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Abstract

Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic 

chemicals used in products ranging from water and oil repellents and lubricants to firefighting 

foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of 

people assessed. Though animal models strongly identify these compounds as male reproductive 

toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and 

DNA damage in spermatids, among other adverse outcomes, human studies report conflicting 

conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem 

cell based model of spermatogenesis, we assessed the effects of the per- and polyfluoroalkyl 

substances perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), 

perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on 

human spermatogenesis in vitro under conditions relevant to the general and occupationally 

exposed populations. Here we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and 

PFNA do not decrease germ cell viability in vitro, consistent with reports from human studies. 

These compounds do not affect mitochondrial membrane potential or increase ROS generation, 

and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary 
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spermatocytes, or spermatids in vitro under the conditions examined. However, PFOS, PFOA, and 

PFNA exposure do reduce expression of markers for spermatogonia and primary spermatocytes. 

While not having direct effects on germ cell viability, these effects suggest the potential for long-

term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and 

abnormalities in primary spermatocytes.
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INTRODUCTION

Per- and polyfluoroalkyl substances (PFASs), previously called perfluorinated compounds 

(PFCs), are a group of synthetic chemicals that have been used in products ranging from 

water and oil repellents, lubricants, detergent products, coatings for furniture and food 

packages, waxes, firefighting foam, and other products since the 1940s (Arvaniti and 

Stasinakis 2015; Lei et al. 2015; Louis GM et al. 2015; Hu XC et al. 2016). 

Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the two most 

widely produced and used PFASs in the United States, along with perfluorohexane sulfonic 

acid (PFHxS) and perfluorononanoic acid (PFNA) (Lei et al. 2015; Louis GM et al. 2015). 

PFASs enter the human body through ingestion, inhalation, and contact with commonly used 

consumer products, where they bind albumin in the blood stream and readily bioaccumulate 

within the body’s tissues (Louis GM et al. 2015; Wu et al. 2015). PFASs have been found in 

a wide range of matrices, including blood, urine, breast milk, and seminal plasma (Guruge et 

al. 2005; Jusko et al. 2016; Poothong et al. 2017; Worley et al. 2017). The American Red 

Cross and the CDC report that the average exposure of Americans to PFASs ranges from 0.9 

ng/mL to over 100 ng/mL, with PFASs being detected in 100% of people tested in some 

studies (Calafat et al. 2007; Kato K et al. 2011; Olsen et al. 2011; Louis GM et al. 2015). 

However, populations such as Ronneby, Sweden, where up to one-third of households were 

exposed to drinking water contaminated with PFASs, have been reported to have PFOS and 

PFOA concentrations in their blood serum at concentrations as high as 1,500 ng/mL (3.00 

μM) and 92 ng/mL (0.22 μM), respectively (Li et al. 2017). In the United States, widespread 

environmental contamination of PFOA from DuPont’s Washington Works plant in West 

Virginia spurred epidemiological investigations of the exposure on the health of the 

surrounding community, where exposed workers had average serum concentrations of PFOA 

of 350 ng/mL (0.65 μM) (Steenland et al. 2009; Steenland and Woskie 2012). Similarly, 

individuals who have been occupationally exposed to PFASs have been found to have PFOS 

and PFOA concentrations of up to 118,000 ng/mL (235.94 μM) and 32,000 ng/mL (77.28 

μM), respectfully, values that are over 1,000 times higher than the highest concentrations 

reported by the American Red Cross and the CDC for the general population of Americans 

(Fu et al. 2016).

The perfluoroalkyl acids PFOS and PFOA have been found in the seminal plasma of 100% 

and over 70% of men in a Sri Lankan population, respectively, indicating that these 
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chemicals may accumulate in the testis (Guruge et al. 2005). However, it is still uncertain 

whether these chemicals have detrimental impacts on human spermatogenesis and fertility. 

In studies analyzing the associations between PFOS, PFOA, and PFNA concentrations in the 

blood serum of adult men and semen parameters, most studies do not report declines in 

semen volume or sperm number, though one study reports a trend of lower sperm 

concentration and counts in response to PFOA exposure (Kvist et al. 2012; Raymer et al. 

2012; Specht et al. 2012; Toft et al. 2012; Joensen et al. 2013; Vested et al. 2013; Governini 

et al. 2015; Louis GM et al. 2015). However, this association was found for men exposed to 

PFOA in utero, whereas all other studies involve participation of men from the general 

population. PFOS, PFOA, and PFNA exposure has been associated with changes in male 

hormones, sperm morphology, DNA fragmentation, and X:Y ratio and chromosomal 

abnormalities in adult men from the general population (Kvist et al. 2012; Raymer et al. 

2012; Toft et al. 2012; Joensen et al. 2013; Vested et al. 2013; Governini et al. 2015; Louis 

GM et al. 2015). However, among studies, exact results have varied. These results are in 

stark contrast to studies in rodent models, which report significant declines in sperm counts 

upon exposure to PFASs (Fan et al. 2005; Kato H et al. 2015; Liu et al. 2015). To date, no 

studies on occupationally exposed workers and semen parameters or pregnancy outcomes 

have been conducted, further contributing to the knowledge gap of whether PFASs impact 

male fertility.

