Skip to main content
. Author manuscript; available in PMC: 2018 Dec 10.
Published in final edited form as: Proc Mach Learn Res. 2017 Aug;68:25–38.

Table 2:

Ranked Algorithm Performance

Algorithm CV R2 CV MSE RE
Super Learner 0.405 0.149 1.00
GAM: C123 0.396 0.151 0.98
Lasso: C123 0.395 0.151 0.98
Ridge: C123 0.395 0.151 0.98
Elastic Net: C123 0.395 0.151 0.98
Random Forest: C123 0.393 0.152 0.98
GLM: C123 0.392 0.152 0.98
SVM: C123 0.369 0.158 0.94
Random Forest: C12 0.300 0.175 0.85
GAM: C12 0.299 0.175 0.85
Ridge: C12 0.298 0.175 0.85
Lasso: C12 0.298 0.175 0.85
Elastic Net: C12 0.298 0.175 0.85
GLM: C12 0.297 0.176 0.85
SVM: C12 0.259 0.185 0.80
Neural Net: C1 0.220 0.195 0.76
GLM: C1 0.219 0.195 0.76
GAM: C1 0.219 0.195 0.76
Ridge: C1 0.219 0.195 0.76
Elastic Net: C1 0.219 0.195 0.76
Lasso: C1 0.219 0.195 0.76
SVM: C1 0.082 0.229 0.65
Neural Net: C12 0.000 0.250 0.59
Neural Net: C123 0.000 0.250 0.59
Random Forest: C1 −0.035 0.259 0.57
Clinical Tree −1.006 0.501 0.30