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Abstract

Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and
hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease
classifications. This classification system still largely frames clinical thinking and genetic workup
in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased
studies have revealed the limitations of this classification system. Various genes (eg, SPG7,
SYNEI, PNPLAG®) traditionally rooted in either the ataxia or hereditary spastic paraplegia
classification system have now been shown to cause ataxia on the one end of the disease
continuum and hereditary spastic paraplegia on the other. Other genes such as GBAZand KIF1C
were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene.
The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a
rethinking of the traditional classification system. We propose to replace this divisive diagnosis-
driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased
approach of modular phenotyping. This approach is also open to expansion of the phenotype
beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal
dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported
by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and
underlying genes, but also common cellular pathways and disease mechanisms. This suggests a
shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological
processes. It might be this mechanistic overlap that drives their c/inical overlap. A mechanistically
inspired classification system will help to pave the way for mechanism-based strategies for drug
development.
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Hereditary spinocerebellar ataxias and hereditary spastic paraplegias (HSPs) each define a
genetically heterogeneous group of rare degenerative disorders characterized by progressive
degeneration of the cerebellar Purkinje cells and spinocerebellar tracts (ataxias) and
corticospinal tracts (HSPs), respectively. They were traditionally designated in separate
clinicogenetic disease classifications, according to the predominant disease phenotype on
first gene locus description and to the mode of inheritance:

1. Neurodegenerative diseases first conceptualized as autosomal-dominant
spinocerebellar ataxias (SCAS) were classified in the SCA classification, which
entails 43 SCA subtypes to date.!

2. Neurodegenerative diseases first described as auvtosomal-recessive
spinocerebellar ataxias (SCARS) were classified in the SCAR classification,
comprising 24 subtypes.! This SCAR classification is partly paralleled and
duplicated, yet with different numbers, by another autosomal-recessive cerebellar
ataxia (ARCA\) classification, the ARCA classification.!

3. Neurodegenerative diseases first reported with spastic paraplegia were classified
in the spastic paraplegia gene (SPG) classification irrespective of mode of
inheritance. Seventy-eight distinct SPG loci are currently reported by OMIM.1

4. A small number of genes presenting with combined ataxia and spasticity were
somewhat arbitrarily also categorized as spastic ataxia genes (SPAX/SAX). The
7 loci listed in these classifications are mostly duplicate entries also contained in
either the HSP or ataxia classification systems.

Each of these classification systems bears in itself the same problems known from similar
classification systems of other movement disorders (for a broader discussion, see the
analysis by the International Parkinson and Movement Disorder Society Task Force2). These
include (1) erroneously assigned loci, (2) duplicated loci, (3) missing symbols or loci, and
(4) unconfirmed loci and genes.? For example, some recessive ataxias are not contained in
the SCAR or the ARCA list (eg, Friedreich’s ataxia or AOAL), and some recessive ataxias
are listed only in one of them (eg, AOA2 only in SCAR classification). Moreover, some
dominant ataxias can also be inherited in a recessive manner and vice versa (GR/D23
AFG3L2* SPTBNZ2), making it difficult to designate them as either on the SCA or the
SCAR/ARCA list (or both). Most important, the systematic value of each of these
classification systems is also very limited. Numbers in the SCA/ARCA/SCAR/SPG lists are
assigned in the order in which the disease was identified (initially by linkage analysis and
more recently by gene discovery). Yet these numbers do not carry any systematic
information in themselves that might help to facilitate clinical diagnostics, to understand the
disease etiology, or to devise treatment strategies.

In addition to these shortcomings, each of these classification systems carries in itself the
classification systems for ataxias and HSPs that also bear a particular limitation when seen
together. They suggest a conceptual and classificatory divide between ataxias and HSPs,
when in fact there exists a large phenotypic, genetic, and pathophysiological overlap. This
intersection between ataxias and HSPs has been increasingly acknowledged throughout the
last decade,® but its appreciation was notably facilitated by recent next-generation
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sequencing (NGS) studies. Classic clinical and genetic strategies were largely constrained by
preexisting clinical conceptions, classifications, and diagnostic workflows, leading to
confirmation bias in genotype-phenotype correlation studies. In contrast, NGS has facilitated
gene discoveries and phenotypic classifications unbiased from prior clinical and diagnostic
preconceptions. This development has led to further weakening and even partial removal of
the defined boundaries between ataxias and HSPs. As we show here, recent NGS and related
genomic studies have demonstrated

1. a rapidly increasing number of both novel/ genes and /ong-established ““ataxia
genes” and “HSP genes,” causing a phenotypic spectrum ranging from ataxia to
HSP as 2 extremes on a continuous spectrum;

2. shared pathways and mechanisms between ataxias and HSPs.

