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ABSTRACT  This review presents current knowledge related to VDAC1 as a 
multi-functional mitochondrial protein acting on both sides of the coin, regu-
lating cell life and death, and highlighting these functions in relation to dis-
ease. It is now recognized that VDAC1 plays a crucial role in regulating the 
metabolic and energetic functions of mitochondria. The location of VDAC1 at 
the outer mitochondrial membrane (OMM) allows the control of metabolic 
cross-talk between mitochondria and the rest of the cell and also enables in-
teraction of VDAC1 with proteins involved in metabolic and survival path-
ways. Along with regulating cellular energy production and metabolism, 
VDAC1 is also involved in the process of mitochondria-mediated apoptosis by 
mediating the release of apoptotic proteins and interacting with anti-
apoptotic proteins. VDAC1 functions in the release of apoptotic proteins lo-
cated in the mitochondrial intermembrane space via oligomerization to form 
a large channel that allows passage of cytochrome c and AIF and their release 
to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also reg-
ulates apoptosis via interactions with apoptosis regulatory proteins, such as 
hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many 
cancers. This review also provides insight into VDAC1 function in Ca

2+
 homeo-

stasis, oxidative stress, and presents VDAC1 as a hub protein interacting with 
over 100 proteins. Such interactions enable VDAC1 to mediate and regulate 
the integration of mitochondrial functions with cellular activities. VDAC1 can 
thus be considered as standing at the crossroads between mitochondrial me-
tabolite transport and apoptosis and hence represents an emerging cancer 
drug target. 
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VDAC ISOFORMS, STRUCTURE, AND CHANNEL ACTIVI-
TY 
VDAC isoforms and cellular localization 
Three different VDAC isoforms, VDAC1, VDAC2 and VDAC3, 
sharing ~70% identity and structural and some functional 

properties [1, 2], are expressed in mammalian mitochon-
dria, with VDAC1 being the major protein expressed. How-
ever, significantly differences in the functions of the three 
isoforms were found [1, 3, 4], suggesting they assume dif-
ferent physiological roles [1, 5]. The three isoforms are 
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Abbreviations: 
Aβ – Amyloid beta, 
AD – Alzheimer’s disease, 
ALS – amyotrophic lateral sclerosis, 
AIF - apoptosis-inducing factor, 
ANT - adenine nucleotide translocase, 
Bcl-2 - B-cell lymphoma 2, 
CSC – cancer stem cell, 
CVD – cardiovascular disease, 
Cyto c - cytochrome c, 
DIDS - 4,4-diisothiocyanostilbene-2,2-
disulfonic acid, 
HK – hexokinase, 
IMM - inner mitochondrial membrane, 
IMS – intermembrane space, 
NSCLC - non-small cell lung cancer, 
miRNA – micro RNA 
OMM - outer mitochondrial 
membrane, 
OXPHOS – oxidative phosphorylation, 
PTP - permeability transition pore, 
RNAi -  RNA interference, 
ROS - reactive oxygen species, 
TSPO - translocator protein, 
T2D – type 2 diabetes, 
VDAC - voltage-dependent anion 
channel. 
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expressed in most tissue types, with VDAC1 expression 
being higher than that of VDAC2 and VDAC3 in most but 
not all tissues [1, 2].  

Both VDAC1- and VDAC3-deficient mice are viable. 
However, VDAC1−/− mice (inbred C57BL/6 background) 
were born in less than expected numbers according to the 
Mendelian ratio, suggesting partial embryonic lethality. 
Studies using VDAC1−/− mice confirmed the importance of 
this protein as a carrier of metabolites across the OMM [6]. 
In mice, deletion of VDAC1 and VDAC2 reduces respiratory 
capacity [7], and the absence of VDAC3 causes male sterili-
ty, while a lack of both VDAC1 and VDAC3 causes growth 
retardation [8] and is associated with deficits in learning 
behavior and synaptic plasticity [9]. In this review, the fo-
cus will be on the VDAC1 isoform.  

Using various approaches, VDAC was detected not only 
in the mitochondria but also in other cell compartments [3], 
such as the plasma membrane [3, 10], including the caveo-
lae and caveolae-like domains [11], the sarcoplasmic re-
ticulum (SR) of skeletal muscles [12], and the ER of rat cer-
ebellum [13, 14]. A possible mechanism for targeting VDAC 
protein to the plasma membrane proposes that this ver-
sion of the protein contains an N-terminal signal peptide 
responsible for targeting to the cell membrane [15, 16]. 
The exact function of extra-mitochondrial VDAC is un-
known, although several possible roles have been pro-
posed (reviewed in [17]). 
 
VDAC1 structure, channel conductance, properties and 
regulation 
 The three-dimensional structure of VDAC isoform 1 was 
determined at atomic resolution, revealing that VDAC1 is 
composed of 19 transmembrane β-strands connected by 
flexible loops to form a β-barrel, with strands β1 and β19 
being in parallel conformation along with a 25-residue-long 
N-terminal region that lies inside the pore [18-20] (Fig.1A). 
The N-terminal region is proposed to move in the open 
space [21] and translocate from the internal pore to the 
channel surface [22] (Fig.1B). This segment is ideally posi-
tioned to regulate the conductance of ions and metabolites 
passing through the VDAC1 pore [20, 18]. 

The pore diameter of the channel has been estimated 
to be between 3 and 3.8 nm [18], and is decreased to 
about 1.5 nm when the N-terminal α-helix is located within 
the pore [18-20]. The stretch of multiple glycine residues 
(21GlyTyrGlyPheGly25) [1, 5] connecting the N-terminal do-
main to β-strand 1 of the barrel is thought to provide the 
flexibility required for N-terminal region translocation out 
of the internal pore of the channel [22]. The reported re-
sults suggest that the N-terminal region mobility is in-
volved in channel gating, interaction with anti-apoptotic 
proteins, and VDAC1 dimer formation [22], as well as serv-
ing the interaction site of apoptosis-regulating proteins of 
the Bcl-2 family (i.e., Bax, Bcl-2, and Bcl-xL) [22, 23-26] and 
hexokinase (HK) [23, 27].  

Purified and membrane-embedded VDAC1 is able to 
assemble into dimers, trimers, tetramers, hexamers, and 
higher-order moieties [1, 28-36]. The contact sites be-
tween VDAC1 molecules in dimers and higher oligomers 

were identified [37]. Under physiological conditions, 
VDAC1 is present as a monomer and dimer, with a contact 
site involving β-strands 1, 2, and 19. However, upon apop-
tosis induction, VDAC1 dimers undergo conformational 
changes to assemble into higher oligomeric states with 
contact sites also involving β-strands 8 and 16 [37]. VDAC1 
oligomerization has been proposed to play important phys-
iological roles in the regulation of VDAC1 function, includ-
ing contributing to stabilizing the protein [38], serving as a 
platform for other proteins that oligomerize, such as HK 
[36] and creatine kinase [39], and finally, in mediating Cy-
tochrome c release and the binding of apoptosis-regulating 
proteins [23, 28, 36] (see below).  

FIGURE 1: Three-dimensional structure of VDAC1. VDAC1 mon-
omer and dimer structures. (A) Side-view of the crystal structure 
of VDAC1 (PDB code: 3EMN). The β-barrel is formed by 19 β 
strands and the N-terminal domain (colored red) is folded into the 
pore interior. (B) A proposed model for the conformation of 
VDAC1 with its N-terminal on the outside of the VDAC1 pore. (C) 
Top-view of VDAC1 dimer with the N-terminal helix nested inside 
the VDAC1 pore in one monomer and outside of the pore in the 
other. (D) Side-view of proposed dimer of VDAC1. Figures were 
prepared using PyMOL software. 
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VDAC1 has been purified from mitochondria isolated 
from liver, brain, and other tissues [40], and its channel 
properties were characterized following reconstitution into 
a planar lipid bilayer (PLB). Such bilayer-reconstituted 
VDAC1 assumes a variety of voltage-dependent conducting 
states, with different selectivities and permeabilities. 
VDAC1 shows symmetrical bell-shaped voltage-dependent 
conductance. At low voltages (-20 to +20 mV), VDAC1 ex-
ists in a high conductive state (~4 nS at 1 M KCl), and shows 
a preference for transporting anions over cations, while at 
high positive or negative potentials (> 40 mV), VDAC1 
switches to lower conductance states permeable to small 
ions [41, 42]. VDAC1 is permeable to small ions (e.g. Cl–, K+, 
Na+), and also to large anions, such as glutamate [41] and 
ATP [43], and to large cations, such as acetylcholine and 
dopamine [41].  

The interactions of VDAC1 with Ca2+, ATP, glutamate, 
NADH, and different proteins were suggested to modulate 
its activity [44-47]. VDAC1 has been shown to be phos-
phorylated by protein kinase A (PKA) [48] and protein ki-
nase C (PKC)ε [49], and VDAC1 and VDAC2 were found to 
be phosphorylated at a particular Tyr residue under hypox-
ic conditions [50]. 

