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ABSTRACT
Immune checkpoint inhibitors have shown great potential in treating solid tumors, inducing durable
remission and prolonged survival time in responders. Despite their promise, a large fraction of patients
remains unresponsive to these treatments highlighting the need for biomarkers that can predict patient
sensitivity. Pre-treatment gene expression profiles for patients receiving immune checkpoint inhibitors
have recently become available, establishing a new medium by which to discover biomarkers that
predict therapy response. In this study, we mined for transcriptomic correlates of response by applying
immune cell-derived gene expression signatures to publicly available datasets containing matched gene
expression and response efficacy information. These datasets were comprised of urothelial carcinoma
patients receiving anti-PD-L1 (n = 25), melanoma patients receiving anti-PD-1 (n = 28), and melanoma
patients receiving anti-CTLA-4 (n = 42). We identified one signature, derived from a subpopulation of B
cells, with scores that were significantly and reproducibly elevated in patients experiencing clinical
benefit following therapy targeting the PD-1/PD-L1 axis and were additionally elevated in patients
responsive to anti-CTLA-4 therapy. Multivariate models revealed that this signature was associated with
response independent of other response-predictive biomarkers, including tumor mutation burden.
Functional annotation of the signature revealed it to be associated with features indicative of an
immunologically active microenvironment, including B and T cell activation as well as antigen presenta-
tion activity. The preliminary findings presented detail a transcriptomic signature associated with
response to multiple checkpoint inhibitors and suggest novel biological associations that warrant further
investigation.

ARTICLE HISTORY
Received 8 February 2018
Revised 13 August 2018
Accepted 15 August 2018

KEYWORDS
Immunotherapy; genomics;
tumor immunology; B cells;
immune checkpoint
blockade; gene signatures;
biomarkers

Introduction

Immune checkpoint blockade therapy is a revolutionary cancer
treatment modality that relies on the inhibition of tumor-
mediated immunosuppressive mechanisms to stimulate an
anti-cancer immune response. Monoclonal antibodies target-
ing the proteins programmed cell death protein 1 (PD-1), PD-1
ligand (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-
4) have now been approved as first-line cancer management
options for a variety of tumor types, with treatment-sensitive
patients showing reduced tumor burdens and prolonged survi-
val times.1 Several studies have shown that anti-PD-1/PD-L1
and anti-CTLA-4 act through distinct mechanisms.2,3 CTLA-4
interferes in the early stages of T cell activation by inhibiting
stimulatory signaling that is required following antigen-T cell
receptor (TCR) binding. Conversely, PD-1 is involved later in T
cell activation and acts by attenuating TCR signaling following
engagement with its ligands, PD-L1 or PD-L2.2 Blocking these
proteins has led to increased immune activity in the tumor
microenvironments of responsive patients, resulting in long-
term remission and clinical benefit.

Despite these early successes, the response rate to these thera-
pies remains around 20–30% in unselected patient populations,
creating a need for biomarkers that can predict clinical benefit.1,4,5

The T cell-centric mechanisms behind each immune checkpoint
protein suggest that correlates of lymphocytic infiltration in the
tumor microenvironment may better inform patient response.6

Early immune-related biomarkers that have been identified for
anti-PD-1/anti-PD-L1 include CD8 + T cell density7 and intratu-
moral PD-L1 expression,8 while the expression of immune-related
genes has been associated with response to anti-CTLA-4.9,10 In
addition to markers of immune infiltration, a higher tumor muta-
tion burden (TMB) has been associated with response to both
therapies, implicating the neoantigen-driven immune reaction as a
common factor involved in immune checkpoint blockade
response.10–14 Interestingly, somatic copy number alterations
(SCNAs) have been shown to be more strongly correlated with
tumor immune activity and response to anti-CTLA-4 than TMB,
with lower SCNA levels associated with higher immune activity
and improved response rates.15 The pre-treatment transcriptome
of patients receiving immune checkpoint inhibitors is one area
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that has yet to be fully explored. Recent studies have released
transcriptomic data and identified expression-based correlates of
response for small cohorts of patients receiving immune check-
point blockade therapy.10,12,13 However, no studies have examined
whether common and reproducible correlates exist that are asso-
ciated with response to drugs targeting the PD-1/PD-L1 axis and
CTLA-4.

In this study, we applied an expression-based, immune
signature-driven framework16 to identify correlates of
response to the immune checkpoint inhibitors anti-PD-L1,
anti-PD-1, and anti-CTLA-4. This analysis encompassed
three available datasets containing gene expression data
matched to immune checkpoint response information. One
signature in our analysis, derived from a series of B cell
expression profiles, was reproducibly associated with response
to therapies targeting the PD-1/PD-L1 axis and was addition-
ally associated with anti-CTLA-4 response. These associations
were highly significant in a meta-analysis pooling these data-
sets and were also independent of other known response-
predictive biomarkers. Our results provide preliminary evi-
dence of a transcriptomic signature that can be used to predict
response to multiple immune checkpoint inhibitors.