We thus argue to move on from the linkage-inspired divisive classifications system of largely
distinct ataxias and HSP categories toward a more modular understanding of phenotypes that
reflects the increasingly complex relationship between genotype, neuronal system damage,
and phenotypic expression. The frequent co-occurrence of ataxia and spasticity might
thereby be driven by shared vulnerability of corticospinal tract axons and cerebellar circuits
toward disturbances of the same molecular pathways (for graphical overview of the main
hypothesis and concept proposed here, see Fig. 1). A mechanistically inspired classification
system will prioritize research on shared pathways and pave the way for mechanism-based
strategies for drug development.

Discovering the Phenotypic and Genetic Spectrum From the Extremes

Discovery of an increasing number of genes causing both prominent cerebellar and
predominantly pyramidal phenotypes over the past few years has raised awareness of the
substantial overlap between these 2 disease classifications. Thereby, the “divide” was closed
from both sides: classical “HSP genes” were discovered to cause ataxia as well as classical
“ataxia genes” were recognized to result in HSP phenotypes.

For genes discovered in the pre-NGS era, it commonly took years (and, in some cases, the
phenotypically unbiased screening approaches enabled by NGS application) to overcome the
preconception of the predominant phenotype associated with a gene. SPG7, identified as a
cause of HSP in 1998, was not systematically considered a cause of predominant (and even
pure) cerebellar ataxia until 15 years later.8 Yet, within the past 2 years, it has been
appreciated as one of the most common causes of autosomal-recessive cerebellar ataxia, 10
and the cerebellar features may be even more pronounced than spasticity in some cohorts.10
Mutations in PNPLAG were identified as a cause of autosomal-recessive HSP complicated
by motor axonal neuropathy in 2008, leading to the designation SPG39.11 However, it was
not before 2014 that mutations in PNPLAG6 were also appreciated as a cause of predominant
cerebellar ataxia,12:13 and it has now been shown that PNPLA6 mutations can even cause
pure cerebellar ataxia.24 In light of these observations of patients with predominant or pure
cerebellar disease, the terms “SPG7” and “SPG39” reflect the historical meaning at best —
and appear to be misnomers for these patients and phenotypes. The fatty acid 2-hydroxylase
gene (FAZH) is even part of multiple classification systems. After initially being discovered
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as the causative gene for leukodystrophy associated with spastic paraparesis and dystonia,®
it was published 2 years later as a novel HSP gene (5PG35),18 only to be recognized to
cause a novel form of neurodegeneration with brain iron accumulation (NBIA) termed
FAHN — FA2H-associated neurodegeneration — a few months later.17 Not until recently,
the substantial cerebellar ataxia present in many patients with FAZH mutations was
systematically recognized.1819

Likewise, HSP phenotypes were often recognized belatedly for “traditional” ataxia genes.
Recessive mutations in SYNEZI were identified as a cause of cerebellar ataxia in 200720 and
consequently designated ARCA1 and SCARS. For almost a decade mutations in SYNEI
were thought to cause a slowly progressive, largely pure cerebellar ataxia,?1:22 before it was
realized in 2016 that they are in fact causative for a broad pleiotropic phenotypic spectrum,
with corticospinal tract damage and even predominant complicated HSP presentations
among the most frequent features.2324 Recessive mutations in PLA2G6were found in 2006
to cause, among others, a childhood-onset ataxia cluster (termed infantile neuroaxonal
dystrophy).25 Although concomitant corticospinal tract features have already been described
in several reports in recent years, it was not until recently that complicated HSP has been
acknowledged as one of the main phenotypic presentations of PLA2G6 (Ozes et al,
submitted). Biallelic STUBI mutations were first published as a cause of recessive ataxia
(eg, as part of a Gordon Holmes syndrome).26:27 L ater studies then revealed that
corticospinal tract damage is a frequent concomitant feature?® and sometimes even is
predominate in the clinical presentation.2® Examples can also be found for recently
identified autosomal-dominant disease genes. Dominant mutations in KCNAZ2 were first
reported as a cause of (early-onset) cerebellar ataxia in 2015,3931 before it was shown in
2016 that dominant KCNAZ mutations can also cause HSP phenotypes,32 with both
phenotypes occurring on a phenotypic continuum.