Our lab has developed a model of in vitro human spermatogenesis to close these knowledge 

gaps (Easley et al. 2012). In this model, male human embryonic stem cells (hESCs) can be 

directly differentiated into spermatogonial stem cells/differentiating spermatogonia, pre-

meiotic and post-meiotic spermatocytes, and post-meiotic spermatids (Easley et al. 2012). 

Using this model, we have successfully recapitulated the clinical phenotypes of known 

human male reproductive toxicants 1,2-dibromo-3-chloropropane (DBCP) and 2-

bromopropane (2-BP) under acute, occupationally exposed conditions (Easley et al. 2015). 

The purpose of this study was to assess whether PFOS, PFOA, PFNA, and a mixture of 

PFOS, PFOA, and PFNA directly affect the viability of spermatogenic cells in our human in 
vitro model under chronic conditions relevant to both the general and occupationally 

exposed populations. Here, we identify spermatogonia and primary spermatocytes as the 

main targets of PFOS, PFOA, and PFNA in vitro. PFOS, PFOA, and PFNA exposure do not 

decrease cell viability, impact the cell cycle, or cause toxicity through ROS production or 

mitochondrial dysfunction but do reduce the expression of spermatogonia and primary 

spermatocyte markers.

RESULTS

PFOS, PFOA, and PFNA do not impact spermatogenic cell viability in vitro

Various chemical toxicants have been shown to induce apoptosis in spermatogenic cells, a 

process that can have detrimental consequences to male fertility (Aitken and Baker 2013; 

Aly 2013; Bloom et al. 2015). In rodents, PFOS exposure has been shown to upregulate p53 

and BAX expression in the testis while downregulating BCL-2 expression, indicative of 

apoptosis (Liu et al. 2015; Qu et al. 2016). Similarly, PFNA exposure has been shown to 

induce apoptosis in germ cells in rat testis (Feng et al. 2009). In a study assessing apoptosis 
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in semen samples of a human cohort, no associations between PFAS exposure, including 

PFOS, PFOA, and PFNA, and apoptosis in sperm were found (Specht et al. 2012). However, 

in a study assessing the effects of PFAS exposure on Xenopus laevis A6 kidney cell 

numbers, PFOS and PFOA decreased cell numbers, whereas PFNA had no effect on A6 cell 

numbers (Gorrochategui et al. 2016). To determine if PFAS exposure impacts the viability of 

in vitro spermatogenic cell lineages, male hESCs were differentiated as described (Easley et 

al. 2012). This differentiation protocol produces a mixed population of spermatogonial stem 

cells/differentiating spermatogonia, primary spermatocytes, secondary spermatocytes, and 

haploid spermatids. In vitro differentiations were treated with PFOS at concentrations of 24 

μM, 48 μM, or 126 μM; PFOA with concentrations of 11 μM, 25 μM, or 100 μM; PFNA at 

concentrations of 2.15 μM, 21.5 μM, or 43 μM, or 0.25% DMSO beginning on day 1 of the 

differentiation. Chemical concentrations are physiologically relevant to populations exposed 

to high concentrations of PFASs in their environment and those who are occupationally 

exposed based on published data (Calafat et al. 2007; Kato K et al. 2011; Olsen et al. 2011; 

Louis GM et al. 2015; Fu et al. 2016; Li et al. 2017). PFOS, PFOA, and PFNA treatment 

groups were analyzed in comparison to a 0.25% DMSO-only treated negative control for 

cell viability/apoptosis. This assay has been utilized by our lab in previous studies to assess 

spermatogenic cell viability status (Easley et al. 2015; Steves 2018). As a positive control, 

cells were treated with a 200 μM hydrogen peroxide (H2O2) for a period of six hours to 

confirm that our system responds to known toxicants (Supplemental Fig. S1A-C). Flow 

cytometry analyses reported the percentage of live, early apoptotic, late apoptotic/ dead, and 

dead cells in our in vitro cultures (Fig. 1A; Supplemental Fig. S2). The results of these 

analyses did not reveal any significant increases in apoptosis in cells treated with PFOS, 

PFOA, or PFNA at the concentrations used in this study (Fig. 1B-D; Supplemental Fig. S2). 

As such, our data supports the reports in human cohort studies that per- and polyfluoroalkyl 

substances do not induce cell death in germ cells. However, it is important to note that 

studies have shown that PFASs can cause cytotoxicity without utilizing an apoptotic 

mechanism (Buhrke et al. 2013). In cytotoxicity assays examining the effects of PFASs on 

the viability of the human hepatoma line HepG2, treatment with PFOA concentrations as 

low as 50 μM decreased cell viability (Buhrke et al. 2013), Similarly, this study calculated 

the IC50s of PFOA and PFNA to be 47 μM and 23 μM, respectively, after analysis with a 

Neural Red assay (Buhrke et al. 2013). Notably, the EC50s of PFOS, PFOA, and PFNA were 

calculated to be 107 μM, 594 μM, and 213 μM, respectively, using Alamar Blue in the 

human placental carcinoma cells JEG-3 (Gorrochategui et al. 2014). Though the sensitivity 

of various cell lines to PFAS exposure is highly variable, it is possible that our in vitro 
spermatogenic cells are not susceptible at the concentrations tested as we do not observe any 

appreciable cell death in our cultures after prolonged exposure (data not shown).

