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ABSTRACT

Determining prostate cancer (PCa) aggressiveness and reclassification are critical events during the treat-
ment of localized disease and for patients undergoing active surveillance (AS). Since T cells play major roles
in cancer surveillance and elimination, we aimed to identify genetic biomarkers related to T cell cancer

immune response which are predictive of aggressiveness and reclassification risks in localized PCa. The KEYWORDS

genotypes of 3,586 single nucleotide polymorphisms (SNPs) from T cell cancer immune response pathways
were analyzed in 1762 patients with localized disease and 393 who elected AS. The aggressiveness of PCa
was defined according to pathological Gleason score (GS) and D’Amico criteria. PCa reclassification was
defined according to changes in GS or tumor characteristics during subsequent surveillance biopsies.
Functional characterization and analysis of immune phenotypes were also performed. In the localized PCa
cohort, seven SNPs were significantly associated with the risk of aggressive disease. In the AS cohort, another
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eight SNPs were identified as predictors for aggressiveness and reclassification. Rs1687016 of PSMB8 was the
most significant predictor of reclassification. Cumulative analysis showed that a genetic score based on the
identified SNPs could significantly predict risk of D’Amico high risk disease (P-trend = 2.4E-09), GS4 + 3
disease (P-trend = 1.3E-04), biochemical recurrence (P-trend = 0.01) and reclassification (P-trend = 0.01). In
addition, the rs34309 variant was associated with functional somatic mutations in the PI3K/PTEN/AKT/MTOR
pathway and tumor lymphocyte infiltration. Our study provides plausible evidence that genetic variations in
T cell cancer immune response can influence risks of aggressiveness and reclassification in localized PCa,
which may lead to additional biological insight into these outcomes.

Abbreviations: PCa, prostate cancer; AS, active surveillance; GS, Gleason score; PSA, prostate specific antigen;
TCGA, The Cancer Genome Atlas; SNP, single nucleotide polymorphisms; UFG, unfavorable genotype.

Introduction PCa diagnosis, although few are associated with PCa
aggressiveness.” Hypothesis-driven work has also identified
SNPs associated with PCa aggressiveness in intermediate-risk
disease, reclassification on active surveillance (AS), and post-
treatment outcomes.®” Despite these findings, the contribution
of germline variants to PCa aggressiveness and progression of
low risk disease remains largely unexplored.

Immune cells are the major force of cancer surveillance
and elimination.'”” Multiple immune-related treatments
such as sipuleucel-T and checkpoint inhibitors have
shown potential promise in the treatment of metastatic
castration-resistant PCa.'"'? Although recent clinical trials
of a CTLA4 inhibitor (ipilimumab) have indicated minimal
impact on overall survival,'>'* the treatment involving
autologous cellular immunotherapy has already been
approved to treat advanced PCa, while more definitive

Treatment decisions for localized prostate cancer (PCa) are
guided by risk stratification based on disease aggressiveness."
Clinical factors such as pathological Gleason score (GS) and
serum prostate specific antigen (PSA) values are known to
predict outcomes such as recurrence and metastasis;> how-
ever, risk determination remains imperfect. For example,
approximately 20-30% of men who elected active surveillance
for low risk PCa experienced reclassification or disease
upgrading during 5 years of follow-up.’

Genomic-level changes can partially explain the variation
seen in PCa, as several chromosomal regions have been impli-
cated in disease aggressiveness.* Despite this, no specific genetic
mutation has been conclusively validated as a predictor of risk in
localized PCa. Multi-stage genome wide scans have identified
single nucleotide polymorphisms (SNPs) that are associated with
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studies are being planned to determine efficacy of other
checkpoint blockade treatment. Furthermore, androgen
ablation may increase prostate T cell infiltration in both
normal and malignant prostate tissue'> and PD-L1 expres-
sion may serve as an independent indicator of biochemical
recurrence in primary PCa,'® lending evidence to the role
that the innate adaptive immune system may play in PCa
development or progression.

T cell cancer immune response is dependent on the full anti-
tumor life cycle of T cells, from priming to immune-related
function,'” much of which is under genetic control. Intra-tumor
T cells, rather than B cells, are reported to be associated with
clinical outcome in PCa.'” Also, there is evidence that T cells, but
less so for other immune cells, play a key role in the anti-cancer
immunity.'>'® In light of the importance of T cell cancer immune
response in PCa prognosis, we hypothesized that germline differ-
ences in T cell cancer immune response pathways may be asso-
ciated with PCa aggression and reclassification. In this multi-phase
study, we aimed to investigate the association of cancer immune
pathway genetic variation with localized PCa aggressiveness and
reclassification risk. We first compiled a comprehensive panel of
germline genetic variants of 312 T cell cancer immune response
genes and investigated the association between variant alleles and
risk of localized PCa diagnosis in a MD Anderson Cancer Center
PCa (MDACC-PCa) patient cohort (phases I and II). We then
evaluated associations of these SNPs with reclassification risk in
patients undergoing AS from an ongoing prospective trial (phase
III). We calculated genotypic risk scores and then examined their
association with PCa-related outcomes. Based on these findings,
we performed functional characterization of identified SNPs and
implicated possible mechanisms. To our knowledge, this is the first
integrated, large-scale investigation of the association of T cell
cancer immune response-related genetic variations with PCa
aggressiveness, outcomes, and immune phenotypes.

