Skip to main content
. 2018 Sep 19;8(1):e1513440. doi: 10.1080/2162402X.2018.1513440

Table 1.

Multivariate regression models to predict clinical benefit and survival following immune checkpoint blockade therapy. Multivariate logistic and Cox proportional hazards regression models for the anti-PD-L1, anti-PD-1, and anti-CTLA-4 datasets. Logistic regression in the anti-PD-L1 and anti-PD-1 datasets classified patients experiencing clinical benefit or no clinical benefit. Logistic regression in anti-CTLA-4 dataset classified patients with no clinical benefit from those with either clinical benefit within 6 months or long-term survival with no clinical benefit. Sample sizes for the anti-PD-L1, anti-PD-1, and anti-CTLA-4 datasets vary between the logistic regression (n = 21, 28, and 40, respectively) and Cox proportional hazards models (n = 25, 28, and 40, respectively) depending on available variables, with some samples having survival data with no response data.

  Logistic regression
Cox proportional hazards regression
Covariate Estimate (SE) P-value Hazard ratio (95% CI) P-value
anti-PD-L1        
Intercept −3.89 (2.98) 0.19    
MBL score 1.12 (0.55) 0.04 0.79 (0.66–0.94) 0.01
TMB 0.00 (0.00) 0.94 1.00 (1.00–1.00) 0.85
CTLA-4 −5.72 (3.29) 0.08 2.10 (0.41–10.79) 0.38
PD-1 1.95 (1.76) 0.27 0.72 (0.27–1.91) 0.51
PD-L1 4.45 (3.10) 0.15 0.35 (0.05–2.30) 0.28
anti-PD-1        
Intercept 0.53 (1.49) 0.72    
MBL score 0.26 (0.12) 0.03 0.91 (0.81 – 1.03) 0.14
TMB 0.00 (0.00) 0.41 1.00 (1.00 – 1.00) 0.14
CTLA-4 −0.79 (1.20) 0.51 0.55 (0.10 – 2.94) 0.48
PD-1 −0.99 (1.51) 0.51 1.66 (0.21 – 13.29) 0.63
PD-L1 −0.13 (1.70) 0.94 1.56 (0.08 – 30.92) 0.77
anti-CTLA-4        
Intercept −0.84 (1.28) 0.51    
MBL score 0.33 (0.14) 0.02 0.82 (0.70 – 0.96) 0.01
TMB 0.00 (0.00) 0.08 1.00 (1.00 – 1.00) 0.73
SCNA level −0.46 (0.65) 0.48 1.30 (0.68 – 2.48) 0.43
CTLA-4 1.77 (1.10) 0.11 0.27 (0.07 – 1.03) 0.06
PD-1 −1.54 (1.44) 0.28 1.56 (0.40 – 6.04) 0.52
PD-L1 −0.55 (1.70) 0.75 0.92 (0.15 – 5.58) 0.93