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GWAS identifies 14 loci for device-measured
physical activity and sleep duration
Aiden Doherty 1,2,3,4, Karl Smith-Byrne5, Teresa Ferreira1,6, Michael V. Holmes4,7,8, Chris Holmes1,9,

Sara L. Pulit1,6,10,11 & Cecilia M. Lindgren1,4,6,11

Physical activity and sleep duration are established risk factors for many diseases, but their

aetiology is poorly understood, partly due to relying on self-reported evidence. Here we

report a genome-wide association study (GWAS) of device-measured physical activity and

sleep duration in 91,105 UK Biobank participants, finding 14 significant loci (7 novel). These

loci account for 0.06% of activity and 0.39% of sleep duration variation. Genome-wide

estimates of ~ 15% phenotypic variation indicate high polygenicity. Heritability is higher in

women than men for overall activity (23 vs. 20%, p= 1.5 × 10−4) and sedentary behaviours

(18 vs. 15%, p= 9.7 × 10−4). Heritability partitioning, enrichment and pathway analyses

indicate the central nervous system plays a role in activity behaviours. Two-sample Men-

delian randomisation suggests that increased activity might causally lower diastolic blood

pressure (beta mmHg/SD: −0.91, SE= 0.18, p= 8.2 × 10−7), and odds of hypertension

(Odds ratio/SD: 0.84, SE= 0.03, p= 4.9 × 10−8). Our results advocate the value of physical

activity for reducing blood pressure.
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Physical inactivity is a global public health threat and is
estimated to cost health-care systems ~$50 billion per year
worldwide1,2. It is associated with a range of common

diseases including multiple cardiometabolic outcomes such as
obesity, type 2 diabetes, and cardiovascular diseases3. Alterations
in sleep duration also associate with negative health outcomes,
including cardiometabolic diseases4 and psychiatric disorders5. In
response, recent Canadian public health guidelines recommend
how much physical activity and sleep duration youths should
engage in for health benefit6.

Twin and family studies have shown that self-reported
daily physical activity is heritable, but with a large degree
of heterogeneity in measurement methods and sample size
(h2 range: 0–78%)7. Recent GWAS studies have indicated a
genetic contribution to physical activity, finding three variants8

associated with standard UK Biobank activity metrics9.
Recent GWAS have also reported common variants that are
associated with sleep duration in UK Biobank10–12. However,
GWAS of behavioural traits such as physical activity and sleep
have mostly relied on self-reported data that are prone to
measurement error and thus have limited statistical power. It is
also possible that self-reported measures capture how well indi-
viduals perceive what they do, rather than what they actually do.
Consequently, our understanding of the genes and biological
pathways that underpin physical activity and sleep behaviours
is still limited.

Here, we report a GWAS in 91,105 UK Biobank participants
who were asked to wear activity trackers over a 7-day period.
Our use of statistical machine learning, to derive objective
measures of physical activity and sleep duration from raw
device data, helps identify 14 genetic loci. The associated loci
reveal pathways in the central nervous system that are asso-
ciated with sleep duration and activity behaviours. We also
show that physical activity might causally lower diastolic blood
pressure and odds of hypertension.

Results
Statistical machine learning of behaviours from sensor data.
We examined data from 101,307 UK Biobank participants who
agreed to wear a wrist-worn accelerometer for 7 days9 and
additionally underwent genome-wide genotyping and imputa-
tion13. As part of the UK Biobank Accelerometer Working
Group, we generated a continuous phenotype representing
overall activity time9 (Methods). Additionally, we applied a

machine-learning model, using balanced random forests with
Markov confusion matrices14, to identify which one of four
activity states {sleep, sedentary, walking, moderate intensity} an
individual was in at any given time (Supplementary Data 1). We
trained and evaluated the model in 153 free-living individuals
(mean age= 42, female n= 100) to distinguish between activity
states, evaluated against reference wearable camera, time-use,
and sleep diary information sources14. Our model achieved an
overall classification score of kappa= 0.68 in correctly pre-
dicting what activity state an individual is in for any given 30-s
time period (Supplementary Table 1). As detailed in a previous
publication14 this model was considered suitable for population
inference in UK Biobank as the performance was not materially
affected by age and sex characteristics (difference in kappa
score: sex < 0.0001; age < 0.05). Therefore, our model was
applied to over 100,000 UK Biobank participants (Fig. 1), where
the machine-learned phenotypes demonstrated face validity14

with clear and expected differences in sleep duration by self-
reported chronotype status (Supplementary Fig. 1). These
machine-learned phenotypes provided orthogonal information
to the traditional overall activity time phenotype (Supplemen-
tary Fig. 2).

Loci associated with physical activity and sleep duration. After
quality control, 91,105 participants of European descent and
9,926,106 single-nucleotide polymorphisms (SNPs) remained for
subsequent genetic association analysis (Methods). To maximise
statistical power, we performed our analyses using the BOLT-
LMM software tool15, which applies a linear mixed model to the
data, allowing for inclusion of related individuals and those of
varying genetic ancestry16. We additionally included assessment
centre, genotyping array, age, age squared, and season of wear as
covariates.