Results
Patient characteristics

Clinicopathologic characteristics for the two patient cohorts
are listed in Table 1. There were 1,762 and 393 patients in
phases I/II and phase III, respectively. In the phase I
cohort, 598(33.9%) patients had low risk PCa and 330
(18.7%) had high risk according to D’Amico risk classifica-
tion. When grouped based on GS, 657(37.3%) patients had
GS6 or lower and 218(12.4%) patients had GS8 or higher
PCa. Among the 887 patients in the cohort with GS7
disease, 647(36.7%) patients had GS3 + 4 on biopsy and
240(13.6%) had GS4 + 3. Of 1180 patients who received
local therapy, 96 developed biochemical recurrence
(Table S1). Among the 393 patients in the AS cohort used
for phase III of the study, most had low-risk characteristics,
including 325(82.7%) with GS6 diseases, 349(88.8%)
patients with T1 stage and 379(96.4%) patients with PSA
<10 ng/ml. After a median follow up time of 47.4 months,
the PCa in 127(32.4%) of these patients was reclassified.

Table 1. Clinical characteristics of localized PCa study cohorts.

MDACC-PCa cohort AS cohort
Characteristics N (%) N (%)
Total 1762 393
Age at diagnosis
Mean(SD) 61.6 (7.9) 64.2 (8.3)
Tumor Stage (T), N (%)
T 1,109 (62.94) 349 (88.8)
T2 575 (32.63) 44 (11.2)
T3-T4 69 (3.92) 0
Unknown 9 (0.51) 0
PSA level at diagnosis, ng/ml®°
<4 or <2.5 442 (25.11) 89 (22.7)
4-99 or 2.5-3.9 1,108 (62.95) 108 (27.5)
10-19.9 or 4-9.9 145 (8.24) 182 (46.3)
>20 or =10 65 (3.69) 14 (3.6)
Biopsy-proven GS
<6 657 (37.29) 325 (82.7)
3+4 647 (36.72) 60 (15.3)
4+3 240 (13.62) 8 (2.0)
>8 218 (12.37) 0
D’Amico risk group
Low 598 (33.94) 315 (80.2)
Intermediate 829 (47.05) 73 (18.6)
High 330 (18.73) 5(1.3)
Not grouped 5(0.28) 0
Disease reclassification®
Yes - 127 (32.4)
No - 265 (67.6)
Biochemical recurrence
Yes 96 (8.14) -
No 1,084 (91.86) -
Treatment
Radical prostatectomy 918 (52.10) -
Radiotherapy 378 (21.45) -
Surveillance or unknown® 429 (24.35) -
Other? 37 (2.10) -
Follow-up time
Median(Range) 47.4 (2.9-125.8) -

“Different criteria were used to categorize patients by PSA levels between study
populations. Retrospective case series: <4 versus 4-9.9 versus 10-19.9 versus
>20 ng/ml; AS cohort: <2.5 versus 2.5-3.9 versus 4-9.9 versus =10 ng/ml.

PPSA information of two patients in MDACC-PCa cohort were missing, while
disease reclassification information of one patients in AS cohort was not
available.

“Patients undergoing active surveillance/watchful waiting or whose initial treat-
ment information was unavailable.

dCryoablation, high intensity focused ultrasound, transurethral resection of pros-
tate or androgen deprivation therapy.