PFOS, PFOA, and PFNA do not increase the production of ROS in in vitro spermatogenic 
cells

The mammalian testis is susceptible to toxic assault by reactive oxygen species (ROS) 

(Agarwal et al. 2014), with ROS causing cell death through necrotic and apoptotic pathways 

(Ryter et al. 2007). Certain environmental toxicants have been shown to induce oxidative 

stress (Maiorino and Ursini 2002; Aly 2013; Erkekoglu and Kocer-Gumusel 2014) even in 

our in vitro model (Easley et al. 2015). However, ROS production does not always induce 
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cell death (Matic 2017). Reactive oxygen species are extremely volatile genotoxic agents 

capable of damaging DNA and oxidizing proteins (Matic 2017). An increase in ROS could 

lead to DNA mutations capable of being transmitted to future generations. Per- and 

polyfluoroalkyl substances, including PFOS, PFOA, and PFNA have been shown to increase 

ROS in a dose-dependent manner (Wielsoe et al. 2015). Specifically, PFOS has been shown 

to increase production of ROS in the C. elegans germline, while PFOA has been shown to 

induce testicular damage in male mice, with exposure resulting in a significant increase of 

oxidative stress (Liu et al. 2015; Guo et al. 2016). While the generation of ROS in the 

germline due to PFNA exposure has not been examined, PFNA exposure has been connected 

to the formation of ROS in the spleen cells of rats, resulting in cell-mediated death through 

apoptotic pathways (Fang et al. 2010). We examined whether PFOS, PFOA, PFNA, and a 

mixture of 48 μM PFOS, 25 μM PFOA, and 21.5 μM of PFNA could increase ROS levels in 

comparison to a 0.25% DMSO-only negative control.. This oxidative stress analysis has 

been utilized by our lab in previous studies to assess oxidative stress status (Easley et al. 

2015; Steves 2018). As a positive control, cells were treated with 200 μM hydrogen peroxide 

(H2O2) to confirm that this system responds to a known ROS inducer (Supplemental Fig. 

S3). Flow cytometry profiles were generated showing the percentage of ROS positive (ROS

+; red) and ROS negative (ROS−; blue) cells in our cultures (Fig. 2A; Supplemental Fig. 

S4). While PFOA exposure resulted in no significant changes to ROS production at any 

concentration tested, PFOS and PFNA both showed significantly less ROS levels compared 

to the 0.25% DMSO-only control by as much as 55% and 28% at the lowest concentrations 

tested, respectively (Fig. 2B-D; Supplemental Fig. S4). The complex PFAS mixture 

similarly showed a 33% reduction in reactive oxygen species (Fig. 2E; Supplemental Fig. 

S4). Interestingly, PFOS and PFOA both increased ROS in a dose-wise manner (although 

not statistically significant), with an 18% and 41% difference between the lowest and 

highest concentrations of PFOS and PFOA tested, respectively (Fig. 2B-C; Supplemental 

Fig. S4). Consistent with our viability results, it is unlikely that ROS is influencing the 

viability of spermatogenic cells in vitro. These results indicate that PFAS exposure may be 

protective against ROS in our in vitro cultures at lower concentrations; however, higher 

concentrations may increase the production of ROS.

PFOS, PFOA, and PFNA exposure do not impact mitochondrial function

The mitochondria are one of the most essential organelles in a cell, with functions including 

the generation of cellular energy in the form of ATP, cell signaling, calcium homeostasis, 

and cell cycle regulation, among other functions (Attene-Ramos et al., 2013). As such, the 

inhibition of mitochondrial function is detrimental. Mitochondria have been shown to be 

susceptible to early-stage effects of chemical toxicity, and multiple chemicals have been 

shown to cause mitochondrial dysfunction (Schmidt 2010). Therefore, mitochondria could 

serve as a highly sensitive early-warning system for cell health. PFOS has been shown to 

decrease the mitochondrial membrane potential of mouse Leydig cells, ultimately leading to 

apoptosis through mitochondrially-mediated pathways (Zhang DY et al. 2015). PFOS was 

found to impact mitochondrial membrane potential at concentrations below those associated 

with other adverse outcomes, indicating that the mitochondria may be particularly sensitive 

to PFOS exposure (Hu Wy et al. 2003). Similarly, in a study assessing the effects of PFNA 

on rat Sertoli cells, PFNA exposure was associated with a decline in mitochondrial integrity 
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and an increase in cell death (Feng et al. 2010). While no studies of the effects of PFOA on 

the mitochondria of testicular tissue exist, PFOA has been shown to induce mitochondrial 

dysfunction in mouse derived osteoblast cells, with the introduction of PFOA resulting in a 

collapse of mitochondrial membrane potential (Choi et al. 2017). No studies on PFAS 

exposure and the mitochondria of germ cells have been conducted. We assessed whether 

exposure to the per- and polyfluoroalkyl substances PFOS, PFOA, and PFNA in comparison 