 

VDAC1, A MULTI-FUNCTIONAL CHANNEL CONTROL-
LING CELL ENERGY AND METABOLISM 
The OMM, the interface between the cytosol and a mito-
chondrion, is also a limiting boundary for modulating cell 
bioenergetics, mediated via VDAC1. The metabolites and 
ions that reach the matrix must first cross the OMM to 
reach the mitochondrial intermembrane space (IMS), from 
where they are then transported by about 53 secondary 
transport proteins called mitochondrial carriers (MCs). The 
mitochondrial carrier proteins of the family SLC25 (solute 
carrier family 25, located in the inner mitochondrial mem-
brane (IMM)) are substrate-specific and mediate electro-
chemical, chemical and membrane potential gradient-
dependent transport. The SLC25 family includes carriers for 
Pi (PiC), ADP/ATP (ANT) and aspartate/glutamate, pyruvate, 
acyl carnitine, oxoglutarate, and citrate, among others [51]. 
On the other hand, VDAC1 is the sole channel mediating 
the flux of ions, nucleotides and other metabolites up to 
~5,000 Da (e.g. pyruvate, malate, succinate, NADH/NAD+) 
across the OMM, as well as hemes and cholesterol [1, 52]. 
Thus, at the OMM, VDAC1 is perfectly positioned to func-
tion as gatekeeper for the entry and exit of substrates and 
products into and out of the mitochondria, and to interact 
with proteins that mediate and regulate the integration of 
mitochondrial functions with other cellular activities [1, 29-
31, 42, 53, 54] (Fig. 2).  

VDAC1 allows the shuttling of ATP/ADP and 
NAD+/NADH, with mitochondria-generated ATP being 
transported to the cytosol in exchange for ADP, which is 
utilized in oxidative phosphorylation (OXPHOS) to generate 
ATP. As such, VDAC1 controls the electron transport chain 
[1] (Fig. 2), as well as the normal flow of metabolites [55]. 
The importance of VDAC1 in channeling ATP from the mi-
tochondria to kinases has been presented in several stud-

ies. These showed that VDAC1 interacts with HK and crea-
tine kinase (CrK) to convert newly generated ATP into high-
energy storage forms, like glucose-6-phosphate (G-6-P) and 
creatine phosphate in brain and muscle, respectively. The 
interaction of VDAC1 with HK mediates coupling between 
OXPHOS and glycolysis, while at the contact sites between 
the IMM and OMM, VDAC1 forms a complex with the ade-
nine nucleotide translocase (ANT), and CrK [56]. Dimeric 
αβ-tubulin was proposed as a regulator of VDAC1 permea-
bility to ATP, with heterodimers of αβ-tubulin decreasing 
the passage of ATP through the channel [57]. The im-
portance of VDAC1 in cell energy and metabolism homeo-
stasis is reflected in the findings that closure of VDAC [55] 
or down-regulation of VDAC1 expression decreased me-
tabolite exchange between mitochondria and the cytosol 
and inhibited cell growth [58, 59]. Moreover, VDAC1 is 
overexpressed in many cancer cells [32], as discussed be-
low.  

Cholesterol is another metabolite transported across 
the OMM [60] (Fig. 2), with VDAC1 being considered as a 
necessary component of a multi-protein complex, the 
transduceosome, involved in the process. In addition to 
VDAC1, the transduceosome also includes the OMM high-
affinity cholesterol-binding protein translocator protein 
(TSPO) and the steroidogenic acute regulatory protein 
(StAR) [61] (Fig. 2). Cholesterol synthesis is highly elevated 
in various cancer cells, with hepatocellular carcinoma cells 
containing 2-10-fold more mitochondrial cholesterol (main-
ly in the OMM) than found in liver mitochondria [62]. The 
increased binding of HK to the mitochondria may increase 
synthesis and uptake of cholesterol into the mitochondria 
of cancer cells [63]. At high levels, cholesterol can reduce 
the activity of membrane-associated proteins and thus 
inhibit the metabolic functions of VDAC1 [64]. As such, 
VDAC1 is involved in cholesterol synthesis and transport, as 
well as being subject to cholesterol-mediated regulation.  

Finally, it appears that VDAC1 is also part of a complex 
mediating the transport of fatty acids through the OMM in 
rat liver mitochondria [65]. In this case, it is hypothesized 
that VDAC1 acts as an anchor, linking the long-chain acyl-
CoA synthetases (ACSLs) at the OMM to carnitine palmito-
yltransferase 1a (CPT1a), which faces the IMS. According to 
the proposed model, upon activation by ACSL, VDAC1 
transfers acyl-CoAs across the OMM to the IMS, where 
they are converted into acylcarnitine by CPT1a. Moreover, 
recently it was shown that fatty acid accumulation in 
hepatocytes leads to a lack of phosphorylation by GSK-3β, 
indicating interplay between lipids and VDAC function [66]. 
Furthermore, it was recently proposed that VDAC behaves 
as a lipid sensor [67]. 

 

CANCER, METABOLISM, MITOCHONDRIA, AND VDAC1  
One of the main functions of the telomere is to prevent the 
metabolic reprogramming in cancer cells that require plas-
ticity of the metabolic machinery, regardless of cellular or 
tissue origin, a critical process that promotes cell prolifera-
tion with alterations seen in the metabolism of several 
substrates, including glucose and glutamine [68, 69]. In the  
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FIGURE 2: VDAC1 as a multi-functional channel involved in metabolite, cholesterol and Ca2+ transport, energy production and in ER-mitochondria struc-
tural and functional association. The functions of VDAC1 in cell life include control of the metabolic cross-talk between the mitochondria and the rest of the 
cell energy production, regulation of glycolysis via binding of HK, Ca2+ signaling and cholesterol transport. The various functions of VDAC1 in the cell and 
mitochondria functions are presented. These include: 1. Control of the metabolic cross-talk between mitochondria and the rest of the cell; 2. Transport of 
Ca2+  to and from the IMS and acting in Ca2+ signaling; 3. Lipid metabolism; 4. Transport of ions, such as Mg2+, Zn+, Na+ and K+; 5. Mediating cellular energy 
production by transporting ATP/ADP and NAD+/NADH and acyl-CoA (FA-CoA) from the cytosol to and from the IMS, and regulating glycolysis via association 
with HK; 6. Structurally and functionally contributing to ER-mitochondria contacts, mediating Ca2+ transport from the ER to mitochondria. Ca2+ influx and 
efflux systems in the IMM are shown. The mitochondrial Ca2‏+ uniporter (MCU), in association with a calcium-sensing accessory subunit (MCU1), mediates 
Ca2+ transport from the IMS into the matrix. The ryanodine receptor (RyR) in the IMM mediates Ca2+ influx. NCLX, a Na+/Ca2+ exchanger, mediates Ca2+ efflux 
from the matrix to the IMS. High levels of matrix Ca2‏+ trigger the opening of the PTP, a fast Ca2+ release channel. Molecular fluxes are indicated by arrows. 
The function of Ca2+ in regulating energy production is mediated via activation of the TCA cycle enzymes pyruvate dehydrogenase (PDH), isocitrate dehydro-
genase (ICDH) and α-ketoglutarate dehydrogenase (α-KGDH), leading to enhanced activity of the TCA cycle. The electron transport chain (ETC) and the ATP 
synthase (FoF1) are also presented. VDAC1 mediates the transfer of acyl-CoAs across the OMM to the IMS, where they are converted into acylcarnitine by 
CPT1a for further processing by β-oxidation. VDAC1 is involved in cholesterol transport by being a constituent of a multi-protein complex, the transduceo-
some, containing StAR/TSPO/VDAC1.The ER-mitochondria association is presented with key proteins indicated. These include the inositol 3 phosphate recep-
tor type 3 (IP3R3), the sigma 1 receptor (Sig1R) (a reticular chaperone), binding immunoglobulin protein (BiP), the ER HSP70 chaperone, and glucose-
regulated protein 75 (GRP75). IP3 activates IP3R in the ER to release Ca2+ that is directly transferred to the mitochondria via VDAC1. 



V. Shoshan-Barmatz et al. (2017)  VDAC1 as a cancer drug target 

 
 

OPEN ACCESS | www.cell-stress.com 15 Cell Stress | OCTOBER 2017 | Vol. 1 No. 1 

1920’s , Otto Warburg demonstrated increased lactic acid 
production resulting from high glycolysis in tumors, as 
compared to non-proliferating cells. The Warburg effect 
described a metabolic phenotype characterized by en-
hanced glycolysis and suppression of mitochondrial me-
tabolism at any level of oxygen. However, although en-
hanced glycolysis is a prominent feature of most tumor 
cells, the mitochondria of cancer cells maintain a mem-
brane potential, oxidize respiratory substrates, and gener-
ate NADH and ATP, among other functional parameters 
[70-73]. The view of cancer as a metabolic disease that 
originated with the experiments of Otto Warburg was 
gradually displaced by the concept of cancer as a genetic 
disease. Recently, evidence supporting a general hypothe-
sis that genomic instability and essentially all hallmarks of 
cancer, including aerobic glycolysis, can be linked to im-
paired mitochondrial function and energy metabolism, has 
been reviewed [74, 75]. Interestingly, no specific gene mu-
tations or chromosomal abnormalities are common to all 
cancers [76], while nearly all cancers display aerobic gly-
colysis, regardless of their tissue or cellular origin. The view 
of cancer as primarily being a metabolic disease will impact 
approaches to cancer management and prevention. 