Association of SNPs with PCa aggressiveness and
reclassification

The study scheme is displayed in Figure 1. In the phase I analysis,
73 SNPs were found to be significantly associated with both
GS28 risk and high D’Amico risk (Table S2). In phase II, SNPs
associated with GS4 + 3 = 7 were evaluated in intermediate risk
patients only. When combined with results from phase I, seven
SNPs in six loci were found to be associated with aggressive
cancer and risk of GS4 + 3 (Table 2). In phase III of the study,
another eight candidate SNPs (unique from those identified in
phase II) were found to be both associated with disease reclassi-
fication in the AS cohort and disease aggressiveness as deter-
mined in phase I of the study (Table 3). Among these SNPs,
rs16871026 demonstrated the strongest association with PCa
aggressiveness (GS=8 risk: odds ratio [OR] 3.52, 95% confidence
interval [CI]: 1.40-8.84, P = 0.007) and reclassification (hazard
ratio [HR] 2.68, 95%CI: 1.28-5.59, P = 0.009). Also, rs1687106
and rs34309 were significantly associated with reclassification
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Figure 1. Schematic of study design. Two cohorts of patients with localized PCa, who were followed up prospectively, were included in this study. In phase | and Il,
we aimed to elucidate SNPs that were associated with PCa aggressiveness using the MDACC-PCa cohort of patients who underwent PCa treatment. Two criteria
(GS=8 vs5.GS<6 and D’Amico high risk vs. low risk) were used to define aggressive disease in phase I, while the risk of GS4 + 3 in GS7 patients was evaluated in phase
II; In phase lll, we investigated SNPs associated with disease reclassification in the AS cohort.

Table 2. Selected SNPs significantly associated with PCa aggressiveness (GS =8 versus GS<6 or D’Amico high versus low) and GS 4 + 3 = 7 risk.

GS=8 vs. GS<6

GS4+3vs.GS3+4

Gene SNP Location Model OR (95% CI)¢ P value OR (95% CI)¢ P value
NFATC1 1525656 Coding, 3'UTR? REC 0.40 (0.19-0.85) 0.017 0.31 (0.15-0.62) 0.001
NFATC1 rs160189° Intron REC 0.44 (0.19-0.99) 0.048 0.30 (0.15-0.61) 0.001
MAP3K1 15187899492 Intron DOM 3.76 (1.44-9.81) 0.007 2.89 (1.42-5.88) 0.003
TRAF2 rs6560652 Intron DOM 0.58 (0.36-0.91) 0.018 0.63 (0.45-0.88) 0.007
CD48 rs10489639 Intron ADD 0.72 (0.53-0.97) 0.033 0.74 (0.59-0.94) 0.012
D’Amico high vs. low GS4+3vs.GS3+4
Gene SNP Location Model OR (95% CI)¢ P value OR (95% CI) P value
NFATC1 1525656 Coding, 3'UTR? REC 0.51 (0.29-0.90) 0.021 0.31 (0.15-0.62) 0.001
NFATC1 rs160189° Intron REC 0.51 (0.28-0.91) 0.024 0.30 (0.15-0.61) 0.001
RHOA rs11706370 Intron REC 0.47 (0.25-0.89) 0.021 0.55 (0.30-0.99) 0.048
CASP8 rs36039030 Intron DOM 0.30 (0.09-0.98) 0.047 0.29 (0.09-0.99) 0.048
?Location varied depending on transcript isoforms. Most contain synonymous SNP involving Pro662/Pro649.
Minor transcript contains either nonsynonymous SNP His>Arg at codon 634 or 3'UTR SNP.
PSNP in high linkage disequilibrium (r? > 0.8) with rs25656.
cModels adjusted for age, clinical T stage and PSA level at diagnosis.
9Models adjusted for age and PSA level at diagnosis.
Table 3. Selected SNPs significantly associated with aggressiveness risk in MDACC-PCa patient cohort and reclassification risk in AS cohort.
MDACC-PCa patient cohort (N = 1762) AS Cohort (N = 393)
GS=8 vs. GS<6 Risk of reclassification
Gene name SNP location Model OR (95% CI)° P value R (95% CI)¢ P value
PSMB8 rs16871026 Intron DOM 3.52 (1.40-8.84) 0.007 2.68 (1.28-5.59) 0.009
NFATC2 rs75164249 Intron DOM 1.74 (1.06-2.85) 0.029 1.60 (1.02-2.52) 0.041
NFATC2 rs55990504° Intron DOM 1.68 (1.00-2.84) 0.050 1.74 (1.09-2.78) 0.020
PSMD11 rs4132610 Intron ADD 1.34 (1.00-1.81) 0.050 1.32 (1.00-1.74) 0.047
D’Amico high vs. low Risk of reclassification
Gene name SNP location Model OR (95% CI)* P value R (95% Cl)® P value
ITGAL rs3087438 Intron DOM 0.68 (0.49-0.95) 0.025 0.65 (0.45-0.95) 0.027
PIK3R1 rs34309 Intron REC 1.63 (1.05-2.52) 0.030 1.84 (1.13-3.00) 0.014
PSMD3 rs4065321 Intron DOM 0.69 (0.49-0.98) 0.037 0.66 (0.44-0.99) 0.045
PSMD3 rs12453334 Intron REC 1.59 (1.00-2.51) 0.046 1.74 (1.04-2.89) 0.034

aSNP in linkage disequilibrium (* = 0.81) with rs75164249.
PThe model was adjusted with age, clinical T stage and PSA levels at diagnosis.

“The Models adjusted for age and PSA level at d

iagnosis.