to a DMSO-only control results in decreases in mitochondrial membrane potential. This 

assay has been utilized by our lab in a previous study to assess cell viability status and 

mitochondrial potential (Steves 2018). Flow cytometry plots were created showing 

percentages of live, depolarized/live, depolarized/dead, and dead cells in our in vitro cell 

cultures (Fig. 3A; Supplemental Fig. S5). Neither PFOS, PFOA, nor PFNA exposure 

significantly decreased mitochondrial membrane potential or increased cell death, consistent 

with the cell viability results (Fig. 3B-D; Supplemental Fig. S5). Similarly, exposure to a 

mixture of 48 μM PFOS, 25 μM PFOA, and 21.5 μM of PFNA did not decrease 

mitochondrial membrane potential or increase cell death in our cell cultures (Fig. 3E; 

Supplemental Fig. S5). As such, these results, combined with the our other data, provide 

firm evidence that PFOS, PFOA, and PFNA do not affect the viability of spermatogenic cells 

in our human in vitro cultures.

PFOS, PFOA, and PFNA do not impact the production of haploid spermatids

Spermatogenic cells work to guarantee genome integrity through cell cycle checkpoints, as 

infidelity in DNA replication, mistakes in chromosome segregation, and other forms of DNA 

mutations can occur. Therefore, toxicants that disturb these processes may impact the cell 

cycle, making cell cycle profiles vital indicators of germ cell health (Shackelford et al. 

1999). Reports on the impacts of PFASs on the cell cycle of germ cells are limited, though 

C. elegans exposed to PFOS have experienced mitotic cell arrest in germ cells (Guo et al. 

2016). Similarly, one study that examined the impacts of various per- and polyfluoroalkyl 

substances found that PFOA was able to disrupt the cell cycle of human hepatoblastoma 

HepG2 cells, and another study reported cell cycle arrest in the spleen and thymus of 

BALB/c mice upon exposure to PFNA (Fang et al. 2008) (Mulkiewicz, Jastorff, 

Skladanowski, Kleszczynski, & Stepnowski, 2007). To determine how these toxicants can 

impact in vitro spermatogenesis, cell cycle profiles of PFAS exposed cells and DMSO-only 

treated cells were generated. This assay has been utilized by our lab in previous studies to 

assess haploid cell production and cell cycle status (Easley et al. 2015; Steves 2018). Flow 

cytometry plots were generated showing the percentage of haploid cells and cells in G0/G1, 

S phase, and G2 in our cultures (Fig. 4A; Supplemental Fig. S6). Neither PFOS, PFOA, nor 

PFNA displayed a significant ability to alter the percentages of haploid, G0/G1, S, or G2 

cells undergoing spermatogenesis at any of the concentrations tested (Fig. 4B-D; 

Supplemental Fig. S6). Notably, PFOA exposure resulted in an increasing number of germ 

cells in G2 phase upon increasing concentration, with a roughly 15% increase in cells in G2 

at 100 μM, but this trend was not statistically significant (Fig. 4C; Supplemental Fig. S6).

However, the end product of spermatogenesis is haploid spermatids and ultimately sperm. 

Numerous environmental factors have detrimental impacts on sperm counts (Wong and 

Cheng 2011). Remarkably, exposure to PFOS, PFOA, and PFNA did not impact haploid cell 
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production in our model at any concentration tested (Fig. 4E-G) consistent with human 

studies. PFOA exposure did result in a decreasing percentage of haploid cells with 

increasing concentration of PFOA, with a roughly 25% decline at 100 μM, though this 

decline was not statistically significant (Fig. 4F; Supplemental Fig. S6). These results 

indicate that these chemicals are not toxic to even the most sensitive of our mixed population 

of germ cells..

PFOS, PFOA, and PFNA exposure impact the expression of PLZF in spermatogonia

While germ cell viability was not affected, we next examined whether PFAS exposure 

impacted expression of critical markers of spermatogenesis. Spermatogonia are 

undifferentiated male germ cells that give rise to mature sperm cells capable of fertilizing an 

oocyte through the generation of primary spermatocytes followed by secondary 

spermatocytes and spermatozoa via meiosis (Phillips et al. 2010). Any perturbation to 

spermatogonia could impact fertility. To determine if PFAS exposure impacts 

spermatogonia, we analyzed the expression of the consensus marker of stem and progenitor 

spermatogonia, promyelocytic leukemia zinc finger (PLZF). We have previously identified 

PLZF as a reliable marker for spermatogonia in our in vitro model (Easley et al. 2012; 

Easley et al. 2015; Steves 2018). Using high content imaging, we determined that 24 μM and 

126 μM PFOS significantly decreased the area of PLZF+ cells by 14% and 42%, 

respectively, in comparison to a 0.25% DMSO negative control (Fig. 5A-B and 5E; 

Supplemental Fig. S7). Interestingly, 48 μM PFOS shows a 9% decline in PLZF+ area 

although this result is not statistically significant (Fig. 5B; Supplemental Fig. S7). 

Additionally, 2.15 μM PFNA significantly decreased the area of PLZF+ cells by 15% (Fig. 