Our analysis identified 14 significant loci (p < 5 × 10−9) that
were separated by at least 400 kilobases (kb) (Table 1, Fig. 1, and
Supplementary Fig. 3). We empirically derived this threshold (p <
5 × 10−9) for genome-wide significance that considers multiple
testing in densely imputed data17. Seven loci were novel and these
include: one for overall activity (rs564819152 near SKIDA1, p=
1.9 × 10−9); two for sleep duration (rs2416963 near MAPKAP1,
p= 2.3 × 10−10; and rs2006810 near AUTS2, p= 3.9 × 10−9); four
for sedentary time (rs26579 near MEF2C-AS2, p= 2.6 × 10−9;
rs25981 near EFNA5, p= 3.0 × 10−9; rs1858242 near
LOC105377146, p= 3.1 × 10−9; and rs34858520 near CALN1,
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Fig. 1 Genome-wide significant (5 × 10−9) loci associated with accelerometer-measured variation in sleep duration and physical activity behaviours in
91,105 UK Biobank participants
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p= 4.2 × 10−9); while no loci were identified for walking or
moderate intensity activity (Table 1 and Supplementary Fig. 4).
The remaining associations were known: two for overall and
moderate intensity activity8 (near KANSL1-AS1 and SYT4) and
six for sleep duration12,18–22 (near PAX8-AS1, MEIS1,
LOC101928519, MAPK8IP1P2, OLFM2, and DPYD). Setting
genome-wide significance at the conventional threshold of
p < 5 × 10−8 would have revealed 13 additional loci, 11 of which
are novel (Supplementary Data 2).

We found concordance for loci previously reported using
UK Biobank data for overall (near PML) and moderate
intensity activity8 (near LINC02210-CRHR1, and SYT4), sleep
duration12,19,23,24 (near PUM1, CHCHD5, SAMMSON, BTBD9-
AS1, LRP12, EBLN3P, BSX, KCNH5, PRKCB, and RPGRIP1L),
and sedentary time (near LINC01930 and LY6H) (Supplementary
Data 3). No other findings were confirmed from previous GWAS
that relied on self-report measures of physical activity and sleep
duration. To account for the likely non-linear U-shape relation-
ship between sleep and disease outcomes25, we ran additional
GWAS on short and long sleep, defined as those in the bottom or
top quintiles for sleep duration, respectively. We found three loci
for short sleep (near PAX8-AS1, MEIS1, and MAPK8IP1P2) that
were already identified for sleep duration. We found one locus for
long sleep duration (near PAX8-AS1) that was also already
identified for sleep duration. This indicates that our sleep
duration results are not driven by individuals who are very short
or long sleepers.

Genomic control lambda across the GWAS ranged from 1.1 to
1.20, indicating modest deviation in the test statistics compared
with the expectation. Estimation of the LD Score intercepts, using
LD score regression26, revealed intercepts near 1.00 (range:
0.98–1.02), indicating that the genomic inflation was due to a
polygenic architecture rather than inflation due to uncorrected
population structure. We performed approximate conditional
analysis in each locus reaching genome-wide significance using
Genome-wide Complex Trait Analysis27 (GCTA) but did not
identify secondary signal in any locus. Gene-based analysis using
FUMA28, with input SNPs mapped by position to 18,232 protein-
coding genes, identified an additional locus for walking (near
HP1BP3) and moderate activity (near KCNA6) (Supplementary
Data 4).

Genetic architecture of physical activity and sleep duration.
Using heritability estimates from BOLT-LMM15 (Methods), we
found all traits to have modest heritability, ranging from 10%
for moderate intensity activity to 21% for overall activity (Sup-
plementary Fig. 3). Genome-wide significant loci account for
0.06% (overall activity) to 0.33% (sleep duration) of phenotypic
variance across the traits (Supplementary Fig. 3). Additional
analyses testing for polygenic trait architecture indicate that
SNPs with p-values above genome-wide significance add sig-
nificantly to the phenotypic variance explained. For example,
explained phenotypic variance ranged from 12.9% for sedentary
behaviour to 18.1% for sleep duration when we selected inde-
pendent SNPs (r2 < 0.1) with p < 5 × 10−3 and distance > 250 kb
from index SNPs.

We applied partitioned heritability29 analysis for tissue and
functional categories using LD score regression26. We identified
significant tissue enrichments (p < 1 x 10−3, accounting for ten
tissue types and five traits) in the central nervous system for all
traits apart from moderate activity. We also identified significant
enrichments for adrenal/pancreatic and skeletal muscle tissues for
overall activity and sleep duration traits (Supplementary Fig. 5).
Regions of the genome annotated as conserved across mammals
were enriched (p < 4.7 × 10−4, accounting for 21 functional
categories and five traits) for overall activity, sleep duration,
and sedentary behaviour traits. These findings support a role for
physical activity and sleep behaviours throughout mammalian
evolution.