9The model was adjusted for age, GS score, clinical T stage and PSA levels at diagnosis.
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time. Specifically, for rs16871026, time to reclassification for the ~ Cumulative analysis of the effects of unfavorable
AA+AG genotype was 41.0 months versus >60 months for GG  genotypes on PCa outcomes

genotypes (P = 0.03). For rs34309, time to reclassification for the
AA genotype was 49.9 months versus >60 months for the AG
+GG genotype (P = 0.03) (Figure 24, B).

Unfavorable genotype (UFG) analyses were conducted based
on the identified 13 candidate SNPs from phases I-III in both
study populations, which included NFATCI:rs25656, MAP3KI:

PSMB8: rs16871026 PIK3R1: rs34309
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Figure 2. Genetic variants in T cell cancer immune response genes associated with risk of aggressiveness, biochemical recurrence and AS in PCa patients. A. Patients
with rs16871026 (AA+AG) (dash line) showed significantly decreased reclassification-free survival compare to rs16871026 (GG) (solid line) patients (HR = 2.68, 95%
Cl = 1.28-5.59, median survival time: 41.0 months vs. >60 months, P log-rank = 0.03); B. Patients with rs34309 AA genotype (dash line) showed significantly reduced
reclassification-free survival compared to rs34309 (AG+GG) (solid line) patients (HR = 1.84, 95%Cl = 1.13-3.00, median survival time: 49.9 months versus >60 months,
P log-rank = 0.03); C-F. Cumulative analysis was conducted to assess the effects of polygenetic UFGs on PCa outcomes. Patients with 0-5 UFGs, 6-8 UFGs and =9
UFGs were defined as low (diamond), intermediate (circle) and high genotypic risk (square). C. Polygenetic UFG was associated with high D’Amico risk disease (P for
trend = 2.5E-09); D. G54 + 3 disease in GS 7 patients (P for trend = 1.3E-04); E. biochemical recurrence (P for trend = 0.01); and F. Disease reclassification in patients on
AS of PCa (P for trend = 0.01). SNPs were included based on results of all significant variants found in phases I-lll of both cohorts, which included: rs25656,
rs187899492, rs6560652, rs10489639, rs11706370, rs36039030, rs16871026, rs75164249, rs4132610, rs3087438, rs34309, rs4065321, rs12453334. * indicates P < 0.05.



rs187899492, TRAF2:rs6560652, CD48:1s10489639, RHOA:
rs11706370, CASP8:rs36039030, PSMB8:rs16871026, NFATC2:
rs75164249, PSMDI11:rs4132610, ITGAL:rs3087438, PIK3RI:
rs34309, PSMD3:rs4065321, and PSMD3:rs12453334. Patients
were divided into tertiles based on the total number of UFGs,
with higher number of UFGs corresponding to increased risk.
In the MDACC-PCa cohort, compared to the low genotypic
risk group, the intermediate risk and high risk groups demon-
strated 2.6 fold (95%CI 1.7-3.8) and 5.3 fold (95%CI 2.9-9.8)
increased risk of D’Amico high risk disease (P-trend = 2.4E-
09), 1.7 fold (95%CI 1.2-2.5) and 2.7 fold (95%CI 1.6-4.7)
increased risk of GS4 + 3 in the GS7 patients (P-
trend = 1.30E-04) and 2.2 fold (95%CI 1.2-4.1) and 2.6 fold
(95%CI 1.2-6.1) increased risk of biochemical recurrence (P-
trend = 0.01), respectively. In the AS cohort, patients from the
intermediate genotypic risk group and high genotypic risk
group also demonstrated 1.4 fold (95%CI:0.9-2.0) and 2.4
fold (95%CI:1.2-4.8) greater reclassification risk, respectively,
compared to low risk patients (P-trend = 0.01). All results of
the cumulative analysis are shown in Figure 2C-F and Table S3.

Rs34309 is associated with functional mutations in the
PI3K/PTEN/AKT/MTOR pathway

To further investigate potential mechanisms through which
identified SNPs may increase the risk of PCa aggressiveness,
we performed functional characterization studies in silico. We
assessed somatic mRNA expression for genes related to SNPs
present in the UFG analysis, leveraging The Cancer Genome
Atlas (TCGA) data involving 499 prostate tumors and 52
normal tissue samples. The analysis revealed the expression of
MAP3K1, PIK3R1, NFATC2 and RHOA were significantly
down-regulated in tumor samples, whereas that of CASPS,
PSMD11, TRAF2 and PSMD3 were significantly up-regulated
in tumors (P < 0.01 in all cases; Figure S1). No differences were
found for PSMBS, CD48, NFATCI and ITGAL genes
(Figure S1). Additionally, no significant expression quantitative
trait loci (eQTL) associations were observed in prostate tissues
from the Genotype-Tissue Expression (GTEx) database.