Results

A memory B cell-like score is associated with response to
checkpoint blockade therapies

We applied an expression-based method16 to identify immuno-
logical correlates of response to immune checkpoint blockade
therapy. For this study, we used six immune cell gene expression
signatures that had been validated to represent one of naive B
cells, memory B cells, CD8 + T cells, CD4 + T cells, natural killer
cells, or myeloid cells in peripheral blood mononuclear cell
(PBMC)mixtures and correlate with the flow cytometry fraction
of related cell types in NSCLC tumors.17 We began our study by
applying this method to a discovery dataset that included gene
expression and treatment response information for 21 pre-treat-
ment urothelial tumor biopsies from patients receiving anti-PD-
L1 therapy. Of the six immune cell signatures used by this
method, only the memory B cell-like (MBL) signature produced
scores that significantly differed between patients experiencing
clinical benefit and those that did not (P = 0.01; Figure 1A,
Supplementary Figure S1). These improved response rates also
translated to post-treatment survival, where patients with MBL
scores in the top quartile had significantly longer progression-
free survival (median 398 days) compared to patients with scores
in the bottom quartile (median 64 days, P = 0.02; Figure 1B).
This trend mirrored findings in the TCGA bladder urothelial
carcinoma dataset (P = 0.02; Supplementary Figure S2A).

While the MBL signature was associated with response to
anti-PD-L1 therapy, this analysis was performed in a small
dataset where the findings could be due to chance. Thus, we
next applied theMBL signature to a validation dataset consisting
of 28 pre-treatment melanoma biopsies from patients receiving
anti-PD-1 checkpoint blockade therapy.12 As was the case for the
anti-PD-L1 dataset, patients experiencing clinical benefit in
response to anti-PD-1 therapy had significantly higher MBL
scores compared to patients that did not experience clinical

benefit (P = 0.02; Figure 1C). Furthermore, patients with MBL
scores in the top quartile had a median overall survival time of
548 days compared to 186 days for patients with MBL scores in
the bottom quartile, a difference that trended toward signifi-
cance (P = 0.06; Figure 1D). Unlike in urothelial carcinoma, the
MBL score was not associated with prolonged survival in the
metastatic samples of the TCGA melanoma dataset (P = 0.57;
Supplementary Figure 2B).

Our success in the two datasets targeting the PD-1/PD-L1
axis led us to examine whether the MBL score could predict
response to anti-CTLA-4, an immune checkpoint inhibitor
that acts on a pathway distinct from PD-1. To test this, we
applied our method to a dataset consisting of 42 pre-treat-
ment melanoma biopsies from patients that received anti-
CTLA-4 therapy.10 As in the PD-1/PD-L1 data, we observed
significantly higher MBL scores in patients experiencing clin-
ical benefit within 6 months (P = 0.05) and long-term survival
with no clinical benefit (P = 0.05) relative to patients experi-
encing no clinical benefit following treatment (Figure 2A).
Furthermore, high-MBL patients exhibited significantly pro-
longed overall survival compared to low-MBL patients, with
high-MBL patients having a median overall survival time of
853 days compared to 160 days in low-MBL patients
(P = 0.01; Figure 2B).

To provide context to these findings, we performed a
series of analyses to compare the response and survival
associations of the MBL signature to that of other genomic
measurements of immune infiltration, including the five
other immune signatures calculated using our method, a
series of single cell RNAseq-derived immune signatures
calculated using ssGSEA18, and the inferred immune cell
fractions of 22 lymphocytes calculated using
CIBERSORT.19 The MBL signature was the only signature
that exhibited a significant association with response to
immune checkpoint blockade therapy and post-treatment
survival in each of the datasets tested (Supplementary
Table S1). To increase the power of these analyses, we
then pooled the datasets into two cohorts, one combining
the anti-PD-1 and anti-PD-L1 datasets and one combining
the datasets for all three immune checkpoint inhibitors
(Supplementary Table S1). Compared to the other signa-
tures, the MBL score exhibited the strongest associations
with immune checkpoint blockade response in both the
anti-PD-1/anti-PD-L1 cohort (meta-P = 6e-4) and the
cohort containing all three datasets (meta-P = 2e-4;
Figure 3A). This result was also reflected in the two-class
survival analyses, where patients with MBL scores in the top
quartile of each dataset exhibited significantly prolonged
survival time in the combined anti-PD-1/anti-PD-L1 cohort
(meta-P = 3e-3) and the combined checkpoint inhibitor
cohort (meta-P = 6e-5; Figure 3B).