Malignant cancer cells typically display high rates of 
glycolysis, even when fully oxygenated (aerobic glycolysis), 
and an altered redox balance [77-79]. To increase glycolysis, 
cancer cells up-regulate the transcription of genes involved 
in the glycolytic pathway (i.e., glucose transporters, glyco-
lytic enzymes, etc.). Cancer cells in fact use both glycolysis 
and OXPHOS, with the ratio depending on the prevalent 
normoxic or hypoxic environmental conditions and their 
capacity to express adequate levels of oncogenes and tu-
mor suppressor gene products for cell growth [80]. By reg-
ulating the metabolic and energetic functions of mitochon-
dria, VDAC1 can, therefore, control the fate of cancer cells. 
Mitochondrial-bound HK, considered the rate-limiting en-
zyme of glycolysis, is over-expressed in cancer [1, 81, 82]. 
The association of HK with VDAC1 offers several ad-
vantages to cancer cells [1, 32], such as direct access to 
mitochondrial sources of ATP, assumption of the role of an 
anti-apoptotic protein, reducing intracellular levels of reac-
tive oxygen species (ROS) and increasing synthesis and 
uptake of cholesterol. The HK-VDAC1 complex formation is 
regulated by Akt [83] and glycogen synthase kinase 3 beta 
(GSK3β), while the HK-VDAC complex is disrupted by VDAC 
phosphorylation [84].  

In recent years, cumulative evidence indicates that free 
tubulin in cancers cells interacts with VDAC [70, 85]. Dimer-
ic αβ-tubulin decreases the conductance of bilayer-
reconstituted VDAC1 and VDAC2 and also decreases respi-
ration in cardiac myocytes and isolated brain mitochondria 
[86, 87]. In cancer cells, microtubule destabilization in-
duced by colchicine or microtubule stabilization by 
paclitaxel increased and decreased free tubulin, leading to 
decreased and increased ΔΨm, respectively [70]. The dy-
namic regulation of ΔΨm by free tubulin appears to occur 
only in cancer cells. It has been proposed that the dynamic 
changes of ΔΨm brought about by free tubulin in tumor 

cells are related to αβ-tubulin heterodimers modulating 
VDAC conductance (Fig. 3) [70].    

VDAC1 and VDAC2 isolated after VDAC2/3 or VDAC1/3 
double knockdown in cancer cells were shown to be sensi-
tive to tubulin inhibition. Even more, VDAC1 knockdown in 
tumor cells decreased ΔΨm, indicating that VDAC1 is criti-
cal for the maintenance of ΔΨm and is regulated by en-
dogenous free tubulin [85]. Inhibition of VDAC1 conduct-
ance by free tubulin is a main contributor to the suppres-
sion of mitochondrial metabolism in the Warburg pheno-
type. Recently, the VDAC-tubulin interaction was proposed 
to serve as a metabolic switch to increase or decrease mi-
tochondrial metabolism, ATP generation and cytosolic 
ATP/ADP ratios [88]. High and low cytosolic ATP/ADP ratios 
inhibit or favor aerobic glycolysis, respectively. Thus, 
blockage of the inhibitory effect of tubulin on VDAC by 
VDAC-tubulin antagonists promotes mitochondrial me-
tabolism and reverses the Warburg phenotype (Fig. 3). The 
VDAC-tubulin interaction represents a new pharmacologi-
cal target for the development of novel anti-cancer agents 
[88]. 
 
Silencing VDAC1 expression reduces cell energy homeo-
stasis, inhibiting cells and tumor growth    
As cellular metabolic and energy reprogramming are can-
cer hallmarks essential for tumor progression, and VDAC1 
is a key regulator of these processes [1, 30, 32, 47, 52, 89], 
down-regulation of VDAC1 expression is expected to im-
pact cancer cell growth. VDAC1 down-regulation results in 
reduced metabolite exchange between the mitochondria 
and the cytosol, leading to inhibited cell growth. Indeed, 
silencing VDAC1 expression reduced cellular ATP levels and 
cell growth, with tight correlation between cell growth and 
cellular ATP levels being seen [58]. shRNA directed against 
hVDAC1 inhibited the development of a HeLa cervical tu-
mor [90]. Nano-molar concentrations of a single siRNA 
specific to human VDAC1 silenced VDAC1 expression and 
inhibited the growth of various cancer cell types. In fact, 
such treatment inhibited solid tumor development and 
growth in lung cancers (over 90%) both in vitro and in vivo 
[59].  

Recently, a global change in tumor hallmarks upon si-
lencing VDAC1 expression was demonstrated in glioblas-
toma multiform (GBM) [91]. Using a sub-cutaneous or an 
intracranial-orthotopic GBM model, we demonstrated that 
si-VDAC1 inhibited tumor growth, with the residual tumor 
showing reversed oncogenic properties, such as repro-
gramed metabolism, angiogenesis, epithelial-mesenchymal 
transition (EMT), invasiveness and stemness, leading to 
differentiation into neuron- and astrocyte-like cells  [91] 
(Fig. 4). These VDAC1 depletion-mediated effects involved 
alterations in transcription factors (TFs) that regulate sig-
naling pathways associated with cancer hallmarks, allowing 
for attacks on the interplay between metabolism and on-
cogenic signaling networks (to be explored here), leading 
to cancer stem cell (CSC) differentiation into neuronal-like 
cells [91]. 
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microRNA-mediated regulation of VDAC1 
A number of microRNAs (miRNAs) targeting VDAC1 were 
reported  and   found   to  be  modified  under  pathological  
conditions. miR-29a [92] and miR-320a [93] have been 
shown to reduce VDAC1 expression levels. Another miRNA 
species, miR-7, was shown to inhibit VDAC1 expression, 
proliferation and metastasis in hepatocellular carcinoma 
[94], possibly by affecting the permeability transition pore 
(PTP) [95]. Recently, lncRNA-H19/miR-675 was reported to 
regulate high glucose-induced apoptosis by targeting 

VDAC1, and thus provides a novel therapeutic strategy for 
the treatment of diabetic cardiomyopathy [96].  

The therapeutic potential of a number of miRNAs able 
to regulate VDAC1 expression levels is clear in view of the 
observation that VDAC1 over-expression is associated with 
a variety of pathological conditions, including Alzheimer's 
disease (AD) [97-99], and cardiovascular diseases (CVDs) 
[100]. In addition, hyperglycemia has been shown to in-
crease VDAC1 expression in β-cells [101] and in the kidney 
[102]. 

FIGURE 3: VDAC1-tubulin interaction: a metabolic switch to modulate mitochondrial metabolism in cancer cells. In cancer cells, high levels of 
free tubulin close VDAC1, decreasing the flux of metabolites, ATP and ADP through the OMM. VDAC1 closing leads to low generation of mito-
chondrial ATP and subsequently, to a low cytosolic ATP/ADP ratio that favors glycolysis in the Warburg phenotype. Erastin, a VDAC-tubulin 
antagonist, opens VDAC1 by blocking the inhibitory effect of free tubulin. VDAC1 opening leads to increased mitochondrial metabolism and to a 
high cytosolic ATP/ADP ratio that inhibits glycolysis and reverts the Warburg phenotype. αβ indicates tubulin heterodimers. 
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FIGURE 4: VDAC1-depletion and metabolic reprogramming leading to alterations in key transcription factor levels and biological process-
es: a reversal of oncogenic properties and cell differentiation. (A) A schematic presentation of mitochondria in a cancer cell before treat-
ment with hVDAC1 siRNA. Here, cancer cells maintain homeostatic energy and metabolic states, with HK bound to VDAC1 accelerating gly-
colysis and mitochondrial function to allow sufficient ATP and metabolite precursor levels to support cell growth and survival. (B) VDAC1 
depletion leads to dramatic decreases in energy and metabolite generation. This leads to changes in master metabolism regulator (p53, 
HIF1-α, c-Myc and NF-kb, P65) expression levels, which alters the expression of transcription factors associated with stemness, EMT, cell 
proliferation, invasion, TAMs and angiogenesis, while leading to differentiation into astrocyte- or neuron-like cells. 
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VDAC1 AS A PLAYER IN MITOCHONDRIA-MEDIATED 
APOPTOSIS 
Programmed cell death, or apoptosis, is the biological pro-
cess by which a cell rapidly proceeds towards death upon 
receiving specific stimuli. The apoptotic machinery in hu-
mans consists of a molecular network comprising a large 
number of proteins that regulate a cascade of events lead-
ing to apoptosis through multiple parallel pathways. It is 
well accepted that mitochondria serve as integrators and 
amplifiers of apoptosis by mediating and regulating the 
release of pro-apoptotic proteins and/or disrupting cellular 
energy metabolism [103]. Upon transfer of an apoptotic 
signal into the cell, mitochondrial membrane permeability 
changes so as to facilitate the release of apoptogenic pro-
teins, such as cytochrome c (Cyto c), apoptosis-inducing 
factor (AIF), and SMAC/Diablo, from the IMS into the cyto-
sol [54, 103]. These proteins participate in complex pro-
cesses, resulting in the activation of proteases and nucle-
ases, leading to protein and DNA degradation and cell 
death. However, it remains unclear how these apoptotic 
initiators cross the OMM and are thus released into the 
cytosol. Several hypotheses regarding the mechanism of 
mitochondria-mediated apoptosis have been proposed (Fig. 
5) (for reviews, see [1, 30, 104]). The major models include 
OMM rupture and non-specific release of IMS proteins into 
the cytosol [55, 105, 106], opening of the PTP in response 
to over-production of ROS or Ca2+ overload [107], a large 
channel formed by Bax and/or Bak oligomers [108, 109], a 
channel formed by hetero-oligomers of VDAC1 and Bax 
[110, 111] or VDAC1 oligomers (Fig. 5) [23, 28-31, 36, 104, 
112, 113]. 