5D; Supplemental Fig. S7). However, PFOA exposure had no impact on PLZF+ area (Fig. 

5C; Supplemental Fig. S7). Expression levels of PLZF, represented by the total intensity of 

PLZF+ staining, significantly declined in cells exposed to 126 μM PFOS and 11 μM PFOA 

by 50% and 17%, respectively (Fig. 5E and 5F; Supplemental Fig. S7). Exposure to PFNA 

did not impact PLZF intensity in our in vitro cultures (Fig. 5G; Supplemental Fig. S7). The 

results from the Annexin V, cell cycle, oxidative stress, and MitoPotential assays all support 

the conclusion that PFAS exposure does not impact cell viability during human in vitro 
spermatogenesis. Therefore, it is unlikely that the decline in PLZF area and expression is the 

result of spermatogonia undergoing apoptosis in response to PFAS exposure. Decreases in 

PLZF intensity may be the result of the downregulation of PLZF expression that could block 

the differentiation of spermatogonia to primary spermatocytes, or alternatively, the ability of 

spermatogonia to self-renew their own population. The results from the cell cycle assay 

indicate that haploid spermatid production is not perturbed, as would be expected if 

differentiation is being blocked by PFAS exposure. However, 100 μM PFOA exposure did 

result in a roughly 25% decline in haploid spermatid production in the cell cycle assay (Fig. 

4F; Supplemental Fig. S7). Because human spermatogenesis takes approximately 70 days in 
vivo, and our in vitro differentiation occurs in ten days, it is possible that a decline in sperm 

production would be seen upon a longer exposure. Nonetheless, under the conditions 

examined, certain PFASs do affect PLZF expression and could contribute to fertility issues 

with further, persistent exposure.
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PFOS, PFOA, and PFNA exposure impact HILI expression in primary spermatocytes

Primary spermatocytes express piwi like RNA-mediated gene silencing 2 (HILI), which 

functions in the male germline to repress transposons and regulate gene expression, among 

other processes (Juliano et al. 2011). As such, any perturbations in HILI expression in 

primary spermatocytes could result in mutations and aberrant gene expression in resulting 

spermatids should the cells fail to undergo apoptosis. To assess if PFAS exposure impacts 

primary spermatocytes by altering HILI expression, we analyzed for HILI using high 

content imaging. We have previously identified HILI as a reliable marker for primary 

spermatocytes in our in vitro model (Easley et al. 2012; Easley et al. 2015; Steves 2018). We 

determined that the area of HILI+ primary spermatocytes significantly decreased at all 

concentrations of PFOS and PFOA, with HILI+ area declining by as much as 60% and 56% 

at 126 μM PFOS and 100 μM PFOA, respectively (Fig. 6A-C; Supplemental Fig. S8). HILI+ 

area was not significantly affected by PFNA exposure (Fig. 6D; Supplemental Fig. S8). HILI 

intensity was similarly affected at all concentrations of PFOS and PFOA, with HILI 

intensity declining by as much as 63% and 55% at 126 μM PFOS and 100 μM PFOA, 

respectively (Fig. 6E-F; Supplemental Fig. S8). Studies have shown that decreases in HILI 

expression lead to apoptosis arising from elevated transposition and increased double-

stranded breaks (Juliano et al. 2011). While decreases in HILI expression for PFOS and 

PFOA are not matched by cell death, it is possible that this downregulation of HILI will 

ultimately lead to mutations and defects in haploid spermatids. Interestingly, HILI intensity 

significantly increases at 43 μM PFNA by 14% (Fig. 6G; Supplemental Fig. S8). 

Upregulation in HILI could be in response to increased activity of transposons. Increases in 

HILI could also be the result of increased crossing over events during meiosis, a process that 

could introduce mutations, translocations, and other chromosome abnormalities (Louis EJ 

and Borts 2003).

DISCUSSION

Despite the existence of PFASs in the environment for decades, it remains uncertain how 

these chemicals may be impacting human reproductive health. Human and animal model 

data conflict as to whether or not these chemicals affect germ cell viability, and ultimately, 

male fertility. Most studies examining the impacts PFOS, PFOA, and PFNA on semen 

parameters do not report declines in semen volume or sperm number (Kvist et al. 2012; 

Raymer et al. 2012; Specht et al. 2012; Toft et al. 2012; Joensen et al. 2013; Vested et al. 

2013; Governini et al. 2015; Louis GM et al. 2015). Studies in rodents assessing the impact 

PFASs have on spermatogenesis have shown significant declines in sperm count, in stark 

contrast to the results found in human studies (Fan et al. 2005; Kato H et al. 2015; Liu et al. 

2015) highlighting the disconnect between rodent and human studies. Rodent studies have 

identified Sertoli cells, seminiferous tubules, and the epididymis as targets of PFASs (Wan et 

al. 2014; Zhang H et al. 2014; Kato H et al. 2015; Liu et al. 2015; Lu et al. 2016; Qiu et al. 

2016). Specifically, PFOS exposure in male CD-1 mice led to decreases in testicular 

gonadotropin receptors and decreased expression of growth hormone receptor (GHR), 

insulin-like growth factor 1 receptor precursor (IGF1R), inhibins, and activins (Wan et al. 