NGS has sped up not only disease gene discovery but also the time span from disease gene
discovery until a broadened phenotypic spectrum can be appreciated. In some cases, this has
led to the almost simultaneous “discovery” of one and the same gene as a novel ataxia gene
and an HSP gene. Autosomal-recessive mutations in the nonlysosomal glucosylceramidase
gene GBAZ, for example, were designated SPG46 because of the predominant lower-limb
spasticity noted by the European team of researchers.33 In the same journal issue, however,
GBAZ2was published as a novel gene for “cerebellar ataxia with spasticity” because of the
initial disease manifestation as cerebellar ataxia in this independent patient cohort.34
Similarly, K/F1C mutations were discovered to cause autosomal-recessive HSP complicated
by ataxia features, termed SPG58.3° At the same time, however, it was discovered that
KIF1C mutations can also cause predominant cerebellar ataxia (with variable spasticity of
the lower limbs).36

These recent examples underscore the value of unbiased screening approaches enabled by
NGS technology that — when combined with a modular phenotyping approach — enable
rapid and comprehensive delineation of phenotypic spectra associated with Mendelian
disease genes. Moreover, they illustrate that cerebellar and pyramidal disease manifestations
commonly cooccur and can vary considerably in predominance and phenotypic expression
along a continuous spectrum. This variable phenotypic presentation therefore does not
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justify the classification of these ataxia-spasticity spectrum genes as SPG versus SCA/

SCAR/ARCA genes. The distinct SPG-versus-SCA/SCAR/ARCA classification system fails
to capture this inherent phenotypic fluidity, rendering it in part arbitrary, and is therefore of
limited systematic value for clinic and research.

Large Common Genetic Basis of Ataxias and HSPs

The aforementioned examples of ataxia-spasticity spectrum (ASS) genes are part of a larger,
rapidly growing list of genes causing ataxia and HSP on a phenotypic continuum. Based on
review of the literature and our own experience with whole-exome sequencing (WES) and
whole-genome sequencing of large cohorts of cases with ataxia and/or HSP, we have
compiled an extendable list of 69 genes that we consider relevant in the differential
diagnosis of ASS disease (Table 1). We included only genes the phenotypic descriptions of
which included both ataxia and spasticity (rather than merely pyramidal signs) in subjects
from at least 2 different families (rather than merely single cases). The majority of these
ASS genes cause autosomal-recessive disease (n = 49), but autosomal-dominant (n = 16) and
X-linked recessive (n = 3) modes of inheritance also occur. For mutations in AFG3L2,
autosomal-recessive (SCARS5) and autosomal-dominant (SCA28) modes of inheritance have
been established. Notably, only 29 genes (42%) are part of either of the HSP or ataxia
classification systems mentioned above (SCA/SCAR/ARCA/SPG). Consequently, even
combining disease genes contained in either of the HSP or ataxia classifications is
insufficient to capture the relevant disease genes for the ASS. The implications for clinical
and genetic diagnostic practice are apparent: NGS-based approaches to test for mutations in
ataxia genes (“ataxia panels”) need to also comprise HSP genes and vice versa to do the
overlapping disease spectra justice; in addition, both ataxia and HSP gene panels should be
expanded to cover not only the relevant genes “by classification,” but need to go beyond
classification systems to cover also genes not included in any of the classification systems.