The MBL score outperforms other response-associated
biomarkers

Many factors have been shown to associate with response to
immune checkpoint blockade therapy, including TMB and the
level of immune checkpoint proteins in the tumor
microenvironment.6 To rule out that the MBL signature was
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simply a proxy for other known markers of immunotherapy
response, we first performed univariate logistic regression and
Cox proportional hazards models to identify each biomarker’s
dataset-specific association with response and survival. We
then combined each variable, including our score, to predict
treatment response and patient survival in a series of multi-
variate logistic regression and Cox proportional hazards mod-
els. Models from all three datasets included TMB, and
expression of the genes encoding CTLA-4 (CTLA4), PD-1
(PDCD1), and PD-L1 (CD274) as covariates. Additionally,
the anti-CTLA-4 dataset models included SCNA level which
has been shown to associate with treatment response in a
previous study.15 In both the anti-PD-L1 and anti-PD-1 data-
sets, the MBL score was the only biomarker predictive of
response at the univariate level (Supplementary Table S2)
and remained so even after adjusting for the covariates in
the multivariate model (P = 0.04 and 0.03, respectively;
Table 1). Similarly, in the anti-CTLA-4 dataset, the MBL
score was the only variable predictive of response in the
univariate model and remained predictive in the multivariate
model (P = 0.02; Table 1). These results differed from the
study that showed SCNA level was associated with response to

anti-CTLA-4 therapy using many of the same samples.15

However, this study was performed on a larger cohort of
samples for which genomic data was available (n = 110),
making it more highly powered to observe these associations.

Univariate Cox proportional hazards models treating
MBL score as a continuous variable showed similar results
to the logistic regression analyses in two of the datasets,
with higher MBL scores significantly associated with pro-
longed survival in the anti-PD-L1 and anti-CTLA-4 datasets
(P = 0.01, HR = 0.80 and P = 0.01, HR = 0.83, respectively;
Supplementary Table S2). In the anti-PD-L1 dataset, no
other covariates were significantly associated with progres-
sion-free survival, while in the anti-CTLA-4 dataset, CTLA4
expression was the only other significant covariate. When
including all covariates in multivariate Cox proportional
hazards models, the MBL score was the only marker sig-
nificantly associated with patient prognosis in either the
PD-L1 or CTLA-4 dataset (P = 0.01, HR = 0.79; P = 0.01,
HR = 0.82; Table 1). In the anti-PD-1 dataset none of the
covariates were significantly associated with survival at the
univariate level, including the MBL score, though there was
a protective directionality (P = 0.27, HR = 0.93;

Figure 1. MBL score predicts clinical benefit and improved survival in patients receiving checkpoint inhibitors targeting the PD-1/PD-L1 axis. A, Distribution of MBL
scores in patients that experienced no clinical benefit (n = 11) or clinical benefit (n = 10) in response to anti-PD-L1 therapy. B, Progression-free survival of patients
with either high or low MBL scores in the Snyder et al anti-PD-L1 dataset. C, Distribution of MBL scores in patients that experienced no clinical benefit (n = 13) or
clinical benefit (n = 15) to anti-PD-1 therapy. D, Overall survival of patients with either high or low MBL scores in the Hugo et al anti-PD-1 dataset. In figures A, and C,
boxes span quartiles, with the lines representing the median score in each group. In figures B and D, high/low MBL designation was made using the top and bottom
MBL quartiles in each dataset and vertical hash marks indicate censored data. P-values were calculated using the two-tailed Wilcoxon sum-rank test in A and C, and
the log-rank test in B and D.
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Supplementary Table S2). The survival associations
remained insignificant in the multivariate model, though
the MBL score showed a protective trend (P = 0.14,
HR = 0.91; Table 1). These results notably differed from
the original anti-PD-1 study, which reported that somatic
mutation burden was associated with improved survival
following treatment.12 However, similar to the SCNA
study in the anti-CTLA-4 dataset, the anti-PD-1 TMB ana-
lysis was performed on a larger cohort of samples for which
whole exome sequencing was available (n = 38).

In addition to these genomic correlates of immunotherapy
response, the original anti-PD-1 study identified a group of 26
transcriptomic signatures that were co-enriched in non-
responders compared to responders. These signatures,

referred to collectively as the innate PD-1 resistance (IPRES)
signature, were associated with functions including mesench-
ymal transition, angiogenesis, hypoxia, and wound healing.12

In a univariate setting, the IPRES signature was associated
with both patient response to anti-PD-1 in a logistic regres-
sion model (P = 3e-3; Supplementary Table S2) and poor
patient survival in a Cox proportional hazards model
(P = 0.04, HR = 3.46; Supplementary Table S2).
Interestingly, we found that IPRES-enriched samples in the
anti-PD-1 dataset had significantly lower MBL scores com-
pared to non-IPRES-enriched samples (P = 0.03;
Supplementary Figure S3). This result was not surprising
given that both signatures were associated with response to
anti-PD-1 therapy. However, while the MBL signature was

Figure 2. MBL score predicts clinical benefit and improved survival in patients receiving anti-CTLA-4 therapy. A, Distribution of MBL scores in patients that
experienced no clinical benefit (n = 23), clinical benefit within 6 months (n = 14), and long-term survival with no clinical benefit (n = 5) from anti-CTLA-4 therapy.
Boxes span quartiles, with the lines representing the median score in each group. P-values were calculated using the two-tailed Wilcoxon sum-rank test. B, Overall
survival of patients with either high or low MBL scores. High/low MBL designation was made using the top and bottom MBL quartiles in each dataset and vertical
hash marks indicate censored data. P-values were calculated using the log-rank test.