For all sleep duration and activity phenotypes, we used
FINEMAP30 to identify credible sets of causal SNPs (meeting a
log10 Bayes Factor > 2) in a 1Mb window around each index SNP,
on the assumption that there is a maximum of five causal variants
per locus. Three loci contained plausible causal variants in regions
spanning < 15 kb (Supplementary Table 2). One locus contained a
single plausible causal variant (rs113851554) near MEIS1 in
chromosome 2 for sleep duration.

Sexual dimorphism in physical activity and sleep duration.
Given that known sex differences exist for physical activity levels9

and muscle and fat mass distribution31, we investigated genetic
sexual dimorphisms in our activity traits. Genetic correlations32

Table 1 Genome-wide significant (5 × 10−9) loci associated with accelerometer-measured physical activity and sleep duration
behaviours in 91,105 UK Biobank participants

Status Trait ID Ch SNP Position Nearest gene Allele
(effect/other)

EAF Beta SE p

Novel Overall activity 1 10 rs564819152 21,820,650 SKIDA1 A/G 0.679 0.028 0.005 4.20E-09
Novel Sleep duration 2 9 rs2416963 128,241,414 MAPKAP1 C/T 0.589 0.030 0.005 2.30E-10
Novel Sleep duration 3 7 rs2006810 69,902,152 AUTS2 T/C 0.604 -0.028 0.005 3.90E-09
Novel Sedentary 4 5 rs26579 87,985,295 MEF2C-AS2 G/C 0.415 0.028 0.005 2.60E-09
Novel Sedentary 5 5 rs25981 106,822,908 EFNA5 G/C 0.531 0.028 0.005 3.00E-09
Novel Sedentary 6 3 rs1858242 68,527,135 LOC105377146 A/G 0.259 0.031 0.005 3.10E-09
Novel Sedentary 7 7 rs34858520 71,723,883 CALN1 A/G 0.558 0.028 0.005 4.20E-09
Known8 Overall activity 8 17 rs2696625 44,326,864 KANSL1-AS1 A/G 0.77 -0.037 0.005 3.20E-12
Known8 Overall activity 9 18 rs59499656 40,768,309 SYT4 A/T 0.655 -0.028 0.005 1.90E-09
Known
Neale,12,18,21,23,24

Sleep duration 10 2 rs62158170 114,082,175 PAX8-AS1 A/G 0.783 -0.051 0.006 5.80E-20

Known18,23 Sleep duration 11 2 rs113851554 66,750,564 MEIS1 G/T 0.943 0.090 0.010 3.10E-18
Known23 Sleep duration 12 6 rs72828533 19,065,680 LOC101928519 A/T 0.818 0.043 0.006 2.70E-13
Known12,24 Sleep duration 8 17 rs7502280 43,670,221 MAPK8IP1P2 T/G 0.867 0.051 0.008 8.80E-11
Known Neale,21,24 Sleep duration 13 19 rs2303100 9,968,434 OLFM2 C/T 0.447 -0.030 0.005 1.40E-10
Known Neale, 23,24 Sleep duration 14 1 rs75641275 98,327,133 DPYD A/C 0.859 0.042 0.007 2.20E-10

Beta and SE are in standard deviation units
EAF effect allele frequency, Ch chromosome
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of trait architectures as measured using LD score regression26

showed strong correlation between men and women; correlations
ranged from 0.92 for overall activity to 0.97 for sleep duration
(Supplementary Fig. 6). In addition, there was no evidence of
sexual dimorphism using strict criteria for heterogeneity of effects
between men and women (p < 5 x 10−9).

Heritability in women was higher than that in men for overall
activity (23% vs. 20%, p= 1.5 × 10−4) and sedentary behaviours
(18% vs. 15%, p= 9.7 × 10−4) (Supplementary Fig. 6). We found
no evidence for sexually dimorphic heritability in sleep duration
(p= 0.19), walking (p= 0.54), and moderate intensity activities
(p= 0.69). We found some evidence of sexually dimorphic
variance explained in 4 of the 5 traits, likely due to the greater
sample size of female participants (Supplementary Fig. 6).

Association of physical activity and sleep with other traits.
While physical activity and sleep duration are established risk
factors for multiple diseases from observational epidemiology, the
extent to which their underlying genetic architectures are shared
with disease phenotypes is unknown7. We conducted various
analyses that included: (1) genome-wide genetic correlations
between our traits and those from publicly available GWAS data
using LD score regression26 on the LD-Hub web resource33; (2)
phenome-wide association (pheWAS) analysis for index SNPs
using the Oxford Brain Imaging Genetics Server34 (big.stats.ox.ac.
uk); and (3) a lookup of the NHGRI GWAS catalogue35 for
related SNPs associated with other diseases and traits (within 400
kb and r2 > 0.2). Activity and sleep traits showed genetic asso-
ciations with many other independent traits in LD score regres-
sion (n= 155), pheWAS (n= 71), and GWAS catalogue lookup
(n= 11) analyses (Supplementary Data 5–7). Associations with
anthropometric and cognitive health traits were particularly
common (Supplementary Note 1). In general, increases in overall
activity and walking phenotypes were genetically correlated with
improved health status, while increases in sleep duration were
negatively correlated with fluid intelligence scores and health
status. Increases in sedentary time were genetically correlated
with increased fluid intelligence scores, but decreased health
status (Supplementary Note 1 and Supplementary Data 5).