All of the apoptotic proteins known to translocate to 
the cytoplasm following an apoptotic stimulus reside in 
IMS. Thus, only the permeability of the OMM needs to be 
modified for their release [114-117]. Hence, VDAC1, as an 
OMM channel, could mediate Cyto c release. Indeed, 
VDAC1 is now accepted as a key player in mitochondria-
mediated apoptosis, with VDAC1 silencing or over-
expression affecting apoptosis induction [1, 23, 33, 118-
122]. Exogenous over-expression of VDAC from various 
sources was found to induce apoptotic cell death regard-
less of cell type [113, 118-122]. VDAC1 over-expression-
induced cell death was prevented by RuR [122, 123], Bcl2, 
DIDS [120] or by over-expression of HK-I [118, 122, 124], 
with all these agents directly interacting with VDAC1. Final-
ly, reducing VDAC1 expression by siRNA efficiently pre-
vented cisplatin-induced apoptosis and Bax activation in 
non-small cell lung cancer (NSCLC) cells [125], and inhibited 
selenite-induced PTP opening in HeLa cells [126]. VDAC1-
siRNA also attenuated endostatin-induced apoptosis [127]. 
In addition to the evidence above, release of Cyto c via 
purified VDAC reconstituted into Cyto c-encapsulating lipo-
somes has been demonstrated [36, 128, 129]. It is thus 
proposed that VDAC1 oligomerization is a key step in the 
release of the pro-apoptotic proteins from the IMS to the 
cytosol [23, 28-31, 36, 104, 112, 113]. 
 
 

A VDAC1 oligomeric structure as a Cyto c release pathway  
When considering models of VDAC1-mediated protein re-
lease, the molecular sizes of the released proteins (12 to 
100 kDa) and the diameter of the VDAC1 pore (2.6-3.0 nm) 
should be considered. The VDAC1 pore can allow passage 
of nucleotides and small molecules but is too small for the 
passage of a folded protein like Cyto c. As such, we pro-
posed the formation of a large protein-conducting channel 
within a VDAC1 homo-oligomer serving as the Cyto c re-
lease route. Indeed, upon apoptosis induction by various 
stimuli, VDAC1 undergoes conformational changes and 
oligomerization, followed by Cyto c release, and finally, 
apoptosis [29, 33, 36, 118, 129]. 

Apoptosis induction leads to VDAC1 oligomerization 
regardless of the cell type or apoptosis inducer used, in-
cluding staurosporine (STS), curcumin, As2O3, etoposide, 
cisplatin, selenite, H2O2 or UV light, all affecting mitochon-
dria yet acting via different mechanisms [28, 112]. Moreo-
ver, shifting the equilibrium towards the VDAC1 oligomeric 
state upon over-expression of the protein in the absence of 
apoptosis stimuli resulted in release of pro-apoptotic pro-
teins, leading to cell death, regardless of cell type, in a 
manner that could be inhibited by anti-apoptotic proteins 
[23, 33, 113, 118-122]. The specific lipid composition of the 
OMM significantly enhances VDAC1 oligomerization [130], 
while p53 also promotes VDAC1 oligomerization [131]. 

Several VDAC1-interacting molecules inhibit both apop-
tosis and VDAC1 oligomerization as induced by various 
stimuli [28, 104, 112, 113, 119, 120, 122, 132, 133]. These 
include 4,4 diisothiocyanostilbene-2,2-disulfonic acid 
(DIDS), 4-acetamido-4-isothiocyanato-stilbene-2,2-
disulfonic acid (SITS), 4,4' diisothiocyanatodihy-
drostilbene-2,2'-disulfonic acid (H2DIDS), 4,4’-
dinitrostilbene-2,2’-disulfonic acid (DNDS), and diphenyla-
mine-2-carboxylate (DPC). Similarly, the newly developed 
VDAC1-interacting molecules AKOS-022 and VBIT-4 pre-
vented VDAC1 oligomerization and apoptosis as induced by 
various means and in several cell lines [134]. These com-
pounds also protected against apoptosis-associated mito-
chondrial dysfunction, specifically restoring dissipated mi-
tochondrial membrane potential, and thus cell energy and 
metabolism, decreasing ROS production, and preventing 
disruption of intracellular Ca2+ levels. The use of these 
apoptosis inhibitors thus supports the tight coupling be-
tween VDAC1 oligomerization and apoptosis induction. 
Inhibiting apoptosis at an early stage via prevention of 
VDAC1 oligomerization may be an effective approach for 
blocking or slowing apoptosis in neurodegenerative disor-
ders [135, 136] and various cardiovascular diseases, where 
enhanced apoptosis also occurs [137-139].  

To conclude, it is proposed that VDAC1 exists in a dy-
namic equilibrium between the monomeric and oligomeric 
states, with apoptosis inducers or VDAC1 over-expression 
shifting the equilibrium towards oligomerization. Thus, the 
cellular VDAC1 expression level and its oligomeric state are 
crucial factors in the process of mitochondria-mediated 
apoptosis. 
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The mode of action of apoptotic stimuli and VDAC1 over-
expression – a new concept    
Several studies have demonstrated that the induction of 
apoptosis by various reagents is accompanied by an in-
crease in the level of VDAC1 expression [54]. These include 

arbutin (hydroquinone-O-beta-D-glucopyranoside), a tyro-
sinase inhibitor that induces apoptosis in A375 human  ma- 
lignant melanoma cell by causing VDAC1 over-expression 
[140]. Up-regulation of VDAC1 expression was noted in 
acute lymphoblastic leukemia (ALL) cell lines following 

FIGURE 5: VDAC1 function in cell death, with apoptosis inducers enhancing VDAC1 expression levels and oligomerization. A schematic repre-
sentation of VDAC1 function in cell death - Different models for the release of apoptogenic proteins, such as Cyto c (purple) and AIF (yellow), 
are shown. (A) Proposed model suggesting that apoptotic stimuli or conditions cause enhanced VDAC1 expression via increases in [Ca2+]i levels 
or transcription factors, leading to activation of the VDAC1 promoter. The increase in VDAC1 expression shifts the equilibrium towards the 
VDAC1 oligomeric state, forming a hydrophilic protein-conducting channel capable of mediating the release of apoptogenic proteins (e.g., Cyto 
c and AIF) from the mitochondrial IMS to the cytosol. (B) Mitochondrial Ca2+ overload induces apoptosis. Ca2+ transport across the OMM, as 
mediated by VDAC1, and then across the IMM, as mediated by the MCU, leads to Ca2+ overload in the matrix. This, in turn, causes dissipation of 
the membrane potential, mitochondrial swelling, PTP opening, Cyto c/AIF release and the triggering of apoptotic cell death. (C) Bax/Bak oli-
gomerization and activation, forming a route for Cyto c/AIF release. (D) Bax activation leads to its association with the OMM, followed by its 
oligomerization as a large oligomer/complex, forming a Cyto c/AIF-conducting channel. (E) The interaction of the pro-apoptotic protein Bax 
with VDAC1 forms hetro-oligomers that mediate Cyto c/AIF release. (F) Prolonged VDAC1 closure leads to mitochondrial matrix swelling and 
OMM rupture, resulting in the appearance of a non-specific release pathway for apoptogenic proteins. 
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prednisolone treatment [141]. Somatostatin up-regulated 
the expression of VDAC1 and VDAC2 in the LNCaP prostate 
cancer cell line [142]. Up-regulation of VDAC1 expression 
levels was also induced by the hepatitis E virus ORF3 pro-
tein [143]. Also, both UV irradiation and ROS were shown 
to up-regulate VDAC1 expression [144-146] that was pre-
vented by the ROS chelator epigallocatechin [144]. Cispla-
tin induced VDAC1 over-expression in a cisplatin-sensitive 
cervix squamous cell carcinoma cell line (A431), while 
down-regulation of VDAC1 was noted in a cisplatin-
resistant cell line (A431/Pt) [147]. Up-regulation of VDAC 
expression was proposed to mediate the actions of vori-
nostat, a histone deacetylase inhibitor that induced syner-
gistic anti-proliferative and pro-apoptotic effects in NSCLC 
cells in combination with EGFR-tyrosine kinase inhibitors 
[148]. Finally, apoptosis induction by H2O2, etoposide, cis-
platin, selenite and UV irradiation all led to enhanced 
VDAC1 expression levels, which was accompanied by 
VDAC1 oligomerization, Cyto c release and apoptosis [54, 
112, 113].  