Figure 3. Meta-analyses of the MBL signature’s association with response and survival in three immune checkpoint inhibitor datasets. Z-score absolute values
indicating significance of the association between A, MBL score and clinical benefit in response to immune checkpoint inhibitor therapy using the two-tailed
Wilcoxon sum-rank test and B, MBL score and either progression-free (anti-PD-L1) or overall survival (anti-PD-1, anti-CTLA-4) using the log-rank test. Light gray line
indicates a z-score equal to 1.96 (P < 0.05). Z-scores from the PD-1 and PD-L1 cohort were combined using Stouffer’s method to get the PD-1/PD-L1 meta-z-score.
Z-scores from all three datasets were combined using Stouffer’s method to get the meta-z-score. All p-values correspond to their respective z-scores.
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associated with response to anti-CTLA-4 therapy, the IPRES
signature has been reported to not associate with anti-CTLA-4
therapy response.12

We concluded our multivariate and univariate modeling
by examining how the MBL score’s performance compared
to that of our five other immune signatures as well as CD8A
and CD4 gene expression. In univariate logistic regression
models, none of the immune cell signatures and genes we
tested exhibited significant associations with immune check-
point blockade response. However, in the anti-CTLA-4 data-
set, CD8A and CD4 gene expression were significantly
associated with prolonged patient survival (P = 0.03 and
0.03, respectively) while the CD8 + T cell infiltration score
showed an insignificant trend in the same direction
(P = 0.08), mirroring findings from the previous study
(Supplementary Table S2).10 Notably, across datasets, none
of these genes and immune signatures exhibited significant
associations when adjusting for other markers of immu-
notherapy response (Supplementary Table S3). These results
together provide evidence that the MBL signature is detect-
ing immunological features distinct from other correlates of
immune infiltration.

The MBL score is robustly associated with immune
checkpoint blockade response

We next tested the MBL score’s accuracy in predicting
response to immune checkpoint blockade therapy. For each
dataset, we ranked the patients from low to high based on
their respective MBL score. We then performed an iterative

procedure where we used each patient’s score as a threshold
by which to classify the dataset. Patients with a score less than
or equal to this threshold were classified as non-responders
and patients with a score greater than this threshold were
classified as responders. For each iteration, we then calculated
the sensitivity and specificity of these classifications and used
these results to determine the overall area under the receiver
operating characteristic curve (AUC) for that dataset.
Performing this procedure in each dataset gave us AUCs of
0.74, 0.68, and 0.72 for the anti-PD-L1, anti-PD-1 and anti-
CTLA-4 datasets, respectively (Supplementary Table S2).
Notably, these AUCs were higher than those calculated
using TMB in all three datasets (AUC = 0.55, 0.57, and 0.63
for anti-PD-L1, anti-PD-1, and anti-CTLA-4, respectively)
and this remained true when using SCNA level to predict
anti-CTLA-4 response (AUC = 0.66; Supplementary
Table S2). To test the robustness of the MBL score’s predic-
tion, we next performed a resampling procedure on each of
the datasets, where we created simulated versions of the
datasets that consisted of 75% of the samples from the original
datasets with the proportion of responders to non-responders
held constant. We performed 1,000 simulations for each data-
set and then recalculated the AUCs for each set of simula-
tions. In all three datasets, the AUCs from the simulated
datasets remained high (AUC = 0.70, 0.66, and 0.71 for anti-
PD-L1, anti-PD-1, and anti-CTLA-4, respectively), with the
lower-bound of the 95% confidence interval never crossing
the 0.5 random classification threshold in any case
(Supplementary Table S2).

The MBL score associates with B cell activity

The findings using the MBL score were intriguing, as B cells have
not previously been implicated in response to checkpoint block-
ade therapy. We thus examined the underlying signature to better
understand the signals it was capturing from the tumor micro-
environment. In the flow cytometry benchmark datasets originally
used to define the signature, theMBL score was directly associated
with memory B cell fraction (R = 0.68) in PBMC mixtures and
CD19 + B cell fraction in non-small cell lung cancer (R = 0.57),
while showingweak associations with the flow cytometry fractions
of non-B cells in both contexts (Supplementary Figure S4 and S5).
Each gene in the MBL signature was weighted based on its
differential expression level in the underlying B cell expression
profile compared to all other immune cell profiles in the reference
gene expression dataset.17 To functionally characterize our signa-
ture, we examined how the genes from an independent set of
previously published immune signatures19 were weighted
throughout the MBL signature. We found that the most highly
weighted genes in the signature were those specific to naive B cells,
memory B cells, and activated dendritic cells, while genes specific
to other cell types were not weighted significantly higher than
background (Supplementary Figure S6).