To investigate whether activity and sleep might contribute
causally to disease outcomes, we performed Mendelian rando-
misation (MR) analysis in 278,374 UK Biobank participants who
were not included in our discovery analysis, and other publicly
available GWAS summary data from the MR-Base web
platform36,37 (Methods). Rather than selecting all significant
traits from the previous genetic correlation analyses, we decided
to only focus on major diseases and risk factors. These included
cardiovascular disease (CHD, stroke, heart failure), type 2
diabetes, Alzheimer’s, cancer, blood pressure, and anthropometric
traits (BMI and body fat %). For the MR analysis of each trait, we
selected instrument variables at loci with p < 5 × 10−6, as they
explain more phenotypic variance than traditional genome-wide
loci (p < 5 × 10−8) with negligible effects on horizontal pleiotropy
(Supplementary Fig. 7). We then followed a number of steps to
denote potential causality with disease outcomes (Methods,
Supplementary Note 2). These included: maximum likelihood
estimates38, leave-one-out analyses, robustness against classic
confounders and pleiotropy via median and mode estimators,
MR-Egger, and bi-directional tests39. We found consistent
evidence of inverse relationships for overall activity with body
mass index (beta SD of BMI per SD higher overall activity: −0.14,
SE= 0.015, p= 8.7 × 10−20), diastolic blood pressure (beta mm
Hg per SD: −0.91, SE= 0.18, p= 8.2 × 10−7), and hypertension
(Odds ratio per SD: 0.84, SE= 0.03, p= 4.9 × 10−8). (Supple-
mentary Data 8–10 and Supplementary Fig. 8). None of these

results appear affected by horizontal pleiotropy or a single variant
or association with classic confounders (Supplementary Data 11).
However, there was evidence of a bi-directional relationship
between adiposity and overall activity (Supplementary Data 12),
which is considered plausible40,41 despite some evidence of
horizontal pleiotropy.

Potential functional and biological mechanisms. We antici-
pated the use of objective measures would not only identify
activity and sleep associated variants, but also provide insight on
potential functional and biological mechanisms for these traits.
First, we used DEPICT42 at suggestive loci with p < 1 × 10−5 to
identify gene sets enriched for accelerometer-defined phenotype
associations; and tissues and cell types in which genes from
associated loci are highly expressed. This analysis did not yield
any significant results (FDR < 0.05). Secondly, we used the
FUMA28 web platform to identify tissues and gene pathways
enriched for genetic signals (Methods). Here, we found brain
tissues to be enriched (p < 1.8 × 10−4), in particular at the cere-
bellum, frontal cortex, brain cortex, and anterior cingulate cortex
for at least two accelerometer traits (Supplementary Fig. 9). We
also identified pathways enriched in neurological disease, brain
structure, and cognitive function, among other traits (Supple-
mentary Fig. 10).

Discussion
Our analysis of 91,105 individuals identified 14 loci significantly
associated with objectively measured physical activity and sleep
traits. While these loci alone account for less than 0.39% of
phenotypic variation, our analyses suggest that as much as 18% of
physical activity and sleep duration variation might be accounted
for by common (minor allele frequency > 1%) genetic variation.
We found heritability was higher in women than in men for
overall activity and sedentary behaviour, but no differences were
found for sleep, walking, and moderate intensity activity time. As
anticipated, physical activity and sleep duration have polygenic
architectures and share biology with multiple traits including
intelligence, education, obesity, and cardiometabolic diseases.

Our results advocate the value of physical activity for the
reduction of blood pressure. Until now, it has been difficult to
discern whether associations between activity and disease are
truly causal or biased due to reverse causality, confounding, and
self-report measurement error associated with traditional obser-
vational studies43. Ascertainment bias is also an issue in rando-
mised controlled trials of physical activity, due to difficulties in
blinding participants to behavioural interventions44. Debate on
whether obesity is a determinant of physical activity, or vice-
versa, has previously lacked information due to a paucity of
instrument variables for physical activity7,40. Our MR analyses
indicate that activity and adiposity share a bi-directional rela-
tionship. In summary, our MR analyses suggest that higher levels
of physical activity might causally lower diastolic blood pressure,
and odds of hypertension.

We observed an important role for the central nervous system
with respect to physical activity and sleep, consistent with other
studies that have used UK Biobank data8. In addition to these
findings from heritability partitioning, enrichment and pathway
analyses; our gene-set and pheWAS analyses showed genetic
overlap with neurodegenerative diseases, mental health wellbeing,
and brain structure. Intriguingly, a recent GWAS of BMI high-
lighted a key role for neurological pathways in overall fat dis-
tribution45, while a GWAS of fat distribution as measured by
waist-to-hip ratio highlight adipose pathways46. It is, therefore,
possible that our findings might be driven through obesity, as we
observed strong genetic correlations between activity and obesity
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traits, and the strength of association for some activity loci was
attenuated when including BMI as an additional covariate.
However, we have likely only begun to understand the complex
interplay between activity, cardiometabolic phenotypes, and
neurologic health. Animal models might be informative to answer
such questions, as our heritability partitioning analysis supports a
role for physical activity and sleep behaviours in regions con-
served in mammals.