A SNP found in the PIK3RI gene, rs34309, was associated
with both PCa aggressiveness and disease reclassification in
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this study. PIK3RI is a frequently mutated gene in advanced
PCa' and plays an important role in T cell function.”® We
further assessed the association between genotypes of rs34309
and somatic mutations in the PI3K/PTEN/AKT/MTOR path-
way using genotype and mutation data from TCGA.
Distribution of functional mutations differed significantly
between UFG (rs34309-AA) and non-UFG carriers (rs34309-
AG+GG)(chi-square test, P = 0.03). A higher fraction of
functional mutations (60% [6/10] vs. 27% [27/99]) were
observed in UFG carriers compared to non-carriers
(Figure 3, Figure S2, and Table S4).

Additionally, proportion of tumors with lymphocytic infil-
trate was significantly elevated in UFG carriers compared to
non-carriers among all available TCGA cases (N = 421, 63.2%
vs. 46.2%, P = 0.017) (Figure 3, Table S5).

Discussion

In this study, we demonstrated that germline genetic variants
related to T cell cancer immune response may be associated
with disease aggressiveness and reclassification among
patients with localized PCa. Furthermore, genotype-derived
risk grouping successfully stratified patients who were at
increased risk of aggressiveness and reclassification following
enrollment onto AS.

While a number of studies have identified SNPs associated
with PCa diagnosis,”’ few SNPs have been shown to be
associated with PCa aggressiveness and patient reclassification
after AS enrollment. Our group previously demonstrated that
rs2735839, a SNP related to the KLK gene, was associated with
risk of GS4 + 3 disease compared to GS3 + 4.” A study using
data on 33 PCa-risk associated SNPs also indicated that the
addition of genotypic data to clinical factors may improve the
identification of aggressive PCa at diagnosis.”” In terms of
outcomes after PCa diagnosis, a group in Chicago demon-
strated that the risk allele of one SNP (rs11568818) might be
associated with PCa upgrading at time of surgery and after AS
enrollment.® Additionally, three SNPs were recently shown to
be associated with post-prostatectomy reclassification in
patients on AS.>> However, to our knowledge, no prior
study has systematically examined the association of genetic
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1 1
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Figure 3. Rs34309 variant carrier status and presence of functional somatic mutations in the PI3K/PTEN/AKT/MTOR signaling pathway (green bars) and tumor
lymphocyte infiltration (red bars) in the TCGA prostate cancer patient cohort. In UFG (rs34309-AA) carriers, 60% of tumor mutations (6/10) contained functional
mutations, while only 27% of tumor mutations (27/99) had functional mutations in non-carriers (rs34309-AG+GG)(chi-square test, P = 0.03). Similarly, the proportion
of tumors with lymphocyte infiltration was significantly higher in UFG-carriers (63.2%, 36/57) than non-carriers (46.2%, 168/364) (chi-square test, P = 0.017). Detailed
distributions of mutations and lymphocyte infiltration were depicted in Table S4 and Table S5, respectively.
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variants in T cell cancer immune response pathways with PCa
aggressiveness and reclassification.

Anti-tumor T cell response is poorly characterized in PCa
patients. Studies have demonstrated associations between
genetic variants in the inflammation pathway and PCa
aggressiveness.”* In the present study, seven variants from
six genes were associated with PCa aggressiveness, whereas
another eight SNPs in seven genes were associated with
reclassification risk. All 13 of these genes are involved in
antigen presentation and T cell co-stimulation pathways, sug-
gesting underlying biological mechanisms.

Among the identified genetic variants, rs25656 exhibited the
strongest association with PCa aggressiveness. This SNP is
located in NFATCI, a gene that encodes a nuclear factor
involved in immune response through T cell receptor signaling
and NFAT activation.”® An interesting feature of this variant is
its varied functional annotation depending on unique NFATCI
isoforms. Rs25656 is located in the coding regions for most
transcripts, though is also present in the 3’ untranslated region
for one minor transcript. In terms of protein translation, this
SNP is synonymous at proline codon 662 or 649 depending on
transcript length. However, in one truncated transcript, the
SNP is nonsynonymous, with the variant allele causing conver-
sion of histidine to arginine at codon 634, though Polyphen
prediction indicates that this substitution is unlikely to have
harmful effects on protein function. Interestingly, rs25656 is
located in a CpG island potentially affecting methylation
status,”® although no eQTL effects have been observed for
this variant on NFATCI expression in cells or tissues.
Nevertheless, alterations in NFAT family of genes may affect
tumor cell proliferation, invasion, metastasis, and drug resis-
tance, which would impact cancer development and
progression.”” Further studies are needed to identify the causal
variant and the functional mechanism for this SNP’s associa-
tion with PCa aggressiveness.