We hypothesized based on these analyses that the signature
was detecting B cell activity in the tumor microenvironment.
To evaluate this hypothesis, we examined the association
between the MBL score and B cell receptor (BCR) heavy
chain expression in patient tumor gene expression data. For

Table 1. Multivariate regression models to predict clinical benefit and survival
following immune checkpoint blockade therapy. Multivariate logistic and Cox
proportional hazards regression models for the anti-PD-L1, anti-PD-1, and anti-
CTLA-4 datasets. Logistic regression in the anti-PD-L1 and anti-PD-1 datasets
classified patients experiencing clinical benefit or no clinical benefit. Logistic
regression in anti-CTLA-4 dataset classified patients with no clinical benefit from
those with either clinical benefit within 6 months or long-term survival with no
clinical benefit. Sample sizes for the anti-PD-L1, anti-PD-1, and anti-CTLA-4
datasets vary between the logistic regression (n = 21, 28, and 40, respectively)
and Cox proportional hazards models (n = 25, 28, and 40, respectively) depend-
ing on available variables, with some samples having survival data with no
response data.

Logistic regression Cox proportional hazards regression

Covariate Estimate (SE) P-value Hazard ratio (95% CI) P-value

anti-PD-L1
Intercept −3.89 (2.98) 0.19
MBL score 1.12 (0.55) 0.04 0.79 (0.66–0.94) 0.01
TMB 0.00 (0.00) 0.94 1.00 (1.00–1.00) 0.85
CTLA-4 −5.72 (3.29) 0.08 2.10 (0.41–10.79) 0.38
PD-1 1.95 (1.76) 0.27 0.72 (0.27–1.91) 0.51
PD-L1 4.45 (3.10) 0.15 0.35 (0.05–2.30) 0.28
anti-PD-1
Intercept 0.53 (1.49) 0.72
MBL score 0.26 (0.12) 0.03 0.91 (0.81 – 1.03) 0.14
TMB 0.00 (0.00) 0.41 1.00 (1.00 – 1.00) 0.14
CTLA-4 −0.79 (1.20) 0.51 0.55 (0.10 – 2.94) 0.48
PD-1 −0.99 (1.51) 0.51 1.66 (0.21 – 13.29) 0.63
PD-L1 −0.13 (1.70) 0.94 1.56 (0.08 – 30.92) 0.77
anti-CTLA-4
Intercept −0.84 (1.28) 0.51
MBL score 0.33 (0.14) 0.02 0.82 (0.70 – 0.96) 0.01
TMB 0.00 (0.00) 0.08 1.00 (1.00 – 1.00) 0.73
SCNA level −0.46 (0.65) 0.48 1.30 (0.68 – 2.48) 0.43
CTLA-4 1.77 (1.10) 0.11 0.27 (0.07 – 1.03) 0.06
PD-1 −1.54 (1.44) 0.28 1.56 (0.40 – 6.04) 0.52
PD-L1 −0.55 (1.70) 0.75 0.92 (0.15 – 5.58) 0.93
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this analysis, we used the anti-PD-1, anti-CTLA-4, and TCGA
datasets, as they all included the raw RNAseq reads required
to measure BCR levels from bulk expression data. In all three
datasets, the MBL score was positively associated with BCR
expression (R = 0.37, 0.53, and 0.36, respectively) and samples
with high MBL scores, defined as above the median, exhibited
significantly higher levels of BCR heavy chain abundance
(P = 0.02, 4e-4, and 2e-11, respectively; Figure 4A). BCR
abundance has previously been associated with melanoma
patient survival in TCGA.20 Thus, we tested this association,
and how well BCR abundance associated with immune check-
point inhibitor response, in the anti-PD-1 and anti-CTLA-4
datasets. While no significant associations were observed in
the anti-PD-1 dataset (Supplementary Figure S7), BCR heavy
chain abundance was associated with clinical benefit
(P = 0.02; Figure 4B) and prolonged patient survival
(P = 0.05; Figure 4C) in the anti-CTLA-4 dataset.