Our work demonstrates the utility of device measures to
identify genetic associations with activity phenotypes. For
example, we found that previous self-reported literature has sig-
nificantly underestimated heritability for physical activity8 (~ 5%
vs. ~ 20% for accelerometer-measured traits). The larger-sample
sizes that are currently available for self-reported phenotypes
results in more identified loci8, however, heritability and potential
explained variance appears higher for the objective traits. Recall,
comprehension, and social-desirability bias are prevalent in the
measurement of behavioural traits such as physical activity, where
phenotypic agreement is generally poor between subjective and
objective measures (typically r < 0.2)47. It is likely that combina-
tion of self-report and objective measures will be needed to fur-
ther our understanding of the genes and biological pathways that
underpin physical activity.

This study has many strengths including: objectively measured
behavioural phenotypes validated in free-living environments, use
of linear mixed models, and large sample sizes all key to maximise
power in genetic discovery analyses; and Mendelian Randomi-
sation analyses, for delineating causal relationships. Given the
cohort age range (45–80 years) and inclusion of European
ancestry individuals only, we cannot necessarily assume our
results generalise to other age groups or ancestral populations.
Therefore, replication of our findings in non-European popula-
tions with both genetic and accelerometer-measures of sleep
duration and physical activity will be important in the future. The
high polygenicity of these traits makes it difficult to precisely
estimate replication sample sizes. Assuming the replication p-
value is set at 0.05/15 loci= 3.3 × 10−3, and variance explained by
a SNP ranges between 1.5–5.0 × 10−4, we estimate between ~ 36
and ~ 119 k participants are necessary to provide 90% power to
replicate the loci listed in Table 1. Replication in other cohorts
would also help refine estimates of phenotypic variance explained
by genome-wide significant loci, which are currently calculated in
the discovery dataset reported in this paper. To account for the
likely U-shape relationship between sleep and disease outcomes25,
rather than a linear relationship as assumed in current models,
future work will be also required for MR sleep analysis. To
develop machine-learned models of sleep duration in free-living
environments, we did not use traditional cumbersome poly-
somnography methods, and instead relied on self-reported sleep
diaries which can be prone to measurement error. While the
participants in our machine learning free-living training dataset
are not a random subsample of the UK Biobank study, the size of
our training dataset has helped provide a diverse set of repre-
sentative behaviours, rather than individuals, which is important
for model development14.

In summary, our GWAS of device-measured physical activity
and sleep duration has identified 14 associated genetic loci. Our
analysis shows shared genetic pathways with multiple traits
including intelligence-related phenotypes and cardiometabolic
disease. In support of national and international clinical guidance,
this study provides strong evidence for physical activity in the
prevention of blood pressure.

Methods
Participants. Study participants were from the UK Biobank13 where a subset of
103,712 participants agreed to wear a wrist-worn accelerometer for a 7-day-period

between 2013 and 20159. Participants who were slightly more likely to consent
included: women, those aged 55–74 years, those with higher socio-economic status,
better physical health status, and less time since the baseline assessment (all odds
ratios < 1.1). There were no significant differences in consent by self-reported
physical activity status. This study (UK Biobank project #9126) was covered by the
general ethical approval for UK Biobank studies from the NHS National Research
Ethics Service on 17th June 2011 (Ref 11/NW/0382). For the development and
free-living evaluation of accelerometer machine-learning methods, we used a
validation set of 153 participants recruited to the CAPTURE-24 and ENERGY-24
studies where adults aged 18–91 were recruited from the Oxford region in
2014–201514,48. Participants were asked to wear a wrist-worn accelerometer (same
as in UK Biobank) for a 24-h period and then given a £20 voucher for taking part
in this study that received ethical approval from University of Oxford (Inter-
Divisional Research Ethics Committee (IDREC) reference number: SSD/CUR-
EC1A/13–262).

Device. Participants wore an Axivity AX3 wrist-worn triaxial accelerometer on
their dominant hand at all times over a 7-day-period. It was set to capture triaxial
acceleration data at 100 Hz with a dynamic range of+−8g. This device has
demonstrated equivalent output49 to the GENEActiv accelerometer, which has
been validated using both standard laboratory and free-living energy expenditure
assessment methods50,51. For data pre-processing we followed procedures that we
developed as part of the UK Biobank accelerometer data processing expert group9,
that included device calibration, resampling to 100 Hz, and removal of noise and
gravity.