As apoptosis induction by agents such as STS, As2O3, 
and selenite disrupt [Ca2+]i homeostasis and energy pro-
duction [112, 113, 149], apoptosis-induced VDAC1 up-
regulation is proposed to be mediated by an increase in 
[Ca2+]i. Indeed, we have shown that pro-apoptotic-agents 
induce cell death through Ca2+-dependent up-regulation 
of VDAC1 expression levels [54, 112, 113]. Direct elevation 
of [Ca2+]i by the Ca2+-mobilizing agents A23187, ionomycin 
and thapsigargin also resulted in VDAC1 over-expression, 
VDAC1 oligomerization and apoptosis [112, 113]. In con-
trast, decreasing [Ca2+]i using the cell-permeable Ca2+-
chelating reagent BAPTA-AM inhibited VDAC1 over-
expression, VDAC1 oligomerization and apoptosis. Thus, 
the increase in [Ca2+]i induced by apoptosis stimuli was 
found to be a pre-requisite for induction of VDAC1 over-
expression and apoptosis [112, 113]. The over-expressed 
VDAC1 forms oligomers and this triggers Cyto c release and 
then cell death. The following new concept of apoptosis 
induction is thus proposed [112, 113]: Apoptosis inducers 
 increased [Ca2+]i  enhanced VDAC1 expression levels 
 VDAC1 oligomerization  Cyto c release  apoptosis. 

As such, up-regulation of the expression of VDAC1 may 
represent a new common mode of action of apoptosis in-
duction. 

 

VDAC1 AND CA
2+

 HOMEOSTASIS 
Mitochondria serve as a major hub for cellular Ca2+ homeo-
stasis, regulating oxidative phosphorylation and modulat-
ing cytosolic Ca2+ signals of cell death and secretion [150, 
151]. Mitochondria can rapidly sequester large amounts of 
Ca2+ at the expense of the membrane potential across the 
IMM and mediate Ca2+ efflux. Ca2+ is an essential co-factor 
for several rate-limiting TCA enzymes (i.e., pyruvate dehy-
drogenase, isocitrate dehydrogenase, and α-ketoglutarate 
dehydrogenase) located in the matrix, such that intra-
mitochondrial Ca2+ controls energy and metabolism. To 
reach the matrix, Ca2+ must cross both the OMM and the 
IMM, in a manner mediated by several proteins. VDAC1 

acts in the OMM, whereas the mitochondrial Ca2+ uni-
porter (MCU) [152, 153] and the Na+/Ca2+ exchanger, NCLX, 
the major Ca2+ efflux mediator [154], are both found in the 
IMM. 

The function of VDAC1 in regulation of cell Ca2+ homeo-
stasis was recently summarized [155]. VDAC1 in the OMM 
is highly Ca2+-permeable and transports Ca2+ into and out 
of the IMS [156-159], consequently allowing Ca2+ access to 
IMM transporters. Ruthenium red (RuR) [157, 160, 161], 
ruthenium amine binuclear complex (Ru360) [161], the 
photo-reactive analogue azido ruthenium (AzRu) [162] and 
the lanthanides La3+and Tb3+ [160] all reduce VDAC1 con-
ductance in the case of native but not mutated VDAC1 [160, 
161]. 

Competition between Ca2+ and RuR [160] suggests that 
VDAC1 possesses divalent cation-binding site(s). The physi-
ological function of the VDAC1 Ca2+-binding site(s), reflect-
ed in the regulation of VDAC1 gating by physiological levels 
of Ca2+, prolongs a fully open state of the channel, thereby 
promoting metabolite exchange [156]. Thus, it has become 
apparent that VDAC1 both mediates Ca2+ transport and is 
also regulated by Ca2+ binding. 

VDAC1 also functions in the ER/mitochondria-Ca2+ 
cross-talk. VDAC1 is a constituent of a supra-molecular 
complex composed of the IP3 receptor in the ER and 
VDAC1 in the OMM, linked by a chaperone called GRP75 
[13, 163], together with mitofusin-2 [164, 165]. 

Thus, by transporting Ca2+, VDAC1 plays a fundamental 
role in regulating mitochondrial Ca2+ homeostasis, oxida-
tive phosphorylation, and Ca2+ crosstalk among mitochon-
dria, cytoplasm, and the ER.  

 

VDAC AND OXIDATIVE STRESS  
Oxidative stress results when production of ROS exceeds 
the capacity of mitochondrial and cellular anti-oxidant de-
fenses to remove these toxic species. ROS act as second 
messengers in cell signaling and are essential for multiple 
biological processes in normal cells. However, ROS are also 
well known contributors to cell proliferation and cell death 
[166-169], provoking damage to multiple cellular orga-
nelles and processes [170]. 

Mitochondria are the major source of ROS formation, 
mostly at complex I (site IQ), complex II (site IIF) and com-
plex III (site IIIQo) [171-173]. O2•- generated at complex III 
is released to the cytosol through VDAC1. By contrast, O2•- 
produced at complexes I and II is released to the matrix, 
where it is rapidly converted to H2O2 by superoxide dis-
mutases located in the mitochondrial matrix (MnSOD or 
SOD2) and the cytosol (Cu,ZnSOD or SOD1) [174]. H2O2 acts 
as a cell signaling molecule that does not disrupt redox 
homeostasis [175] and modulates the pro-survival 
PI3K/Akt/mTOR HIF-1 and MAP/ERK pathways to promote 
tumorigenesis and metastasis [176-178]. H2O2 also forms 
the highly reactive hydroxyl radical (OH•) by the Fenton 
reaction. Whereas both H2O2 and O2•- react with mito-
chondrial and extra-mitochondrial structures, OH• is so 
reactive that its effects are almost completely restricted to 
mitochondria. O2•- and OH• can inactivate mitochondrial 
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proteins, and damage mitochondrial DNA and lipids in the 
MIM [179, 180]. Cytosolic ROS also activate members of 
the MAPK family of serine/threonine kinases, especially the 
c-Jun N-terminal kinase (JNK), the extracellular signal-
regulated kinase (ERK 1/2), and p38, whose signaling can 
cause mitochondrial dysfunction. JNK translocation to mi-
tochondria has been shown to cause mitochondrial dys-
function in several models [181, 182]. 

Cells possess several anti-oxidant defense mechanisms, 
including the presence of various endogenous molecules, 
such as glutathione [183-187], or the expression of en-
zymes like superoxide dismutases (SOD1 and SOD2), cata-
lase, and peroxidase [188]. About 1% of ROS escape elimi-
nation and can be released to the cytosol by crossing the 
OMM, where they can attack and modify DNA, lipids and 
proteins affecting cell survival [189].  

VDAC1 has been proposed to mediate ROS release 
from the IMS to the cytosol. This is based on the finding 
that ROS release from mitochondria was decreased when 
HK-I and HK-II bound to VDAC1 were over-expressed in 
HEK cells, reducing intracellular ROS levels [190-192] and 
protecting against oxidant-induced cell death [190, 193]. In 
tumor cells, VDAC opening or closing increases or decreas-
es OXPHOS and subsequently increases or decreases ROS 
generation, respectively. Erastin, a small molecule that 
antagonizes the inhibitory effect of tubulin on VDAC, in-
creases mitochondrial ΔΨ, NADH and ROS production [85]. 
Thus, blockage of tubulin-dependent VDAC inhibition 
works as a pro-oxidant anti-Warburg metabolic switch to 
promote cancer cell death [88, 194]. By contrast, VDAC1 
closure by DIDS and dextran sulfate inhibits the efflux of 
O2-• to the cytosol and increases the steady-state level of 
O2•-, sensitizing mitochondria to Ca2+-induced MPT [195].  

Cysteine residues, often involved in redox reactions, 
metal coordination and thiol-disulfide interchanges, are 
extremely vulnerable to oxidation by ROS. VDAC has been 
proposed to function in physiological redox regulation via 
the modification of the sulfhydryl groups of VDAC [196]. In 
humans, VDAC1 contains two cysteines, VDAC2 contains 
nine cysteines and VDAC3 contains six cysteines, all of 
which are predicted to protrude towards the IMS and can 
be subjected to oxidation by ROS [4]. We have shown that 
for VDAC1, deletion of both cysteines does not affect 
channel conductance, VDAC1 oligomerization or apoptosis 
[53]. Cysteines contribute to the folding, function and sta-
bility of hVDAC2. VDAC3 was found to be the target of mi-
tochondrial ROS specifically generated by complex III and 
was proposed to act as a sensor of the oxidative state of 
the IMS via cysteine residue modification [197]. 