The MBL score associates with immune activation in the
tumor microenvironment

While the BCR analyses indicated that the MBL signature was
associated with B cell signals, it was possible that the MBL

signature was capturing additional immune-associated func-
tions. To provide a more thorough annotation of the signals
detected by the MBL signature, we identified the genes it
correlated with in each dataset (R > 0.3) and created a 55-
gene core MBL signature that represented the intersection of
these signatures (Figure 5A; Supplementary Table S4). The core
MBL signature included genes associated with T cell function
(CCL19, CXCL9, CXCR3) and MHC class II antigen presenta-
tion (HLA-DMA, HLA-DPA1, HLA-DQB1), in addition to
genes specific to B cells (MS4A1, TNFRSF17, ADAM28). We
then performed a gene ontology (GO) enrichment analysis to
identify the functions that were most over-represented in the
core and dataset-specific signatures (Figure 5B, Supplementary
Table S5). The most enriched terms in the core signature
included functions relating to antigen receptor-mediated sig-
naling (GO:0050857; 53.68 fold-enrichment, false discovery
rate (FDR) = 0.02), leukocyte and T cell activation
(GO:2000516; 34.16 fold-enrichment; FDR = 0.05), leukocyte
and T cell proliferation (GO:0042102; 18.98 fold-enrichment;
FDR = 0.01), and cell-cell adhesion (GO:1903039; 12.53 fold-
enrichment; FDR = 4e-3). Notably, GO terms related to B cell
function, such as B cell proliferation (GO:0042100; 30.47 fold-
enrichment, FDR = 0.06) and B cell activation (GO:0042113;

Figure 4. Relationship between B cell receptor expression, MBL score, and response and survival following anti-CTLA-4 therapy in melanoma. A, Comparison of B cell
receptor heavy chain expression in high MBL patients versus low MBL patients for the anti-PD-1 (n = 28), anti-CTLA-4 (n = 42), and TCGA melanoma datasets
(n = 469). High/low MBL designation was made using the median MBL score in each dataset. B, Comparison of B cell receptor heavy chain expression in patients that
did not exhibit a clinical benefit to anti-CTLA-4 therapy (n = 14) versus those that did (n = 23). C, Overall survival of patients in patients that exhibited heavy chain B
cell receptor expression relative to those that did not in the anti-CTLA-4 dataset. Vertical hash marks indicate censored data. For figure B, patients in the long-term
survival with no clinical benefit group were excluded. P-values were calculated using the two-tailed Wilcoxon sum-rank test in A and B and the log-rank test in C.
Boxes span quartiles, with the lines representing the median score in each group.
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10.58 fold-enrichment, FDR = 0.14) were enriched, but at a
lower significance threshold.

GO enrichment analyses of the MBL-correlated genes within
the individual datasets were largely in agreement with those
from the core dataset, though there were subtle differences
between them. The anti-PD-L1 signature, which had the fewest
MBL-correlated genes, uniquely exhibited enrichment in genes
associated with dendritic cell apoptosis regulation
(GO:2000669). In contrast, the anti-PD-1 genes were most asso-
ciated with antigen presentation (GO:0002475, GO:0019883), T
cell activity (GO:0001916) and B cell activity (GO:0050855),
while the anti-CTLA-4 genes were most associated with
T-helper cell function (GO:0002295, GO:0042088) and B cell

activity (GO:0002923, GO:0045579) (Supplementary Table S5).
Together, these results suggested that the MBL signature was
primarily capturing signals indicative of immune activation in
the tumor microenvironment.

Discussion

This study presents intriguing findings linking the activity of a
B cell-derived expression signature to immune checkpoint
blockade therapy response. In all three datasets, patients
experiencing clinical benefit had significantly higher MBL
scores compared to those that did not experience clinical
benefit. This makes the MBL signature unique as it is

Figure 5. Gene ontology enrichment analysis for the core MBL signature. A, Spearman coefficients representing the correlation between a dataset’s MBL scores and
expression values for the 55 genes of the core MBL signature. Each row represents a different immunotherapy dataset and the mean correlation. Genes are arranged
from lowest to highest using the mean correlation. B, False discovery rates (FDR) for the gene ontology (GO) terms most overrepresented in the core MBL gene set.
Vertical lines indicate where FDR = 0.05 and 0.01. FDRs were derived from p-values calculated using a Fisher’s exact test.
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associated with response to immune checkpoint blockade
therapies targeting the PD-1/PD-L1 axis as well as therapies
targeting CTLA-4. Interestingly, scores from this signature
were predictive of therapy response and post-treatment survi-
val even after adjusting for other known biomarkers, suggest-
ing that a novel transcriptomic process exists that can
distinguish responders from non-responders for each
treatment.