Common Pathophysiological Pathways and Mechanisms in Ataxias and

HSPs

Under the surface of the seemingly disparate clinical syndromic and diagnostic
classifications between ataxias and HSPs lurk not only shared allelic genes, but also
common mechanisms and pathways. In this respect, the overlap between ataxias and HSPs
resembles the well-established gene and pathway overlap between amyotrohic lateral
sclerosis (ALS) and frontotemporal dementia (FTD). Like HSP and ataxias, these 2
conditions have long been considered clinically disparate syndromes. Yet, over the past
decade, we have increasingly recognized that they co-occur within families and even within
individuals and largely share the same genes. Consequently, ALS and FTD are now usually
studied jointly as a disease spectrum. Overcoming the diagnostic divide between ALS and
FTD and focusing on shared pathways instead have led to identification of major shared
mechanism hubs. For example, dysfunctional nuclear-cytoplasmic transport has emerged as
a common mechanistic denominator uniting not only the different clinical conditions, but
also various ALS/FTD genes like C9orf72, FUS, and TARDPB.37-39
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Similarly, HSP and ataxias, which share a substantial number of genes, might also be
connected on a functional level via shared cellular pathways and pathomechanisms. A
protein-protein interaction network using known ASS genes as seeds (Table 1, n = 63, here
excluding the dominant repeat ataxias) reveals that the proteins encoded by these genes
share a multitude of physical interactions and form several highly connected “protein
communities” that are visualized by different colors shown in Figure 2. Functional
annotation of these genes using GO terms and subsequent gene set enrichment analysis
highlight functional clusters that are enriched in these proteins (Fig. 3, Supplementary
Table). The 3 major functional clusters are: (1) lipid metabolic processes, (2) acid metabolic
processes, and (3) cytoskeleton or dendritic intracellular transport processes. These 3
clusters represent only a small subset of molecular pathways known to be involved in HSPs
or cerebellar ataxias individually. This supports the hypothesis that pathways affected in
ASS reflect shared selective vulnerabilities of corticospinal and cerebellar neurons. The
clinical overlap of ASS spectrum diseases might thus be driven by underlying mechanistic
overlaps (for an illustration of the relation between genetic, pathway, and clinical overlaps,
see Fig. 1).

Some exemplary clusters of shared or interacting pathways underlying ASS diseases are:

. Phospholipid metabolism, including the genes PNPLAG,124041 pi A2GE,
DDHDI (SPG 28), DDHD2 (SPG54%2), CYP2U1 (SPGA49), and ABHD12*3 (for
further overview, see references 40 and 44).

. Sphingolipid metabolism, including the genes FA2H1S GBA23345 GALC,
HEXA, ASA, PSAP, and GLBI.

. Autophagy-lysosomal activity, including the genes SPG15, SPG11,4647
ATP13A2 (SPG78),4849 NPC1, and NPCZ2 disease.50-55

Toward a Mechanism-Based Classification of Ataxia-Spasticity Spectrum

Diseases

As our concepts of cellular pathways involved in ASS diseases grow, a mechanism-based
classification system of the ASS comes into reach. Classification of genetically defined
disorders by shared affected pathways rather than the perceived predominant phenotype will
allow overcoming the classic SCA/SCAR/ARCA and HSP/SPG divide and appreciation of a
more systematic, pathophysiological perspective. Other than the resolution of multiple
inconsistencies of the traditional classification system which we have detailed above, a
mechanistically inspired classification system of ASS diseases offers key advantages in
therapeutic respects. Such a classification system will prioritize research on shared pathways
and might pave the way for mechanism-based strategies for drug development.
Hypothetically, compounds targeting dysfunctional pathways rather than single genes have
the potential to address groups of genetically defined diseases rather than single ataxia or
HSP subtypes (for graphical illustration of this idea, see label “causal treatment strategies
targeting pathways” in Fig. 1). For example, one class of drugs might target ASS diseases
with abnormal cholesterol processing and cholesterol sequestration such as CYP7B1
(SPG5), NPCI1, NPC2, or SERACI by exploiting cholesterol-depleting agents.>® Another
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class of drugs might aim at ASS diseases with defective autophagy-lysosomal activity (eg,
SPG11, ZFYVEZ26, ATP13A2), using an autophagy inducer.>® A mechanism-based disease
classification might thus facilitate the translation of the giant genetic progress rendered
possible by NGS over the past 5 years into first targeted molecular therapies.

Conclusions for Clinical Practice

In conclusion, we suggest to give up the classificatory divide between ataxias and HSPs in
favor of a concept of a clinical, genetic, and pathophysiological ASS. From this inclusive
rather than discriminatory approach, a number of advantages can be inferred for current
clinical practice:

1.