Accumulating evidence indicates that ROS play a key 
role in Cyto c release from mitochondria and that this in-
volves VDAC1. Apoptosis-inducing agents, such as inorgan-
ic arsenic compounds [198, 199] and doxorubicin [200], 
induce apoptosis by inducing ROS generation. The inhibi-
tion of O2-•-induced apoptosis by DIDS, an inhibitor of 
VDAC channel activity, or by anti-VDAC1 antibodies [12, 
129, 201], suggests that O2-• induces Cyto c release via 
VDAC1-dependent permeabilization of the OMM [129]. 
Moreover, O2-• was found to evoke Cyto c release in 

VDAC1-reconstituted liposomes [129]. In other studies, it 
was found that ROS-induced alterations of VDAC1 and/or 
ANT could make the PTP selective for Cyto c release, with-
out causing further mitochondrial damage [129, 202]. 
Moreover, it was shown that ROS induced up-regulation of 
VDAC1 that could be prevented by the ROS chelator, epi-
gallocatechin [144]. It has been suggested that ROS-
mediated Cyto c and SOD1 release from mitochondria in-
volves VDAC, leading to increased susceptibility of mito-
chondria to oxidative stress and apoptosis [203]. 

VDAC is also affected by hypoxic conditions shown to 
induce cleavage at the C-terminal end of the protein 
(VDAC1-ΔC), with such cleavage being prevented upon 
silencing of HIF-1α expression [204, 205]. It was proposed 
that hypoxia, by inducing formation of VDAC1-ΔC, confers 
selective protection from apoptosis that allows mainte-
nance of ATP and cell survival in hypoxia [206].   

 
VDAC1 AS A HUB PROTEIN – MODULATION OF VDAC1-
MEDIATED APOPTOSIS AND METABOLISM VIA 
INTERACTING PROTEINS  
As presented above, VDAC1 is crucial for many cellular 
processes, including metabolism, Ca2+ homeostasis, apop-
tosis, and other activities regulated via the interaction of 
VDAC1 with many proteins associated with cell survival and 
cellular death pathways [1, 29-31]. Indeed, VDAC1 is con-
sidered as a hub protein, interacting with over 100 proteins 
that regulate the integration of mitochondrial functions 
with other cellular activities [207]. VDAC1 serves as an an-
chor protein for diverse sets of cytosolic, ER, and mito-
chondrial proteins [12, 208] that together regulate meta-
bolic and signaling pathways, provide energy for cellular 
functions, or trigger cell death. Thus, VDAC1 appears to be 
a convergence point for a variety of cell survival and death 
signals, mediated via association with ligands and proteins. 

In support of this viewpoint, the conserved nature of 
VDAC1 [1] is in agreement with the finding that hub pro-
teins are more evolutionarily conserved than are non-hub 
proteins [209]. VDAC1 protein-protein interaction (PPI) 
networks contain both hub-bottlenecks [210] (namely 
nodes with high degree values constituting vulnerable are-
as of the network) and/or bottlenecks (those with high 
“betweenness” centrality scores, corresponding to key 
intersecting nodes [211]). The VDAC1 interactome includes 
proteins involved in metabolism, apoptosis, signal trans-
duction, anti-oxidation, and DNA- and RNA-associated pro-
teins and more (Supplemental Table S1) [1, 29, 31, 32]. 
Furthermore, these proteins may be located in the OMM, 
IMM, the IMS, the cytosol, ER, plasma membrane, and 
nucleus. Importantly, we have been able to develop 
VDAC1-based peptides which can interfere with these in-
teractions, leading to impaired cell metabolism and apop-
tosis [25-27, 212, 213]. 
 
Interactions of VDAC1 with metabolism-related proteins 
VDAC1 displays binding sites for a large number of metabo-
lism-related proteins, such as glycerol kinase (GK), HK, c-Raf 
kinase, ANT, tubulin, [1, 29-31] and the glycolytic enzyme 
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) [214]. 
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Mitochondrial creatine kinase (MtCK), in its octameric state, 
interacts with VDAC1 [35] and causes decreased affinity of 
VDAC1 for HK and Bax [215] (Supplemental Table S1). HK bind-
ing to VDAC1 [25, 104, 118, 122, 124, 216] allows direct cou-
pling of mitochondrially generated ATP to glucose phosphory-
lation. Thus, the formation of a VDAC1-HK complex coordi-
nates glycolytic flux with the actions of the TCA cycle and ATP 
synthase [1, 33, 81].  

The OMM protein CPT1a that catalyzes the primary step of 
fatty acid oxidation interacts with VDAC1 [65]. Another OMM 
protein interacting with VDAC1 is the TSPO, involved in the 
transport of cholesterol into mitochondria [217]. Aldolase, 
involved in gluconeogenesis and glycolysis, was also shown to 
interact with VDAC1 [17]. 
 
Interactions of VDAC1 with apoptosis-related proteins 
The Bcl-2 family comprises pro-apoptotic (e.g. Bid, Bax, Bim 
and Bak) and anti-apoptotic (e.g. Bcl-2 and Bcl-xL) members 
that up- or down-regulate apoptosis, respectively [218, 219]. 
VDAC1 function in apoptosis can be regulated by interactions 
with anti-apoptotic proteins, such as Bcl2 and Bcl-xL [23, 25, 
26, 117, 220-223], resulting in inhibition of apoptotic path-
ways. Bcl-2 and Bcl-xL were shown to interact with bilayer-
reconstituted VDAC1 and subsequently to reduce the channel 
conductance of native but not mutated VDAC1, as well as to 
protect against apoptosis in cells expressing native but not 
mutated VDAC1 [25, 26]. The VDAC1 domains that interact 
with Bcl-2 and Bcl-xL to confer anti-apoptotic activity were 
identified by site-directed mutagenesis [25]. Mcl-1 has been 
shown to directly interact with VDAC to increase mitochondri-
al Ca

2+
 uptake and ROS generation [224]. The HK-VDAC inter-

action also prevents release of pro-apoptotic factors, such as 
Cyto c, and subsequent apoptosis. Thus, HK plays a role in 
tumor cell survival via inhibition of apoptosis [118]. The inter-
action between TSPO and VDAC is considered to play a role in 
the activation of the mitochondrial apoptosis pathway, given 
the reported grouping of TSPO molecules around VDAC, po-
tentially reflecting TSPO polymerization [225], and the in-
creased ROS generation by TSPO in the proximity of VDAC, 
leading to apoptosis induction [225, 226]. Nek1 (NIMA-related 
protein kinase 1) phosphorylates VDAC1 on serine 193, with 
this leading to apoptosis inhibition [146, 227]. Finally, the pro-
apoptotic protein BNIP3 was shown to interact with VDAC so 
as to induce mitochondrial release of endonuclease G [228]. 
 
Interactions of VDAC1 with cytoskeletal proteins  
VDAC1 interacts with several cytoskeletal proteins, such as 
gelsolin (Gsn), with this interaction resulting in inhibited 
VDAC1 channel activity and Cyto c release from liposomes 
through direct binding to VDAC1 in a Ca

2+
-dependent manner 

[229, 230]. Tubulin was shown to associate with VDAC1 [231] 
and induce VDAC1 closure [86], proposed to sustain the War-
burg effect [232]. It was further proposed that tubulin, VDAC1, 
and MtCK form a super-complex that is structurally and func-
tionally coupled to the ATP synthasome [233]. G-actin directly 
and selectively binds to VDAC in yeast, [234], reducing con-
ductance of the Neurospora crassa VDAC channel [235]. Mi-
crotubule-associated protein 2 (MAP2) was shown to bind 
VDAC [236]. The interaction of VDAC1 with Tctex-1/DYNLT1 
(dynein light chain) was also demonstrated [237]. 
 
 

Interactions of VDAC1 with signaling proteins  
Superoxide dismutase 1 (SOD1) is a predominantly cytosolic 
protein, with mutant SOD1 being present mostly in fractions 
enriched for mitochondria [238-240]. Mutant SOD1 associated 
with amyotrophic lateral sclerosis (ALS) bound to bilayer-
reconstituted VDAC1 and inhibited its channel conductance 
[241]. Mutant SOD1 also interacted with Bcl2 protein and 
altered the interaction between Bcl-2 and VDAC1, thus reduc-
ing OMM permeability [242]. 

Endothelial NO synthase (eNOS) was also found to bind 
VDAC1. Such interactions amplified eNOS activity in an intra-
cellular Ca

2+
-mediated manner [243]. These findings suggest 

that the interaction between VDAC and eNOS may be im-
portant for regulating eNOS activity and modulation of VDAC 
[243]. 