The PSMB8 SNP, rs16871026, displayed the most significant
association with aggressiveness and reclassification risk. PSMB8
is a key immunoproteasome component that plays a critical role
in the process of antigen presentation for T cell mediated anti-
tumor immunity.”® Inhibition of PSMB8 may deplete T cell
mediated anti-tumor immunity in vitro,”® and PSMBS is also
reported as a predictor of radiation sensitivity in rectal cancer.”
It is therefore biologically plausible that rs16871026 may affect
PCa aggressiveness and reclassification through altered function
of PSMBS, though further study is still warranted.

The PIK3R1 SNP, rs34309, was also found to be associated
with PCa aggressiveness and reclassification risk in our study.
PIK3R1 encodes a regulatory subunit in the PI3K signaling path-
way, which plays a critical role in T and B cell development.”
Although ubiquitously expressed, inactivating mutations of this
gene could result in immune deficiency by means of impaired
lymphocyte function.”® This finding supports the gene’s essential
but unique role in primary immunity. However, we cannot rule
out the possibility that the association of the PIK3RI variant might
be due to the gene’s functional impact on tumor cells. Further
studies are needed to identify the underlying biological mechan-
ism for the observed association. Furthermore, PIK3R1I is a known
tumor suppressor gene that is frequently mutated in PCa,"”
potentially causing aberrant PI3K/PTEN/AKT/MTOR signaling

activation.” In our study, rs34309 genotype was not associated
with PIK3RI expression in normal prostate tissues in eQTL ana-
lysis, although this analysis was potentially limited by sample size.
However, we observed a considerably higher percentage of
patients with functional somatic mutations in PI3K/PTEN/
AKT/MTOR pathway genes and patients with lymphocyte infil-
tration among UFG carriers than among non-carriers. The latter
finding is intriguing and counter-intuitive to the general observa-
tion that increased number of tumor infiltrating lymphocytes
(TILs) correlating with improved prognosis in different cancer
types.”> However, investigators have seen conflicting results in
PCa cases, with low TIL density as an independent predictor of
shortened progression-free survival in one study> but strong
expression of intra-tumoral T cells correlating with shortened
biochemical recurrence-free survival in other studies.”***
Differences in methodologies (e.g. H&E [hemotoxylin and
eosin] staining versus immunohistochemistry), measured end-
point (e.g. progression versus biochemical recurrence versus sur-
vival), location of infiltrate, and immune cell subsets analyzed (e.g.
T versus B cells, cytotoxic versus regulatory) may have affected
these results. The lack of lymphocyte classification in the TCGA
data precluded us from performing detailed subgroup analyses.
However, one study of TILs in PCa tumor samples indicates that
the composite immune cell population may be skewed toward a
suppressive regulatory T, phenoptype, potentially explaining the
association between increased TIL and poor outcome.

Although our study has distinct advantages in terms of its
use of prospective cohorts, relatively large sample size, and
moderate-term follow-up time, we acknowledge several lim-
itations. First, there were few reclassification events in the AS
cohort, limiting our ability to detect genotypic differences
associated with reclassification. Second, tumor and prostate
size information were not available, which may have intro-
duced biopsy-related errors into tissue sample grading. Third,
the lack of prostate magnetic resonance imaging (MRI) eva-
luation for some patients prior to baseline and repeat biopsies
during AS may have led to inaccuracies in measurements of
reclassification and/or upgrading. Additionally, only non-
Hispanic whites were included in this study as other groups
had few available patients. Future studies are needed to
explore associations in other racial/ethnic groups, such as
African Americans who have higher risk of aggressive PCa.
Due to the exploratory nature of our study, we included
associations that were non-significant after adjustment for
multiple testing; therefore, it is possible that some findings
may contain false positive results. Nevertheless, the identifica-
tion of candidate genes and SNPs across multiple phases and
functional characterization by bioinformatic analyses add
validity to the study. Finally, our results were based solely
on patients treated at a single institution; further validation in
large independent cohorts is required.

In summary, we identified a panel of SNPs related to T cell
cancer immune response pathways that were associated with
disease aggressiveness and reclassification in patients with
localized PCa. A combined genomic risk score using the
sum of patient risk alleles enabled stratification into groups
that were independently associated with risk of cancer aggres-
siveness, biochemical recurrence, and disease reclassification.
Moreover, a genetic variant in PIK3RI correlated with



functional somatic mutations in the PI3K/PTEN/AKT/MTOR
pathway and tumor lymphocyte infiltration, suggesting poten-
tial genotype-phenotype interactions. While future validation
is warranted, these findings may bring additional insights into
biological mechanisms of PCa aggressiveness and biochemical
recurrence, which may enable improved risk stratification and
eventual personalization of localized PCa treatment.