2011). These impacts were associated with impairment of testicular steroidogenesis resulting 

in less testosterone and less sperm in the epididymis (Wan et al. 2011). PFAS exposure has 

Steves et al. Page 8

Syst Biol Reprod Med. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similarly been shown to inhibit aromatase in a human placental cell line, further suggesting 

that they interfere with steroidogenesis (Gorrochategui et al. 2014). While effects of PFAS 

exposure on steroidogenesis and somatic support cell viability were not tested in this study, 

our study provides information on the impacts of PFOS, PFOA, and PFNA exposure directly 

on spermatogenic cells.

Here we report that exposure to PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and 

PFNA do not increase ROS production or cause mitochondrial dysfunction that may lead to 

germ cell death. Additionally, PFOS, PFOA, and PFNA exposure does not induce apoptosis 

of spermatogenic cells or have impacts on the cell cycle or haploid spermatid production. 

Therefore, our in vitro human spermatogenesis model recapitulates the results reported in 

human cohort studies. This is an important result that further validates our model as a high 

throughput system for examining direct impacts on human male germ cells. PFOS, PFOA, 

and PFNA exposure did have impacts on spermatogonia in our in vitro model by decreasing 

PLZF area and intensity at certain concentrations. Though further studies are needed, it is 

possible that exposure to PFASs inhibits the ability of spermatogonia to maintain their own 

population. The results of our cell cycle analyses indicate that, in such a case, spermatogonia 

are still capable of differentiation, but these cells do not continue to self-renew, suggesting 

terminal differentiation and a potential exhaustion of the spermatogonial stem cell pool. Due 

to limitations in our current model, we are unable to assess whether PFASs disrupt 

spermatogonia self-renewal. Enhancements to our model or additional models will need to 

be developed to answer this important question.

Additionally, HILI area and intensity decreased upon exposure to PFOS and PFOA, though 

this decrease is likely not due to death of primary spermatocytes or cell cycle arrest. Specific 

transcription factors for HILI expression in male germ cells have not been identified, and it 

is unclear how exposure to PFASs could impact HILI expression. Importantly, HILI 

maintains germline integrity by repressing transposable elements during meiosis, regulating 

gene expression at the epigenetic, post-transcriptional, and translational levels in primary 

spermatocytes, and through involvement in chromosome synapsis during meiosis (Juliano et 

al. 2011). A decrease in HILI expression could result in activated retrotransposons, aberrant 

gene expression, and failure of cells to undergo meiosis properly.

This study highlights the ability of our in vitro model to assess chemical exposure under 

persistent conditions relevant to populations exposed to high levels of PFASs in the 

environment and those who are occupationally exposed. This study also uniquely attempts to 

mimic real-world exposures by investigating the effects of PFAS mixtures on 

spermatogenesis. While we are not able in our model to assess impacts of chemical exposure 

on the somatic environment, the results of this study indicate that our model is suitable as a 

reliable, high-throughput screening system for assessing direct effects of chemical exposure 

on human spermatogenic cells.

Steves et al. Page 9

Syst Biol Reprod Med. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MATERIALS AND METHODS

Cell culture and PFAS treatment

NIH-approved WA01 (H1, WiCell, Madison, WI) male hESCs were cultured and maintained 

in mTeSR1 (STEMCELL Technologies, Vancouver, Canada) on matrigel (Corning Life 

Sciences, Tewksbury, MA) as previously described (Easley et al. 2012). All experimental 

approaches and human stem cell use are approved by the University of Georgia Institutional 

Biosafety Committee. Direct differentiation into spermatogenic lineages was performed as 

described (Easley et al. 2012; Easley et al. 2015). Differentiating cells were maintained in 

mouse spermatogonial stem cell (SSC) medium containing the following (all from 

MilliporeSigma, St. Louis, MO, unless noted): MEMalpha (Invitrogen, Waltham, MA), 

0.2% Bovine Serum Albumin, 5 μg/ml insulin, 10 μg/ml transferrin, 60 μM putrescine, 2 

mM L-glutamine (Invitrogen, Waltham, MA), 50 μM β-mercaptoethanol, 1 ng/ml hbFGF 

(human basic fibroblast growth factor, PeproTech, Rocky Hill, NJ), 20 ng/ml GDNF (glial-

derived neurotrophic factor, PeproTech, Rocky Hill, NJ), 30 nM sodium selenite, 2.36 μM 

palmitic acid, 0.21 μM palmitoleic acid, 0.88 μM stearic acid, 1.02 μM oleic acid, 2.71 μM 

linoleic acid, 0.43 μM linolenic acid, 10 mM HEPES, and 0.5X penicillin/streptomycin 

(Invitrogen, Waltham, MA) for ten days. Cells were continuously treated with 

perfluorooctanesulfonic acid (PFOS) (INDOFINE Chemical Company, Inc., Hillsborough, 

NJ) at concentrations of 24 μM, 48 μM, or 126 μM; perfluorooctanoic acid (PFOA) 

(MilliporeSigma, St. Louis, MO) at concentrations of 11 μM, 25 μM, or 100 μM; and 

perfluorononanoic acid (PFNA) (MilliporeSigma, St. Louis, MO) at concentrations of 2.15 

μM, 21.5 μM, or 43 μM beginning on day 1 of the differentiation. Cells were maintained in 

SSC media with PFASs dissolved in DMSO or DMSO-only negative control for the entire 

ten-day differentiation process, with media changes occurring every other day, or treated 

with a 200 μM hydrogen peroxide positive control for six hours.

