Skip to main content
. 2018 Dec;21(12):1399–1405. doi: 10.1016/j.jval.2018.06.006

Table 2.

Model fit for response mappings and ALDVMMs

FACT-B total/subscales Number of components Log likelihood AIC BIC Mean error Mean absolute error RMSE Proportion of predicted observations at full health (%) Proportion of predicted observations below 0 (%)
Response mapping
Total scores −29,869.95 59,809.91 60,068.53 0.0117 0.1341 0.1824 21.7 2.8
Subscales −27,530.01 55,170.02 55,576.43 0.0092 0.1216 0.1682 29.6 1.89
ALDVMMs
Total FACT-B 1 −735.2737 1,480.547 1,517.493 0.0018 0.1330 0.1829 34.3 0.2
2 1,217.156 −2,406.312 −2,302.863 0.0006 0.1324 0.1815 25.2 1.6
3 1,395.884 −2,745.768 −2,575.818 −0.000007 0.1318 0.1815 27.4 1.5
4 1,724.382 −3,384.763 −3,148.310 0.0001 0.1332 0.1818 27.4 1.5
Subscales 1 435.7411 −853.4822 −786.9798 −0.0002 0.1207 0.1656 33.9 0.1
2 2,476.873 −4,901.747 −4,709.629 0.0005 0.1199 0.1654 25.9 1.6
3 2,867.129 −5,648.258 −5,330.524 −0.0004 0.1155 0.1631 27.6 1.4
4 3,075.795 −6,031.590 −5,588.240 −0.00009 0.1158 0.1633 27.0 1.5

Note. Proportion of observations at full health = 27.6%, proportion in a state worse than death = 1.4%. Note that AIC and BIC are not comparable between response mapping and ALDVMMs.

AIC, Akaike information criterion; ALDVMM, adjusted limited dependent variable mixture model; BIC, Bayesian information criterion; FACT-B, Functional Assessment of Cancer Therapy—Breast Cancer; RMSE, root mean square error.