Materials and methods
Study population and data collection

This study used data from two PCa cohorts enrolled at The
University of Texas MD Anderson Cancer Center
(MDACC), both of which have been previously described.”’
In brief, both cohorts involved non-Hispanic white men
with previously untreated PCa. The first cohort (MDACC-
PCa cohort) recruited patients who underwent treatment for
localized PCa from 2003 to 2013, while the second cohort
(AS cohort) included only those patients who were enrolled
in an ongoing, institutional AS trial that began in February
2006 (registered with clinical.trail.gov: NCT00490763).
Clinical data, including diagnosis date, PSA level at diag-
nosis, biopsy-proven GS, clinical tumor stage, treatment
details, tissue pathology, and follow up information were
collected from medical records. Age at diagnosis was
defined as age at date of first positive biopsy. Biochemical
recurrence (BCR) after local therapy was defined as a single
measure of PSA > 0.2 ng/ml after radical prostatectomy,””
and a PSA rise of 2 ng/mL or more above the nadir PSA in
patients who received radiotherapy.”® Patients in the
MDACC-PCa cohort who received radical prostatectomy
or radiotherapy were include in the subgroup used for the
BCR analysis. All pathologic slides from outside institutions
were reviewed by a single genitourinary pathologist at
MDACC. In all cases, the GS assessed at MDACC was
used. The study was approved by the MDACC
Institutional Review Board. Each subject consented to hav-
ing their clinical data obtained and providing blood samples
for DNA extraction for research purposes.

Study design

Phases | and IlI: exploratory analysis to determine
genotypes associated with pca aggressiveness

We first aimed to elucidate SNPs that were associated with
PCa aggressiveness using the MDACC PCa cohort of patients
who underwent PCa treatment. In phase I, we applied two
criteria in order to define aggressiveness based on initial
patient biopsy GS, clinical stage, and PSA at diagnosis: GS=8
or high D’Amico risk was defined as more aggressive, while
GS<6 (grade group 1) or low D’Amico risk was defined as less
aggressive, respectively. D’Amico risk stratification® is
defined as follows: low risk (T1-T2a and GS<6 and
PSA < 10 ng/ml), intermediate risk, (T2b or GS = 7 [grade
group 2 and 3], or PSA 210-20 ng/ml) and high risk (=T2c or
GS 8-10 [grade group 4 and 5], or PSA > 20 ng/ml). In phase
II, we separately evaluated SNPs associated with PCa aggres-
siveness within the subgroup of intermediate risk patients
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(GS7) by comparing patients with GS3 + 4 disease (grade
group 2) to GS4 + 3 (grade group 3).

Phase llI: investigation of snps associated with disease
reclassification on active surveillance

The cohort of patients used in this portion of the study was
recruited from the aforementioned ongoing clinical trial at
MDACC. Patients were eligible for this phase of the study
who were enrolled in AS, had GS < 7 (grade group 3 or
lower), and at least 1 repeat biopsy during follow-up. The
AS trial protocol has been previously described.* In short, all
patients were evaluated at baseline and every 6 months by
clinical examination including digital rectal examination
(DRE) and laboratory studies (serum PSA). Prostate biopsies
were repeated every 1-2 years; if the biopsy was negative, then
the following year’s biopsy was omitted (unless requested by
the patient). Due to the low number of patients progressed
from GS6 to GS7 disease, the primary outcome of interest was
disease reclassification. This was defined as an increase in
number of positive cores or tumor length outside of the
study entry criteria, or increase in GS on repeat biopsy.
Patients without reclassification were censored on March 31,
2015 when the dataset was prepared for analysis. The time to
event was defined as the time from the date of diagnosis to the
date of reclassification, last follow-up, or censor.

Genes of interest in t cell cancer immune response
pathways

Based on the stepwise cancer immune cycle of T cells,'” we
generated T cell cancer immune response pathways and genes
by extensively searching the keywords of each step (antigen pre-
sentation, T cell priming/activation, T cell trafficking, T cell infil-
tration, T cell recognition and T cell cytotoxicity) in the KEGG
(http://www.genome.jp/kegg/), Biocarta (https://cgap.nci.nih.gov/
Pathways/BioCarta_Pathways) and Reactome (http://www.reac
tome.org/) databases. Furthermore, previously published T cell
cancer immune response genes'**' and gene lists used on com-
mercially customized gene panels (Nanostring: nCounter”
PanCancer Immune Profiling Panel, NanoString Technologies;
HTG: HTG EdgeSeq Immuno-Oncology Assay, HTG Molecular
Diagnostics) were included. All identified pathways and genes
were pooled, and only genes mentioned by two or more sources
were used in the final gene list. A total of 312 genes from 25
pathways were selected (Table S6). The chromosome positions of
gene start and end areas were obtained from USCS Genome
Browser (http://genome.ucsc.edu/, build version: GRCh37/hg19).