Increased precision of phenotypic description and improved efficiency of
diagnostic workup. Early discriminatory classification of patients into fixed
diagnostic categories potentially introduces bias into the clinical and diagnostic
workup. We suggest taking a modular approach to phenotyping that allows the
appreciation of nuanced individual phenotypic expression along the spectrum of
ataxia and spasticity. This descriptive, unbiased approach of moaular
phenotyping would also be open to expansion of the phenotype beyond ataxia
and HSP, as ataxia and spasticity often occur not in isolation, but as part of
multisystem neuronal dysfunction. It thus allows for a more comprehensive,
dynamic and systematic perspective than the traditional SCA/SCAR/ARCA and
HSP/SPG classifications. Avoidance of narrow-minded ataxia and HSP clinical
engrams will ultimately facilitate diagnosis in so-far unexplained complex
neurodegenerative disease.

Individualized treatment. Following the idea of individualized medicine, modular
phenotyping allows for individualized clinical treatment and management
according to each individual’s particular phenotypic spectrum (rather than by the
overall clinical diagnosis or SPG/SCA/ARCA classification) (for a graphic
illustration of the role of symptomatic treatment according to individual
phenotype, see Figure 1). For example, patients with a major ataxia component
due to PNPLA6 or SPG7mutations will be clinically managed according to their
individual ataxia, receiving, for example, physiotherapy exercises specifically
targeting ataxia dysfunctions,>”+28 even if these genes are traditionally grouped in
the HSP/SPG classification (SPG39 and SPG7, respectively). Vice versa, patients
with pronounced spasticity because of SYNVEI or STUBI mutations will be
clinically managed according to their spasticity, receiving, for example,
antispastic drugs, even if these genes are traditionally grouped in ARCA
classifications.

Efficient diagnostic testing. Given the variability of phenotypes across the ASS
and the sheer number of ASS genes, genetic testing on a gene-by-gene basis or
relying on small gene panels is inefficient and mostly obsolete. Instead, genetic
testing needs to resort to large gene panels or WES covering all ASS genes.
Single-gene testing in ataxia spasticity spectrum diseases should be largely
reserved for a few exceptions, for example, genotyping the FRDA repeat in
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patients with afferent ataxia and pyramidal tract damage without major cerebellar
atrophy, or the SACS gene in patients with the characteristic hypointense pontine
stripes on T2-MRI imaging.>®

4, Aggregated ASS gene panels and gene lists. In NGS diagnostics, the design of
separate ataxia and HSP NGS gene panels and of separate ataxia and HSP gene
lists, respectively, for WES analyses is not productive. NGS gene panels and lists
need to aggregate a// ASS genes.

Limitations and Future Challenges

The proposed approach of modular phenotyping bears several limitations. Patients might
prefer to have a clear-cut clinical label for their disease (eg, HSP or spinocerebellar ataxia)
rather than an open and dynamic broad descriptive phenotypic description of the
individually affected neurological systems. A clear label might yet be given the name of the
underlying gene and/or the pathway cluster. However, sporadic ASS patients without
monogenic disease causation or obvious hit in one of the pathway clusters will escape
classification by the proposed pathway-driven classification system.

The suggested pathway-driven classification is also limited by it requiring the affected
cellular pathways to be known. For the large majority of ASS diseases, however, the
pathway implications of the respective disease genes have yet to be identified. Future basic
research now has to move on from NGS genetics to functional pathway explorations, both
for each specific ASS gene and for possible shared pathway hubs, identifying in particular
those pathway hubs that might be druggable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
From clinical diagnosis to modular phenotyping and underlying shared genes and pathways