The mitochondrial anti-viral signaling protein MAVS, also 
known as IPS-1, VISA, or Cardif [244], and localized in the 
OMM, was demonstrated to mediate its pro-apoptotic activity 
via VDAC1 and to modulate VDAC1 protein stability via the 
ubiquitin-proteasome pathway [245]. VDAC was further pro-
posed to interact with the L-type Ca

2+
 channel [246]. 

Several additional proteins were shown or proposed to di-
rectly interact with VDAC1 (Supplemental Table S1). These 
include PBP74, also known as mtHSP70/GRP75/mortalin [237], 
CRYAB (α-crystallin B) [247] and α-synuclein [248]. VDAC1-
interacting protein complexes mediate and/or regulate meta-
bolic, apoptotic, and other processes that may be impaired in 
disease. 
 

VDAC INVOLVEMENT IN DISEASE  
Mitochondria occupy a central position in cell life and 
death and mitochondrial dysfunction has been implicated 
in many diseases, including cancer, Alzheimer’s disease 
(AD), Parkinson's disease (PD), amyotrophic lateral sclero-
sis (ALS), diabetes, and cardiovascular diseases (CVDs). 
VDAC1 functions as mitochondria gatekeeper that regu-
lates ATP production, Ca2+ homeostasis and apoptosis exe-
cution, all indispensable for proper mitochondrial function, 
and consequently, for cell normal physiology. Thus, the 
association of VDAC with various diseases is not surprising. 
Furthermore, VDAC over-expression is a common feature 
of cancer, AD, type 2 diabetes (T2D) and CVDs. The over-
expression of VDAC1 in cancer [54, 59], in affected regions 
of AD brains [97-99], in β-cells of T2D [101] and in CVDs 
[250], is a feature common to these diseases. As VDAC1 
over-expression induces apoptotic cell death [58, 113, 119, 
120, 122], its over-expression in CVDs, AD and T2D, may be 
a common mechanism in these pathologies. 
 
The cancer-mitochondria-metabolism-apoptosis-VDAC1 link  
Cancer is a complex disease in which cells acquire a common 
set of properties, including unlimited proliferation, metabolic 
reprograming, and resistance to anti-proliferative and apop-
totic cues [78, 250]. Emerging evidence indicates that meta-
bolic reprogramming, which supports macromolecule synthe-
sis, bioenergetics demands, and cellular survival is a character-
istic of nearly all cancers [68, 251]. Over the years, Otto War-
burg's view of cancer as a metabolic disease was gradually 
displaced with the view of cancer as a genetic disease [252]. 
Today, however, cancer is again being seen as a metabolic 
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disease, primarily associated with impaired mitochondrial 
function and metabolism [75, 79]. 

VDAC1 is highly expressed in different tumors [54, 59], 
contributing to their metabolism via the transport of various 
metabolites, and the binding and channeling of mitochondrial 
ATP directly to HK [5]. This results in mitochondria regulating 
glycolytic flux with that actions of the TCA cycle and ATP syn-
thase to fulfill the requirements of tumors for metabolites or 
metabolite precursors. Indeed, tumors switch their HK expres-
sion pattern predominantly to present the VDAC1-binding 
isoforms (HK-I, HK-II) [253]. The requirement of cancer cells 
for VDAC1 is demonstrated by down-regulation of VDAC1, 
resulting in reduced metabolite exchange between mitochon-
dria and cytosol and inhibition of cell and tumor growth [32, 
58, 59, 90, 91].   

VDAC1 also regulates apoptosis in cancer cells by interact-
ing with the anti-apoptotic proteins Bcl-2 and Bcl-xL [23, 25, 
26, 254] and HK [23, 27], interactions that protect tumor cells 
from cell death [23, 27]. Thus, activating mitochondria-
mediated apoptosis directly or via generating stress responses 
[255-257] is a strategy to treat cancer. Indeed, a large number 
of anti-cancer chemotherapeutic agents exert their therapeu-
tic action by inducing apoptosis of malignant cells [258-263], 
mainly by activating the Cyto c/caspase-9 pathway. These 
include etoposide, doxorubicin, lonidamine, betulinic acid, 
arsenite, CD437, and several amphiphilic cationic α-helical 
peptides [264]. Therefore, targeted activation of apoptosis in 
cancerous tissues may be exploited as a potential route to 
cancer therapy [265]. However, they do not act on cancer 
stem cells (CSCs), which are resistant to chemo- and radio-
therapies [266-268]. The CSC hypothesis postulates that a sub-
population of malignant cells constantly supply the tumor with 
cancerous cells. CSCs, as embryonic and somatic stem cells, 
have self-renewal and multi-potent differentiation abilities 
[269, 270]. Recent studies from the Shoshan-Barmatz group 
[91, 213] have demonstrated novel strategies for eliminating 
CSCs.  

Regulation of VDAC1 expression by miRNA was demon-
strated in several studies. In serum-starved cervical cancer 
cells, miR320a promoted mitophagy [93], while ectopic over-
expression of miR320a blocked tumor cell proliferation and 
invasion in NSCLC, both in vitro and in vivo [271]. Another 
miRNA species, miR-7, was shown to inhibit VDAC1 expression, 
proliferation and metastasis in hepatocellular carcinoma [94], 
possibly by affecting the PTP [95].  

Thus, the importance of VDAC1 for cancer cell survival is 
clearly reflected in the above findings, with silencing VDAC1 
expression in cancer cells resulting in a multi-pronged attack 
on cancer hallmarks. 
 
Neurodegenerative diseases, mitochondria, apoptosis, and 
VDAC  
There is emerging evidence connecting mitochondrial dysfunc-
tion to neurodegenerative disorders [169]. In PD, Huntington’s 
disease (HD), ALS and AD, impaired mitochondrial function has 
been reported [272], with a focus on the involvement of mito-
chondria-mediated apoptotic death [273]. Mitochondrial dys-
function was proposed as an early event in AD pathogenesis, 
as reflected in reduced metabolism, increased ROS, lipid pe-
roxidation and disruption of Ca

2+
-homeostasis, [274-276]. 

Moreover, mitochondria-mediated apoptosis is common to 
neurological disorders in which premature neuron death is 

implicated [273, 277, 278], with caspases playing dominant 
roles [279-281]. Amyloid beta (Aβ) also affects mitochondrial 
respiration [282] and activates Cyto c release, thereby pro-
moting apoptosis [283].   

Several studies suggested that VDAC malfunction is asso-
ciated with AD [284-287], Down's syndrome [287], and familial 
ALS [241, 288]. High levels of VDAC1 were demonstrated in 
the dystrophic neurites of Aβ deposits in post-mortem brains 
of AD patients and in amyloid precursor protein (APP) trans-
genic mice, where Aβ-VDAC interactions are toxic to AD-
affected neurons [97, 98, 286, 287, 289-291]. The expression 
of hVDAC-2 was shown to be associated with neurodegenera-
tive diseases, including ALS [288], epilepsy [292], and AD [286]. 

As VDAC1 over-expression was shown to lead to apoptotic 
cell death [58, 113, 119, 120, 122] and high-levels of VDAC1 
were found in the dystrophic neurites of Aβ deposits in AD 
post-mortem brains and APP transgenic mice [97-99], we pro-
pose that over-expressed VDAC is associated with neuronal 
cell death [291].  

We have demonstrated that Aβ interacts directly with 
VDAC1, specifically with the VDAC1 N-terminal region and that 
VDAC1 is required for Aβ entry into the cell, as well as for Aβ-
mediated apoptosis, with Aβ cell penetration and toxicity be-
ing prevented in cells depleted of VDAC1 by siRNA [291]. 
VDAC was also shown to interact with phosphorylated Tau, 
leading to mitochondrial dysfunction [290]. In addition, an 
increase in nitrated VDAC1 levels in AD was reported, reflect-
ing oxidative damage to VDAC [293], and possibly affecting cell 
energy and metabolite homeostasis [284]. The involvement of 
plasmalemmal VDAC in AD was also proposed [285, 289]. 

The relationship between VDAC1 expression levels and 
neurodegenerative disorders is also reflected in the finding 
that in patients and animal models of several neurodegenera-
tive disorders, such as AD, HD, and spinocerebellar ataxias, 
miR-29a expression levels were reduced [294]. miR-29a was 
also shown to regulate cell survival of astrocytes differentially 
by targeting VDAC1 [295]. These findings suggest that VDAC1 
down-regulation by miR-29 is an important aspect of neuronal 
cell survival in the brain [294]. As VDAC1 over-expression trig-
gers apoptosis [120-122], and high-levels of VDAC1 were 
demonstrated in AD post-mortem brains and in AD-like trans-
genic mice [99], the reported decrease in miR-29a in AD [294] 
may be associated with neuronal cell death. Indeed, miR-
320a-mediated down-regulation of VDAC1 expression has 
been proposed as a novel therapeutic target for astroglia-
mediated HIV-1 neuropathogenesis [296]. 

