B, Fig. S11, Table S11). Increased activation
of oncogenic pathways (Table S7) in M1 tumors may be
driving oncogene-induced cellular senescence activity,13

which can paradoxically result in the recruitment of immune
cells through the release of cytokines while also promoting
pro-tumorigenic effects such as the activation of EMT and
hypoxia pathways10,13 (Figure 1B). Notably, we also found
strong correlations between EMT, hypoxia and senescence
pathways in both the RCC TCGA and the immunotherapy
datasets (Fig. S13). As such, our TCGA analysis suggests
senescence activity could be developed as a marker of metas-
tasis risk. However, additional in vivo experimental studies
should be conducted to support these findings.

Previous studies have demonstrated the role of cGAS-
STING signaling in linking tumor senescence with innate
immunity. For example, cytoplasmic chromatin is also
known to trigger inflammation in senescence and cancer by
activating the innate DNA sensing pathway cGAS-STING.46

Moreover, cGAS is both a key sensor of cystolic DNA and is
essential for DNA-damage induced cellular senescence and
SASP, which not only defines senescence, but also leads to
the expression of inflammatory cytokines and the activation
of innate immunity.12 cGAS-STING activity coupled with
anti-PD-1 therapy has been shown to result in the greatest

Figure 3. TP53-inactivation induced senescence pathways correlate with survival and T cell infiltration. The effect of high vs. low single-sample gene set
enrichment (ssGSEA) scores for the SENESCENCE_TP53_TARGETS_UP (A) and SENESCENCE_TP53_TARGETS_DN (E) pathways in the TCGA RCC (M0 and M1) cohort
was examined using Kaplan-Meier (KM) survival curves. High vs. low ssGSEA scores for SENESCENCE_TP53_TARGETS_UP (B) and SENESCENCE_TP53_TARGETS_DN
(F) in all individuals who received immunotherapy in the Miao et al., 2018 dataset is also shown as well as KM curves comparing high and low ssGSEA scores for
SENESCENCE_TP53_TARGETS_UP (C, D) and SENESCENCE_TP53_TARGETS_DN (G, H) in the discovery and the validation cohorts. The cut-offs for high and low
scores was set at the median for the score distribution in each cohort. We also examined the association of SENESCENCE_TP53_TARGETS_DN enrichment with
CD4 + T cell-2 infiltration scores in all cohorts (I-L) using the spearman rank correlation test.
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reduction in tumor burden in mouse models of non-small cell
lung cancer, and this is thought to result from activation of
dendritic cells, and increased antigen presentation to CD8 + T
cells.47 We outline a potential mechanism by which senes-
cence may influence the TME in Figure1B. Based on our
results, it appears senescence activity alone is associated with
poor survival in RCC, while senescence activity in individuals
who receive immunotherapy is associated with improved sur-
vival. This suggests senescence coupled with activation of
immunity via cGAS-STING signaling is predictive of check-
point blockade therapy response in RCC as demonstrated
from our predictive regression models (Table 3–4).
Moreover, we also showed that senescence activity is a strong
predictor of survival and anti-PD-1 response in metastatic
melanoma (Table S11, Fig. S11). However, we do note that
senescence immune interactions behave differently in mela-
noma than in RCC and these effects may be tumor type or
tumor immune landscape specific. Additional in vivo studies
should be performed to test the role of senescence immune
modulation in multiple cancer types.

Lastly, we examined the relationship between senescence
and mutations in PBRM1, and, more broadly, in BAF/PBAF
subunits. PBRM1 encodes a subunit of the SWI/SNF chro-
matin complex, is a regulator of p53, and is required for the
induction of replicative senescence.45 Moreover, PBRM1
knockdown is associated with a delay in the onset of senes-
cence activity. Our findings match the literature as indivi-
duals with a PBRM1 mutation tend to have reduced
senescence activity. We also showed mutations in other
BAF/PBAF subunits associate with reduced senescence activ-
ity (Fig S12A-D). However, the exact mechanism by which
PBRM1 or BAF/PBAF subunit mutations influence senes-
cence remains unclear.

In conclusion, our assessment of TME predictors of disease
aggressiveness and subsequent analyses on immunotherapy
datasets led us to hypothesize a potential mechanism linking
senescence with tumor inflammation in RCC, which we have
outlined in Figure 1B. We hope this hypothesis generating
research allows for future studies to better characterize the
role of senescence in influencing the TME and its potential
implications in immunotherapy treatment.

Limitations and future directions

It should be noted that it is difficult to assess which specific
cell types exhibit senescence from a bulk tumor analysis. The
lack of increased expression of immune senescence specific
markers, such as CD57, KLRG-1, and CD160, suggested
tumor cells and not immune cells in the RCC M1 TME
undergo senescence. However, examination of these markers
alone is insufficient for determining which cell types activate
cellular senescence pathways. Single-cell sequencing would
better allow us to elucidate the role of senescence in tumors
and or immune cells. Furthermore, experimental evidence is
needed to validate our computational findings on the possible
role of different immune cell subsets in influencing the TME,
as a major drawback of computational methods is that they

are correlative and not causative, and therefore can be used
only for hypothesis generating purposes. Additionally, while
LASSO deals with co-linear predictors, it picks the most
predictive of the co-linear predictors, which is statistically
appropriate, but may not reflect the underlying biology.
Although we have outlined a potential mechanism to help
explain differences in response to checkpoint blockade ther-
apy in RCC, due to the correlative nature of our study, our
findings on the role of cellular senescence and innate immu-
nity in influencing treatment outcome should also be consid-
ered as hypothesis generating. However, future studies on
determining predictors of immunotherapy outcome should
consider incorporating information on tumor senescence.
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