Development and validation of machine-learned phenotypes. To create a
reference set of labels for sleep, sitting/standing, and walking time, participants in
the validation study also wore cameras in natural free-living, rather than con-
strained laboratory, environments. Wearable cameras automatically take photo-
graphs every ~ 20 s, have up to 16 h battery life and storage capacity for over
1 week’s worth of images. When worn, the camera is reasonably close to the
wearer’s eye line and has a wide-angle lens to capture everything within the
wearer’s view. Each image is time-stamped so duration of sedentary behaviour,
waking, and a range of other physical activity behaviours can be captured52. To
extract sleep information, participants were asked to complete a simple sleep diary,
as used in the Whitehall study, which consisted of two questions53: ‘what time did
you first fall asleep last night?’ and ‘what time did you wake up today (eyes open,
ready to get up)?’. Participants were also asked to complete a Harmonised European
Time Use Survey diary54, and sleep information from here was extracted in cases
where data was missing from the simple sleep diary. An overview of the dis-
tribution of activity behaviours in this training dataset is provided in Supple-
mentary Fig. 11.

For every non-overlapping 30-s time window, we then extracted a 126-
dimensional feature vector representing a range of time and frequency domain
features14. For activity classification we used random forests55 which offer a
powerful nonparametric discriminative method for classification that offers state-
of-the-art performance56. Random forests are able to classify data points, but do
not have an understanding of our data as having come from a time series.
Therefore we then used a hidden Markov model57 (HMM) to smooth our
predictions. This smoothing corrects erroneous predictions from the random
forest, such as where the error is a blip of one activity surrounded by another and
the transitions between those two classes of activity are rare. This allowed us to
train a model using all free-living ground truth data, achieving 79% accuracy
(kappa= 0.68) across classes of interest14 (Supplementary Table 1).

Physical activity and sleep duration in UK Biobank. To predict sleep, sedentary,
walking, and moderate intensity activity time, we applied our machine-learning
method to predict behaviour for each 30-s epoch in 103,712 UK Biobank parti-
cipants’ accelerometer data. A sedentary behaviour is one which has a MET
(Metabolic Equivalent of Task) energy expenditure score of ≤ 1.5 and occurs in a
sitting, lying, or reclining posture58. As an exception to this rule we also categorised
the following annotations as sedentary behaviour: driving (code 16010) where
assigned MET score is 2.5, and some instances of non-desk work (code 21010
rather than 5080). The complete list of image derived annotations and the phe-
notype class mappings are available in Supplementary Data 1. For any given time
window (e.g., 1 h, 1 day, etc.) the probability of a participant engaging in a specific
behaviour type was expressed as the number-of-epoch-predictions-for-class divi-
ded by the number-of-epochs. For overall activity levels, we selected average vector
magnitude for each 30-s epoch, which is the recommended variable for activity
analysis9. This variable has been shown to account for 44–47% explained variance
vs. combined sensing heart-rate+ trunk-acceleration (a proxy for free-living
physical activity energy expenditure) in 1695 UK adults51.

Device non-wear-time was automatically identified as consecutive stationary
episodes lasting for at least 60 min9. These non-wear segments of data were
imputed with the average of similar time-of-day data points, for each behaviour
prediction, from different days of the measurement. We excluded participants
whose data could not be calibrated (n= 0), had too many clipped values (n= 3),
had unrealistically high values (average vector magnitude > 100 mg) (n= 32), or
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who had poor wear-time (n= 6860). We defined minimum wear-time criteria as
having at least 3 days (72 h) of data and also data in each 1-h period of the 24-h
cycle9.

Genotyping and quality control. The UK Biobank provides ~ 92 million variants,
including imputation based on UK10K haplotype, 1000 Genomes Phase 3, and
Haplotype Reference Consortium (HRC) reference panels59. We excluded SNPs
with MAF < 0.1% (~ 83M) and imputation R2 < 0.3 (~9 k). We removed partici-
pants who self-reported as being non-white (n= 3192), had abnormal genetic
versus self-reported sex mismatches (n= 36) or sex chromosome aneuploidy (n=
71). This left 91,105 participants of European descent (39,968 men; 51,137
women), and 9,926,106 SNPs, for subsequent genetic association analysis.

Identifying loci associated with physical activity and sleep. To improve our
power to detect associations, we used BOLT-LMM15 to perform linear mixed
models analysis. As this adjusts for population structure and relatedness, we could
include many additional individuals (n= 13,320) than if following the common
practice of analysing a reduced set of unrelated white British individuals using
linear regression60. We included assessment centre, genotyping array, age, age
squared, and season as covariates. Sensitivity analysis using LD score regression26

on the overall activity trait showed we did not need to include principal compo-
nents of ancestry as covariates in our linear mixed models (lambda= 1.20 vs. 1.20,
LD intercept= 1.0085 vs. 1.0092, genome-wide genetic correlation (Rg)= 0.99).
We decided against including too many covariates to avoid the introduction of any
possible collider bias that could have an effect on downstream analyses. In addition,
we found little difference with the inclusion of: (1) sex as an additional covariate
(RG= 0.99); (2) BMI as an additional covariate (RG= 0.93); and (3) both sex and
BMI as additional covariates (RG= 0.93). Supplementary Data 2 reports a sensi-
tivity analysis for each locus with sex and BMI included as additional covariates,
where all attenuations were driven by BMI alone. These results should be cau-
tiously interpreted due to the potential for collider bias when adjusting for BMI.