Genotyping and quality control

All DNA samples were extracted from peripheral whole blood
using the QIAamp DNA extraction Kit (QIAGEN). Custom
Infinium OncoArray-500K Beadchip was used to genotype
both populations. Assays were run on the iScan system (illu-
mina). Genotyping data were analyzed and exported using the
Genome Studio software (illumina). All subjects had a call
rate >95%. The following exclusion criteria were applied to all
samples: gender disparity (as identified by checking X
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chromosome), non-localized disease, ethnicity other than
non-Hispanic white, histology other than adenocarcinoma,
and samples from identical subjects. The mean concordance
rate of replicated samples was 99.2%. SNPs with minor allele
frequency (MAF) <0.01 (n = 83,738) and call rate <0.90
(n = 2,945) were excluded. A total of 412,487 SNPs in the
OncoArray dataset remained after strict quality control and
were included. Finally, genotyping data of 3586 SNPs found
within 10kb of upstream and downstream flanking regions for
each gene of interest were extracted from the OncoArray
dataset and included in the study.

Functional characterization and immune phenotype
association

Bio-informative analysis was applied using the TCGA and
GETx databases. eQTL analysis was conducted using the
GTEx portal (https://www.gtexportal.org/home/).** Gene level
expression based on RNA-Seq data (normalized, RSEM level 3),
somatic mutation (level 3), SNP (level 2) and clinical data for
each sample were downloaded directly from the TCGA data
portal and analyzed using Firebrowse API (http://firebrowse.
org/). SNP function was analyzed with SNPnexus (http://snp-
nexus.org/), which includes in silico analysis of CpG islands
and predicted effect of non-synonymous coding SNP on pro-
tein function using SIFT and Polyphen.**** We defined func-
tional mutations as DNA deletions that cause codon frame shift
or missing codons which remain in frame, splice site muta-
tions, non-sense mutations, and missense mutations that were
predicted in http://mutationassessor.org/r3/with medium or
high functional impact score (FI score). In contrast, non-func-
tional mutations included mutations located in intron or other
non-coding regions of RNA transcripts, and silent mutations.
Lymphocyte infiltration information was obtained from TCGA.
Patients with lymphocyte infiltration (>0%) were considered as
positive, while the remaining patients were considered as nega-
tive. Chi-square test was used in the association analysis.

Statistical analysis

In phase I, all SNPs were separately evaluated for association
with aggressive disease (D’Amico high risk vs. low risk and
GS=28 vs. GS<6) using unconditional multivariable logistic
regression adjusted by age at diagnosis (continuous), PSA levels
at diagnosis (categorical) and clinical T stage (T1 to T2a vs. T2b
+). Only age and PSA levels were adjusted in models that used
D’Amico high-risk versus low-risk groups as the endpoint.
Phase II involved similar analyses applied to patients that had
GS7 disease, specifically examining genotype differences
between patients with GS 4 + 3 disease vs. 3 + 4 using same
statistical approach as done in phase I. In phase III, all SNPs of
interest were examined for association with time to AS reclassi-
fication using multivariate cox proportional hazard models
adjusted for age, GS, T stage and baseline PSA level. Kaplan-
Meier analyses and log-rank tests were used to calculate reclas-
sification-free survival differences between individual geno-
types. The proportional hazard assumption was verified by
plotting and testing the Schoenfeld residuals, and through

inclusion of time varying covariates in the models (interaction
terms for GS, T stage and natural logarithms of time).

The cumulative effects of UFGs were assessed for association
with aggressiveness, reclassification, and post-treatment bio-
chemical recurrence by combining genotype data from indivi-
dual SNPs identified in phases I-III that were significantly
associated with aggressiveness and reclassification of PCa.
Specifically, SNPs that were significantly associated with either
GS=8 or D’Amico high risk disease (phase I) and GS4 + 3
disease (phase II) were included. Additionally, SNPs that were
associated with time to reclassification (phase III) and either of
the phase I aggressiveness analyses were included. For highly
linked SNPs (r* > 0.8), the SNP with smaller P value was
selected. UFGs were selected for each included SNP dependent
on the best model (dominant, recessive, or additive). The UFG
sum was calculated for each patient and patients were stratified
into tertiles based on the total number UFGs present. Patients in
each risk group were analyzed for association with disease
aggressiveness, GS 7 disease stratification, reclassification while
on active surveillance, and biochemical recurrence after PCa
treatment following methods described previously.

All data were analyzed and visualized with Excel
(Microsoft office 2013), R software (v3.4.1), PLINK (v1.07),
and STATA (v13, STATA Corp). All P values were two-sided,
with values less than 0.05 considered statistically significant.
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