Finally, several proteins interacting with VDAC, such as 
SOD1, α-synuclein and ApoE, were proposed to be involved in 
several neurodegenerative diseases, affecting intraneuronal 
Ca

2+
 [155]. These findings point to VDAC1 as a potential target 

for novel therapeutic strategies for neurodegenerative diseas-
es. 
 
T2D, metabolism, mitochondria and VDAC1 
T2D is the most common metabolic disease [297]. Defective 
insulin secretion, insulin resistance at target tissues and a loss 
of functional β-cells contribute to T2D, and dysregulation of 
glucose homeostasis [298]. Recently, it has been shown that 
hyperglycemia increases VDAC1 expression in pancreatic β-
cells [101] and in the kidney [102]. VDAC1 levels were in-
creased in mouse coronary vascular endothelial cells (MCECs) 
isolated from diabetic mice. This was associated with in-
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creased [Ca
2+

]m, O2 production, and PTP opening activity [299]. 
Down-regulation of VDAC1 in diabetic MCECs decreased 
[Ca

2+
]m and subsequently affected PTP activity and ROS pro-

duction [300]. As glucose-stimulated insulin secretion depends 
on the generation of ATP and other metabolites in the mito-
chondria [301], and VDAC1 regulates energy and metabolism, 
VDAC1 is thus required for insulin secretion. Recently, lncRNA-
H19/miR-675 was reported to regulate high glucose-induced 
apoptosis by targeting VDAC1, and thus provides a novel ther-
apeutic strategy for the treatment of diabetic cardiomyopathy 
[96]. These findings point to the connection between VDAC, 
mitochondrial function and the pathogenesis of T2D. 
 
Cardiovascular diseases, mitochondria, apoptosis and VDAC  
It is known that most CVDs evolve into heart failure and that 
the loss of cardiac myocytes plays a critical role in the patho-
genesis of CVDs. Activation of mitochondria-mediated apopto-
sis has been implicated in ischemia/reperfusion injury [302]. 
VDAC levels were increased in cardiomyoblast H9c2 cells [249]. 
As VDAC1 over-expression is associated with apoptosis [58, 
113, 119, 120, 122], it is possible that increased cardiomyo-
cyte susceptibility to mitochondrial-mediated cell death is 
related to the increase in VDAC1 levels. Indeed, the effect of 
resveratrol against myocardial ischemia/reperfusion injury 
showed involvement of VDAC1 down-regulation [100].  

The findings presented above suggest that modulating 
VDAC1 expression levels or its apoptotic activity are possible 
strategies to either activate apoptosis in cancer or inhibit 
apoptosis in CVDs, AD and T2D. 
 

UNRAVELING VDAC1-BASED THERAPIES  
VDAC1-based strategies are expected to be effective in 
various diseases characterized by altered cell metabolism 
and/or apoptosis and by VDAC1 over-expression. As VDAC1 
over-expression induces apoptotic cell death [58, 113, 119, 
120, 122], we suggest that this may be a common mecha-
nism in the pathology of CVDs, AD and T2D. Modulating 
VDAC1 expression levels or its apoptotic activity are possi-
ble strategies to either activate apoptosis in cancer or in-
hibit apoptosis in CVDs, AD and T2D. In this review, VDAC1-
based therapeutic strategies targeting tumor cells are pre-
sented. These cancer therapy strategies include siRNA al-
tering the normal functioning of cancer cells, leading to 
growth arrest, and VDAC1-based peptides that impair en-
ergy homeostasis and minimize the self-defense mecha-
nisms of these cells, and that can be used to overcome 
protective and pro-survival actions taken by cancer cells. 
 
VDAC1-depletion using RNAi 
Specifically targeting metabolism in cancer cells presents a 
potential therapeutic strategy. However, although glucose 
metabolism is increased in cancer cells, these cells mostly use 
the same glycolytic enzymes as do normal cells, so that the 
choice of glycolytic enzymes as targets for cancer treatment 
may increase the risk of adverse and undesirable consequenc-
es [303]. Targeting VDAC1, acting as a ‘governor’ of mitochon-
drial function, regulating cellular energy and metabolism, and 
over-expressed in cancer, offers a unique target for anti-
cancer therapies. Down-regulation of VDAC1 addresses the 
cancer trademark of cell metabolic and energy reprogramming, 

leading to disrupted cancer cell energy and metabolism ho-
meostasis.   

VDAC1 depletion using specific siRNA (si-VDAC1) led to re-
duced cellular ATP levels and inhibited cell and tumor growth 
in cervical and lung cancers [58, 59, 90]. Using a sub-
cutaneous and intracranial-orthotopic GBM model, we found 
that VDAC1 depletion resulted in inhibited tumor growth, with 
the residual tumor showing reversed oncogenic properties, 
including metabolic reprograming and inhibited proliferation, 
angiogenesis, EMT, invasiveness and stemness, leading to 
differentiation into neuron- and astrocyte-like cells [91] (Fig. 
4). 
 
VDAC1-based peptides as potential anti-cancer therapy 
A hallmark of cancer cells is their ability to suppress pro-
apoptotic pathways and/or to activate anti-apoptotic mecha-
nisms [78, 250] associated with drug resistance [304], such as 
the Bcl-2 family of proteins and HK, preventing the release of 
Cyto c from mitochondria. Since the anti-apoptotic proteins 
HK-I, HK-II, Bcl2 and Bcl-xL have been found to be expressed at 
high levels in many types of cancer [81, 253, 305-310] and 
interact with VDAC1 [1, 22, 23-27, 81, 82, 84, 118, 122, 124, 
128, 220, 311, 312], the interaction of VDAC1with these pro-
teins is proposed as an appropriate target to induce apoptosis. 

We have engineered VDAC1-based peptides that interfere 
with the activity of the pro-survival proteins Bcl-2, Bcl-xL and 
HK [23, 25-27, 118, 122, 212]. Via point mutations, VDAC1 
domains and amino acid residues important for interactions 
with HK, Bcl-2 and Bcl-xL were identified and cell-penetrating 
VDAC1-based peptides targeting these interactions were de-
signed and tested [23, 25-27, 118, 122]. These VDAC1-based 
peptides were found to induce cancer cell death in a panel of 
genetically characterized cancer cell lines, regardless of cancer 
type or mutation status, with perceived specificity toward 
cancerous cells [23, 27, 212]. Studies demonstrated a triple 
mode of action, namely energy and metabolism impairment, 
interference with the action of anti-apoptotic proteins, and a 
triggering of cell death.  

In an ex vivo study, cell-penetrating VDAC1-based peptides 
were found to induce apoptotic cell death in the cancerous B-
cells of peripheral blood mononuclear cells obtained from 
chronic lymphocytic leukemia (CLL) patients, yet spared those 
obtained from healthy donors, pointing to the potential of 
VDAC1-based peptides as an innovative and effective anti-CLL 
therapy. 

In a GBM mouse model, i.v.-administered VDAC1-based 
peptide Tf-D-LP4 crossed the blood-brain barrier and was 
found to inhibit tumor growth by inducing apoptosis and over-
expression of apoptotic proteins [213]. Such treatment simul-
taneously attacked several cancer hallmarks, causing impair-
ment of energy and metabolic homeostasis, inhibition of tu-
mor growth and induction of apoptosis. VDAC1-based pep-
tides, expecting to also affect other cancers, provide the op-
portunity for the development of new anti-cancer therapies 
that will allow overcoming the chemo-resistance of cancer 
cells.  

In summary, VDAC1 functions in ATP production and me-
tabolism, Ca

2+
 homeostasis and apoptosis execution are indis-

pensable for proper mitochondrial function of cancer cell, and 
consequently, for cell activity. These VDAC-mediated activities 
are regulated via interactions of VDAC1 with many proteins 
that are critically involved in the regulation of cell survival and 
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cellular death pathways. VDAC1, standing at the crossroads 
between mitochondrial-mediated energy and metabolism and 
apoptosis, is a potential target for treating cancer and other 
diseases involving dysregulated metabolism and/or apoptosis 
and where VDAC1 is over-expressed. Thus, a new generation 
of VDAC1-based therapeutics may impact the treatment of a 
variety of diseases. 

To conclude, the dysregulated cell stress response involves 
mitochondria dysfunction and this play a critical role in tumor-
igenesis, and other disease, such as Alzheimer’s disease, some 
cardiovascular disease and type 2 diabetes. The role of VDAC1 
in Ca

2+
 homeostasis, energy production and oxidative stress, 

and with VDAC1 serving as a hub protein interacting with over 
100 proteins allow it to mediate and regulate the integration 
of mitochondrial functions with cellular activities. Thus, VDAC1, 
standing at the crossroads between mitochondrial metabolite 
transport, apoptosis and other cell stress-associated processes, 
serves as the mitochondrial gatekeeper. This, together with its 
over-expression in cancer and other diseases, including Alz-
heimer’s disease, some cardiovascular diseases and type 2 
diabetes, involves VDAC1 in the cell stress response and thus 
represents a target to modulate the biology of cancer and 
other diseases. 
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