We used PLINK61 (version 1.9) to exclude candidate variants (p < 1 × 10−5) that
deviated from Hardy-Weinberg equilibrium (p < 1 × 10−7). To identify genome-
wide-significant (GWS) loci, we defined a distance criterion of+−400 kb
surrounding each GWS peak (p < 5 × 10−9). We empirically derived this threshold
for genome-wide significance that considers multiple testing and densely imputed
data17. For reporting, we also identified loci using a traditional GWS value of p <
5 × 10−8.

To identify novel loci, we considered index SNPs falling outside 400 kb of a SNP
previously associated with one of the following: self-report sleep duration or
physical activity from the NHGRI-EBI GWAS catalogue35, CHARGE21 and
CARe62 consortia; an analysis of our accelerometer-measured overall and moderate
intensity activity variables9 with loci reported in 91,000 UK Biobank participants8;
accelerometer-measured sleep duration genes tested for replication in recent
bioRxiv papers that used ~ 85,000 UK Biobank participants22,23; self-reported
overall activity loci reported in bioRxiv papers using ~ 377,000 and ~ 120,000 UK
Biobank participants, respectively8,63; self-reported sleep duration GWAS results in
recent bioRxiv papers that used up to ~ 446,000 UK Biobank participants12,24; and
sleep duration (field #1160), television watching time as a proxy for sitting (field
#1070), and walking (field #874) GWAS results in ~ 330,000 UK Biobank
participants published by the Neale lab at the Broad Institute.

To identify additional signals in regions of association, we performed
approximate joint and conditional SNP association analysis in each locus using the
Genome-wide Complex Trait Analysis27 (GCTA) tool. Any lead SNPs identified in
a known high-LD area64 between 43.5 and 45.5 mb at chromosome 17 were treated
as a single large locus in GCTA analysis.

Gene-based analysis were performed with MAGMA65 v1.6, as implemented on
the FUMA28 web platform. Input SNPs were mapped by position to genes obtained
from 18,232 protein-coding genes obtained via Ensembl66 build 85. Bonferroni-
correction was used to define genome-wide significance. To identify novel loci, we
looked for genes more than 400 kb away from loci identified in the above SNP
association analysis.

Genetic architecture of physical activity and sleep duration. To estimate
heritability of each trait, we used BOLT-LMM15 for computational efficiency, after
sensitivity analysis showed negligible differences in estimates between BOLT-LMM
and restricted maximum likelihood analysis67 implemented using the BOLT-
REML software tool. We applied partitioned heritability29 analysis across the
phenotypes by tissue and functional category using LD score regression26 with
the LDSC tool. Significant enrichments for individual traits were identified
using thresholds of p < 1 × 10−3 for tissues (i.e., p < 0.05/10 cell types/5 traits)
and p < 3.57 × 10−4 for functional categories (i.e., p < 0.05/28 categories/5 traits).
We also investigated enrichments in the median value across all accelerometer-
measured traits.

To calculate the explained phenotypic variance for each trait, we used the
PRSice68 tool to generate polygenic risk scores for the lead SNP in GWS loci and
also for all SNPs with p < 5 × 10−3, distance > 250 kb from index SNPs, and r2 < 0.1.
The same participant inclusion criteria were used as for association analysis.

To identify plausible causal SNPs associated with sleep and activity phenotypes,
we used the FINEMAP30 software. Configurations of plausible causal SNPs from a

1Mb window around each genome-wide significant locus were calculated on the
assumption that there were a maximum of five causal variants per locus. Across all
loci, we defined plausible causal SNPs as those meeting a log10 Bayes Factor > 2.

Sexual dimorphism in physical activity and sleep duration. To investigate
potential sources of sex heterogeneity, we ran the aforementioned genome-wide
association analyses for men and women independently. Genetic correlations32 of
trait architectures between men and women were measured using LD score
regression26 for each phenotype. We also tested for heterogeneity of effect esti-
mates31 between men and women for all SNPs using the EasyStrata69 tool, with p <
5 × 10−9 to assess significance. Heritability differences between men and women
for each trait were assessed by extracting a two-tailed p-value from the z-score in
equation (1), where var indicates variance.

z ¼ h2females � h2males
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var h2females � var h2males

p ð1Þ

To estimate genetic contributions to phenotypic variance for men and women
separately, we selected index SNPs from loci with a less stringent p < 5 × 10−7, due
to smaller sample sizes within strata.

Association of physical activity and sleep with other traits. To estimate genetic
correlations between our accelerometer-defined phenotypes and other complex
traits and diseases, we used LD score regression26 implemented in the LD-Hub web
resource33. To assess significance, we corrected for 4160 tests (5 traits x 832 phe-
notypes available on LD-Hub) with p < 1.2 × 10−5.