in ataxia-spasticity spectrum diseases. Ataxias and HSPs have traditionally been designated
in separate clinicogenetic disease classifications, depending on the first phenotypic
descriptions and pattern of inheritance, namely, either in autosomal-dominant
spinocerebellar ataxias (SCASs) and autosomal-recessive spinocerebellar ataxias (SCARS) or
hereditary spastic paraplegias (HSPs/SPGs). However, the molecular etiologies of these 2
disease groups overlap greatly, based on manifold shared disease genes (top). Moreover,
proteins encoded by HSP and ataxia genes closely interact physically as well as functionally.
The heterogeneous genetic etiology of HSPs and ataxias thus converges into a small number
of cellular pathways that are dysregulated in both diseases (right). Selective vulnerability of
specific neuronal cell types that can be modified by additional genetic, epigenetic and
environmental factors ultimately determines which neuronal systems and circuits will be
affected by the pathway dysfunction (bottom). In ataxia-spasticity spectrum diseases,
cerebellar and corticospinal tract neurons share selective vulnerabilities. The individual
phenotypic expression (left) is a result of the pattern of neuronal system affection. It is
essential to appreciate these 4 aspects, not only to understand an individual’s disease, but
also to use all therapeutic routes, whether they be symptomatic or causal/disease modifying.
Pathway-based treatment approaches are hereby particularly promising, as (1) they offer the
potential to cure, not only to modify the disease condition, with the (2) pathway-based
etiologies partly converging from the vastly heterogeneous genetic etiology. Targeting
dysfunctional pathways rather than single genes or disease conditions thus has the potential
to address whole groups of genetically defined ASS diseases. [Color figure can be viewed at
wileyonlinelibrary.com]

Mov Disord. Author manuscript; available in PMC 2018 December 10.


http://wileyonlinelibrary.com/

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Synofzik and Schiile

Page 17
POLR3A SA A
PDHX
SDHA
FXN =
GaN ez
VAR | ‘ PRNP
o ; DARS2
PSAP 5 D
UCKILA " e T MEEC2 ABED1
GRAP NROIL: . (i
RSEAM. - + kit
A chaNF L
SL@2AT “KIRIC: .
' STUB1
SYNE1
GRID2  KCNA2

FIG. 2.
Protein-protein-interaction network for ataxia-HSP spectrum disease genes. To generate a

protein-protein-interaction (PPI) network, interactors (iteration 1) of 63 spastic ataxia genes
listed in Table 1 were extracted using the iRefScape plugin in Cytoscape v2.8.3.60-62
Autosomal-dominant repeat-expansion genes were removed from the seed list, as their
binding properties appear to be largely shaped by their polyglutamine tracts rather than the
properties of the wild-type protein. The PPI network was then imported into Gephi v0.9.1
and filtered, whereby nonhuman interactions, predicted interactions, interactions based
solely on high-throughput experiments, self-loops, and nodes with a degree < 2 were
removed, retaining only nodes that were maximum 1 degree removed from the input spastic
ataxia seed genes. The resulting network contained 389 nodes and 2582 undirected edges.
We then applied the Louvain method to detect communities, neighborhoods of highly
connected nodes. A total of 8 communities were detected, represented by differently colored
nodes and edges in the figure. Ataxia-spasticity spectrum seed genes are represented by
larger dots and labeled with the respective gene name. [Color figure can be viewed at
wileyonlinelibrary.com]
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FIG. 3.

Pathway enrichment map of ataxia-HSP spectrum gene sets. Gene-set enrichment analysis

reveals several functional clusters associated with ataxia-spasticity spectrum genes. To

generate the pathway, enrichment map spastic ataxia genes (Table 1, n = 63 genes; dominant
repeat genes excluded) were uploaded to DAVID Bioinformatics Resources 6.853:64 and
annotated with gene ontology terms (GOTERM_BP_FAT, GOTERM_MF_FAT).%° The fully
annotated gene list is provided in the Supplementary Table. A gene enrichment map was
then generated using the Enrichment Map plugin® in Cytoscape v3.2 with the following
parameters: P cutoff, 0.0001; FDR Q cutoff, 0.05; similarity cutoff overlap, 0.4. Three major

enrichment clusters can be appreciated: (1) lipid metabolic processes (blue), (2) acid
metabolic processes (orange), and (3) cytoskeleton or dendritic intracellular transport

processes (green). Each major network contains several subnetworks highlighting a specific
cellular process underlying ataxia-spasticity spectrum disease. The size of the nodes reflects
the number of ataxia-spasticity spectrum genes represented in the respective functional
cluster; the number of genes is also indicated by the number in each of the nodes. [Color

figure can be viewed at wileyonlinelibrary.com]
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