Cell viability and apoptosis

Cell viability was assessed by measuring the percent of apoptotic cells in our cultures using 

the Muse® Annexin V and Dead Cell Assay Kit (MilliporeSigma, Billerica, MA) by 

staining unfixed cells with Annexin V and 7-AAD as per manufacturer’s instructions to 

prepare samples for flow cytometry. Samples were run on the Muse® benchtop flow 

cytometer (MilliporeSigma, Billerica, MA). For each flow cytometry-based experiment, 

5,000 events were analyzed for four replications (n = 4) per chemical concentration and 

DMSO-only control.

Mitochondrial membrane potential

Mitochondrial membrane potential was assessed using the Muse® MitoPotential Kit 

(MilliporeSigma, Billerica, MA) by staining unfixed cells with a supplied cationic, lipophilic 

dye and 7-AAD as per manufacturer’s instructions to prepare samples for flow cytometry. 

Samples were run on the Muse® benchtop flow cytometer (MilliporeSigma, Billerica, MA). 

For each flow cytometry-based experiment, 5,000 events were analyzed for four replications 

(n = 4) per chemical concentration and DMSO-only control.
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Reactive oxygen species (ROS) generation

ROS generation was assessed by the Muse® Oxidative Stress Kit (MilliporeSigma, Billerica, 

MA) by staining unfixed cells with dihydroethidium as per manufacturer’s instructions to 

prepare samples for flow cytometry. Samples were run on the Muse® benchtop flow 

cytometer (MilliporeSigma, Billerica, MA). For each flow cytometry-based experiment, 

5,000 events were analyzed for five replications (n = 5) per chemical concentration and 

DMSO-only control.

Haploid cell production and cell cycle progression

Haploid cell production and cell cycle progression were assessed by generating cell cycle 

plots revealing haploid cell, G0/G1, S phase, and G2 peaks using the Muse® Cell Cycle 

Assay Kit (MilliporeSigma, Billerica, MA) by staining fixed cells with propidium iodide as 

per manufacturer’s instructions to prepare samples for flow cytometry. Samples were run on 

the Muse® benchtop flow cytometer (MilliporeSigma, Billerica, MA). For each flow 

cytometry-based experiment, 5,000 events were analyzed for three replications (n = 3) per 

chemical concentration and DMSO-only control. Haploid peaks were analyzed using 

guavaSoft™ 3.1.1 (MilliporeSigma, Billerica, MA).

Spermatogonial cell lineage markers

High content imaging of differentiated hESCs was performed on the ThermoFisher 

Cellomics ArrayScan® VTI (Thermofisher, Waltham, MA). Quantitative analyses for 

average PLZF+ (promyelocytic leukemia zinc finger, R&D System, Minneapolis, MN) and 

HILI+ (piwi like RNA-mediated gene silencing 2, Abcam, Cambridge, MA) total colony 

area and average total intensity of PLZF+ and HILI+ staining per colony were determined 

using HCS Studio™ 2.0 Cell Analysis Software included with the ArrayScan® suite. PLZF 

and HILI immunostaining was performed as previously described (Easley et al. 2012). 

Briefly, cells were fixed with 4% paraformaldehyde, blocked in a 5% BSA blocking buffer 

in 0.1% Triton X, and stained with PLZF at a concentration of 1.25 μg/mL and HILI at a 

concentration of 2.25 μg/mL. Three replications (n = 3 wells, >50 colonies/well) were 

performed per condition and DMSO-only control.

Statistical analysis

Significant differences in samples in comparison to DMSO-only control were determined 

using a 1-way analysis of variance (1-way ANOVA) and validated via a Student’s t-test, 

where * is p<0.05, ** is p<0.01, and *** is p<0.001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PFOS, PFOA, and PFNA do not induce apoptosis in spermatogenic cells derived from 
hESCs.
(A) Flow cytometry analyses for indicating percent viable cells, percent early apoptotic 

cells, percent late apoptotic cells, and percent dead/necrotic cells for the highest 

concentrations of PFOS, PFOA, and PFNA assessed plus a negative control. Lower left 

quadrant represents viable cells, lower right quadrant represents early apoptotic cells, upper 

right quadrant is late apoptotic/dead cells, and the upper right quadrant is dead/necrotic cells. 

(B-D) Graphical representation showing that PFOS, PFOA, and PFNA exposure did not 

impact cell viability in hESCs differentiated in in vitro spermatogenic conditions. 5,000 

events were analyzed, with four (n = 4) replications performed for each condition. 