To examine whether the genome-wide significant SNPs identified in our analysis
affected other traits, we used the Oxford Brain Imaging Genetics Server (big.stats.ox.
ac.uk34) to perform a phenome-wide association study (PheWAS) on almost 4000
traits in UK Biobank participants. This included GWAS results of ~ 2000
phenotypes in ~ 330,000 UK Biobank participants published by the Neale lab at the
Broad Institute, and the remaining traits were brain imaging-derived phenotypes
measured on a subset of ~ 10,000 UK Biobank participants34. To assess significance,
we corrected for 40,000 tests (10 loci x 4000 traits) with p < 1.25 × 10−6.
Additionally, we extracted previously reported GWAS associations within 400 kb
and r2 > 0.2 of accelerometer index SNPs from the NHGRI GWAS catalogue35.

To investigate whether activity and sleep might causally contribute to disease
outcomes, we performed Mendelian Randomisation (MR) analysis. Rather than
selecting all significant traits identified in other correlation analysis, we decided to
concentrate on major diseases and peripheral risk factors. These included vascular
disease (CHD, stroke, heart failure), diabetes, Alzheimer’s, major cancer subtypes,
blood pressure, and anthropometric traits (BMI and body fat %). Disease
phenotypes were prepared following similar procedures as used for UK Biobank
variables in the LD-Hub web resource33. We defined hypertensive cases as
individuals with systolic blood pressure of > 140 mmHg, or a diastolic blood
pressure of > 90 mmHg, or the report of blood pressure medication usage. For the
analysis of systolic and diastolic blood pressure, we corrected blood pressure
measures in people on antihypertensive drugs by adding 15 mmHg to systolic and
10 mmHg to diastolic blood pressure, in keeping with the approach taken by
genome-wide association studies70. Similar to the LD-Hub web resource33, we used
linear regression analyses with sex and the first 10 principal components as
covariates. For linear regression, we used the bgenie tool59. We removed
participants from the accelerometer discovery sample (n= 91,112), those who self-
reported as being non-white British (n= 68,428), had abnormal genetic vs. self-
reported sex mismatches (n= 192) or sex chromosome aneuploidy (n= 652). We
also removed 48,658 participants due to relatedness. This left 278,374 UK Biobank
participants who were not included in our discovery analysis, and other publicly
available GWAS summary data from the MR-Base web platform36. Where possible,
estimates were meta-analysed using a fixed effects model (inverse variance
weighted average).

For analysis we retained index SNPs with p < 5 × 10−6 that were pruned for LD
(r2 < 0.001) and more than 10,000 kb apart. These loci (p < 5 × 10−6) explain more
phenotypic variance than traditional genome-wide loci (p < 5 × 10−8) with
negligible effects on horizontal pleiotropy (Supplementary Fig. 7). We then
followed a number of steps to denote potential causality with disease outcomes
(Supplementary Note 2). We used the maximum likelihood-based approach as our
primary source of MR estimates. This is based on published simulation results
suggesting that causal estimates obtained from summarised data using a likelihood-
based model are almost as precise as those obtained from individual-level data38.
Only likelihood-based risk estimates that were significant after Bonferroni-
correction were considered. The potential effect of pleiotropy was evaluated by
three complementary approaches, namely weighted median and weighted mode
estimation71,72, and the regression intercept from the MR-Egger method73. The
sensitivity of causal inference to any individual genetic variant was tested by leave-
one-out analysis. The Steiger test was used to provide evidence for the causal
direction of the effect estimates74. Sensitivity analyses was also conducted to test
whether instrument variables were associated with the following observational
‘classic’ confounders: income, smoking, area deprivation, and years of education75.
Potential associations with confounders were subsequently followed-up by
multivariate mendelian randomisation analyses76 to investigate the robustness of
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these associations to adjustment for potential confounders. Additionally, for MR
associations that appeared robust to sensitivity and pleiotropy analyses, bi-
directional MR was conducted to assess the direction of the causal estimate.
Instrument variables for bi-directional analyses that relied on estimates generated
from UK Biobank were re-estimated on participants not in our discovery GWAS
accelerometer dataset. All MR analyses were conducted in R using the
TwoSampleMR package36.

Investigating functional and biological mechanisms. To investigate potential
biological mechanisms underlying physical activity and sleep, we used DEPICT42 at
suggestive loci with p < 1 × 10−5 to identify: the most likely causal gene; recon-
stituted gene sets enriched for accelerometer-defined phenotype associations; and
tissues and cell types in which genes from associated loci are highly expressed.
Next, we used the FUMA web platform28 to perform tissue enrichment analysis
where the full distribution of SNPs was tested with 53 specific tissue types, based on
GTEx77 data. To identify significant enrichments, we accounted for multiple testing
across 53 tissues and five traits (p < 1.88 x 10−4). To then identify pathways
implicated by the activity and sleep associated loci, we used FUMA to perform
hypergeometric tests on genes from these loci to investigate over-representations in
genes predefined from the GWAS catalogue.

Data availability
The summary phenotype variables that we have constructed will be made available
as a part of the UK Biobank Returns Catalogue at http://biobank.ctsu.ox.ac.uk/
crystal/docs.cgi?id= 1. All accelerometer data processing, feature extraction, and
machine learning code are available at https://github.com/activityMonitoring.
GWAS summary statistics, including with and without adjustment for BMI and sex
as covariates, can be downloaded from https://doi.org/10.5287/bodleian:
yJp6zZmdj.
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