The MBL signature was derived from B cell gene expres-
sion profiles and exhibited strong correlations with memory B
cell fractions in PBMC mixtures and B cell infiltration in
NSCLC tumors.17 Furthermore, when applied to TCGA and
the immunotherapy response datasets used in this study, the
MBL score exhibited significant associations with BCR
expression. Together, these analyses suggested that the MBL
signature was well-suited to serve as a proxy for B cell activity
in the tumor microenvironment. However, functional ana-
lyses of the genes that were positively correlated with the
MBL score across the three immunotherapy datasets indicated
that the signature was more broadly capturing signals of
immune activity in the tumor microenvironment. In addition
to B cell activity, the genes that were correlated with MBL
score in all three datasets were enriched in functions related to
T cell activation and antigen presentation. Furthermore, when
examining the MBL-correlated genes specific to each dataset
we identified differences regarding the most enriched func-
tions in each signature, with the anti-PD-L1 signature
uniquely enriched in dendritic cell-based functions, the anti-
PD-1 signature exhibiting broader lymphocyte activation and
antigen presentation signals and the anti-CTLA-4 signature
most associated with T-helper cell and B cell activity.

The diverse immunological functions captured by the MBL
signature may explain why it was the only immune cell-derived
signature tested in this study to exhibit significant associations
with immune checkpoint inhibitor response in each of the three
immunotherapy datasets. However, the interaction of these
functions in the context of immunotherapy remains unclear.
Interestingly, the core MBL signature included a series of MHC-
class II genes, indicating the importance of antigen presentation
with regards to immune checkpoint blockade response. MHC-
class II genes are expressed on a variety of cell types including B
cells, dendritic cells, and macrophages.21 Furthermore, mela-
noma-specific expression of MHC-class II genes has been
shown to be associated with response to anti-PD-1 therapy.22

MHC-class II antigen presentation is primarily involved in the
activation of CD4 + T cell-based immune responses. Given the
role of neoantigens in eliciting a tumor immune response,23 and
the B cell, T cell and antigen presentation functions associated
with the MBL signature, it is possible that the MBL signature
was detecting an MHC-class II driven immune response. This
process may have been driven by different cell populations in
each dataset, with B cells providing the signal in the anti-CTLA-
4 and anti-PD-1 melanoma datasets, which exhibited higher
degrees of B cell function in responders, while MHC-class II-
expressing dendritic cells providing the signal in the anti-PD-L1
dataset. Understanding the extent to which this cross-presenta-
tion is taking place in each context will be necessary to further
characterize the underlying mechanisms of immune checkpoint
blockade response.

A major limitation of this study is that all associations were
observed in three datasets with limited numbers of patients
(n = 25, n = 28, and n = 42). As of now, there are few publicly
available gene expression datasets for patients receiving immune
checkpoint blockade therapy. Despite the small sample sizes in
our study, our signature was reproducibly associated with
response in both datasets targeting the PD-1/PD-L1 axis and a
meta-analysis pooling the datasets revealed highly significant
associations. Furthermore, while our signature was associated
with response in all three datasets, many previously reported
genomic-based biomarkers were not robust to the smaller sam-
ple size, including SCNA level in anti-CTLA-415 and mutation
burden in anti-PD-1.12 These findings suggest that the MBL
signature would perform well in more highly powered studies.
As additional data is released, it will be important to further test
this signature to demonstrate its reproducibility and validate it
as a response-predictive biomarker.

In conclusion, we present a B cell-derived expression signa-
ture that can predict patient response to immune checkpoint
inhibitors in two different cancer types. Despite the preliminary
stage of these findings, this study provides evidence of a shared
biology driving anti-PD-1/PD-L1 and anti-CTLA-4 response
and details a versatile signature that is reported to be predictive
of response to both therapies. While it will be important to
validate these findings both mechanistically and in large patient
cohorts, we believe the associations presented will be useful
going forward in the efforts to personally tailor immunotherapy
treatment regimens.

Methods

Datasets

Raw gene expression data (.fastq) and clinical information for
the anti-CTLA-4 dataset were obtained from the Database of
Genotypes and Phenotypes (dbGaP) under accession number
phs000452. Raw read files were aligned to the GRCh37 human
genome assembly using TopHat v2.1.0.24 From the aligned
reads, transcript assembly and abundance estimation were
performed using Cufflinks v2.2.1.25 Raw and processed gene
expression data for the anti-PD-1 dataset were obtained from
the gene expression omnibus (GEO) under accession number
GSE78220. Clinical information for this dataset was down-
loaded from a supplement in the original publication.12

Processed gene expression data and clinical information for
the anti-PD-L1 dataset in urothelial carcinoma were down-
loaded from Zenodo (https://zenodo.org/record/546110) and
GitHub (https://github.com/hammerlab/multi-omic-urothe
lial-anti-pdl1), respectively. In all datasets, clinical benefit
designations were defined using the anti-CTLA-4 study’s
criteria,10 where clinical benefit was defined as complete
response, partial response, or stable disease with overall sur-
vival > 1 year by RECIST criteria, while no clinical benefit was
defined using RECIST criteria for progressive disease or stable
disease with overall survival less than 1 year. The PBMC and
non-small cell lung cancer gene expression used for validation
were obtained from GEO under accession numbers GSE65133
and GSE84797 and their associated flow cytometry data were
obtained from their respective publications.19,26 Raw TCGA
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gene expression data (.fastq) for skin cutaneous melanoma
(SKCM) was downloaded from the National Cancer Institute
Genomic Data Commons Legacy Archive (https://portal.gdc.
cancer.gov/legacy-archive/), while processed TCGA
RNASeqV2 data for SKCM and bladder urothelial carcinoma
(BLCA) were downloaded from the Broad Institute TCGA
GDAC Firehose repository (http://firebrowse.org/). In cases
where samples lacked response information or survival, they
were excluded from the respective analyses. Sample sizes for
each immunotherapy dataset and the associated covariates
used in each analysis are available in Supplementary Table S6.