Significant changes in cell viability were determined using a 1-way analysis of variance (1-

way ANOVA) and validated via a Student’s t-test, where * is p<0.05, ** is p<0.01, and *** 

is p<0.001.
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Figure 2. PFOS, PFOA, PFNA, and a mixture of PFASs decrease ROS generation in 
spermatogenic cells derived from hESCs.
(A) Flow cytometry based analysis of DHE labeling reporting percent ROS− and percent 

ROS+ cells for the highest concentrations tested plus a negative control. Blue indicates ROS

−. Red indicates ROS+. (B-E) Graphical representation showing that PFOS, PFOA, PFNA, 

and a mixture of the PFASs PFOS, PFOA, and PFNA (PFAS mixture) decrease ROS 

generation in hESCs differentiated in in vitro spermatogenic conditions. 5,000 events were 

analyzed, with five (n = 5) replications performed for each condition. Significant changes in 
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ROS generation were determined using a 1-way analysis of variance (1-way ANOVA) and 

validated via a Student’s t-test, where * is p<0.05, ** is p<0.01, and *** is p<0.001.
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Figure 3. PFOS, PFOA, PFNA, and a mixture of PFASs do not impact mitochondrial membrane 
potential in spermatogenic cells derived from hESCs.
(A) Flow cytometry analyses for the highest concentrations tested plus a negative control 

indicating percent live cells, percent a depolarized/live cells, percent depolarized/dead cells, 

and percent dead cells. Lower right quadrant represents viable cells, lower left quadrant 

represents depolarized/live cells, upper right quadrant is depolarized/dead cells, and the 

upper right quadrant is dead cells. (B-E) Graphical representation showing that PFOS, 

PFOA, PFNA, and a mixture of the PFASs PFOS, PFOA, and PFNA (PFAS mixture) do not 

impact mitochondrial membrane potential in hESCS differentiated in in vitro spermatogenic 
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conditions. 5,000 events were analyzed, with four (n = 4) replications performed for each 

condition. Significant changes in mitochondrial membrane potential were determined using 

a 1-way analysis of variance (1-way ANOVA) and validated via a Student’s t-test, where * is 

p<0.05, ** is p<0.01, and *** is p<0.001.
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Figure 4. PFOS, PFOA, and PFNA do not affect the cell cycle or haploid cell viability in 
spermatogenic cells derived from hESCs.
(A) Flow cytometry analyses of cell cycle profiles following treatment with the highest 

concentrations of PFOS, PFOA, and PFNA plus a negative control. Green, blue, purple, and 

beige populations on flow cytometry correspond to haploid, G0/G1, S, and G2 phases, 

respectively. (B-D) Graphical representation showing that PFOS, PFOA, and PFNA do not 

affect the cell cycle of actively dividing hESCS differentiated in in vitro spermatogenic 

conditions. (E-G) Graphical representation showing that PFOS, PFOA, and PFNA exposure 

does not impact the percentage of haploid cells in spermatogenic cells derived from hESCs. 
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5,000 events were analyzed, with three (n = 3) replications performed for each condition. 

Significant changes in percentages of haploid cells and cells in G0/G1, S phase, and G2 

were determined using a 1-way analysis of variance (1-way ANOVA) and validated via a 

Student’s t-test, where * is p<0.05, ** is p<0.01, and *** is p<0.001.
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Figure 5. PFOS, PFOA, and PFNA impact PLZF area and intensity in spermatogonia derived 
under in vitro spermatogenic conditions.
(A) Representative 5X images obtained by the Cellomics ArrayScan VT1 of PLZF + (green) 

and DAPI (blue)-stained colonies treated with the highest concentrations of PFOS, PFOA, 

and PFNA plus a negative control. All images are taken under the same imaging conditions 

and parameters. (B-D) Graphical representation showing that PFOS and PFNA reduce 

average total PLZF+ area in spermatogonia derived under in vitro spermatogenic conditions. 

(E-G) Graphical representation showing that PFOS and PFOA reduce average total PLZF+ 

intensity in spermatogonia. Three (n = 3) replications were performed for each condition. 
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Significant changes in PLZF+ area and intensity were determined using a 1-way analysis of 

variance (1-way ANOVA) and validated via a Student’s t-test, where * is p<0.05, ** is 

p<0.01, and *** is p<0.001.
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Figure 6. PFOS, PFOA, and PFNA influence HILI area and intensity in primary spermatocytes 
derived under in vitro spermatogenic conditions.
(A) Representative 5X images obtained by the Cellomics ArrayScan VT1 of HILI + (green) 

and DAPI (blue)-stained colonies treated with the highest concentrations of PFOS, PFOA, 

and PFNA plus a negative control. All images are taken under the same imaging conditions 

and parameters. (B-D) Graphical representation showing that PFOS and PFOA exposure 

impacts average total HILI+ area in primary spermatocytes derived under in vitro 
spermatogenic conditions. (E-G) Graphical representation showing that PFOS, PFOA, and 

PFNA exposure impacts average total HILI+ intensity in primary spermatocytes. Three (n = 
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3) replications were performed for each condition. Significant changes in HILI+ area and 

intensity were determined using a 1-way analysis of variance (1-way ANOVA) and validated 

via a Student’s t-test, where * is p<0.05, ** is p<0.01, and *** is p<0.001.
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