Calculation of immune cell signature scores

To calculate immune cell signature scores from patient gene
expression data, we used a previously established framework,-
16,17 that calculates scores for six distinct cell types from
patient gene expression data using specificity weights that
capture how uniquely a gene is expressed in a given immune
cell. The algorithm driving this procedure, BASE,27 calculates
these scores by summarizing how the weights are distributed
through a patient’s ranked gene expression profile. This dis-
tribution is captured by calculating a Kolmogorov-Smirnov
statistic-like metric comparing two functions. The first func-
tion (foreground) represents the cumulative sum of a patient’s
ranked gene expression profile weighted by a given immune
cell’s specificity weight, while the second function (back-
ground) represents the cumulative sum of a patient’s ranked
gene expression profile weighted by the complement (1-
weight) of the immune cell’s specificity weight. The maximal
deviation between these two functions represents the patient’s
signature score for that cell type, with a high score represent-
ing high expression of immune-specific genes in that patient
and a low score indicating the opposite. Full details of this
procedure and code for both immune cell specificity weight
calculation and immune cell signature score calculation have
been published in prior work.16 Details on the calculation of
the weights and the benchmarking analyses used to character-
ize the signatures used in this study, as well as the signatures
themselves, are available in a prior publication.17 The signa-
ture scores for each immunotherapy dataset are available in
this article (Supplementary Table S7).

Additional infiltration scores were calculated using gene
expression signatures derived from single cell RNAseq data18

as well as the LM22 matrix used by CIBERSORT.19

Infiltration scores using the single cell RNAseq signatures
were calculated using single sample gene set enrichment ana-
lysis (ssGSEA) from the R GSVA package.28 Cellular fractions
were inferred from the LM22 matrix using the CIBERSORT
webserver (https://cibersort.stanford.edu/runcibersort.php)
run in relative mode using the following parameters: 100
permutations and quantile normalization disabled (as is
recommended for RNAseq data). Prior to immune signature
score calculation using BASE and ssGSEA, all genes with a
transcript abundance of 0 across all samples were removed
from each dataset and all expression data was then multiplied
by 100 to minimize unwanted noise from the addition of a
pseudocount before being log10-transformed. For

CIBERSORT, all immune cell fractions were calculated from
gene expression data in non-log space.

B cell receptor analyses

BCR heavy chain abundance was inferred using V’DJer. FASTQ
files for each dataset used in BCR repertoire analyses were
aligned using STAR (v2.5.2b).29 V’DJer with default settings
was then run on the aligned files to infer each patient’s BCR
heavy chain (IGH) repertoire.20 V’DJer was initially unable to
process some samples in the anti-PD-1 dataset as they contained
reads of variable length. To address this, each sample in the anti-
PD-1 dataset was filtered to only contain reads of 100 base pairs
before being input into V’DJer. Transcript abundance of the
resulting BCR contigs output by V’DJer were quantified using
RSEM.30 FPKM for each BCR contig was calculated by dividing
the expected counts output by RSEM by the total number of
fragments in the file divided by one million.

Statistical analyses

Signature score and BCR expression comparisons were made
using the two-tailedWilcoxon-sum rank test. Correlation coeffi-
cients represent Spearman correlations unless stated otherwise.
Response classification was performed using the “glm()” func-
tion in R with family “binomial.” For survival analyses, samples
were stratified into high and low groups based on whether they
were above or below the dataset’s third and first score quartile,
respectively, unless stated otherwise. Survival distributions
between the two groups were compared using the log-rank test
through the “survdiff()” function from the R survival package.
Cox proportional hazards regression was used to model the
relationship between signature scores and patient survival and
was performed using the “coxph()” function from the R survival
package. For meta-analyses, p-values from Wilcoxon sum-rank
tests or log-rank tests, for response and survival associations
respectively, were converted to z-scores. The z-scores were
then collapsed intometa-z-scores by applying a weighted version
of Stouffer’s method.31

GO enrichment analyses were performed using the GO
Enrichment Analysis webserver (http://geneontology.org/
page/go-enrichment-analysis). The analysis type run was the
PANTHER Overrepresentation Test, with the Homo sapiens
reference list, the GO biological process annotation dataset,
and with FDRs calculated using the Fisher’s exact test.
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