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OUTRIDER: A Statistical Method for Detecting
Aberrantly Expressed Genes in RNA Sequencing Data

Felix Brechtmann,1,5 Christian Mertes,1,5 Agn _e Matusevi�ci�ut _e,1,5 Vicente A. Yépez,1,2 �Ziga Avsec,1,2

Maximilian Herzog,1 Daniel M. Bader,1 Holger Prokisch,3,4 and Julien Gagneur1,2,*

RNA sequencing (RNA-seq) is gaining popularity as a complementary assay to genome sequencing for precisely identifying the molec-

ular causes of rare disorders. A powerful approach is to identify aberrant gene expression levels as potential pathogenic events. However,

existing methods for detecting aberrant read counts in RNA-seq data either lack assessments of statistical significance, so that establish-

ing cutoffs is arbitrary, or rely on subjective manual corrections for confounders. Here, we describe OUTRIDER (Outlier in RNA-Seq

Finder), an algorithm developed to address these issues. The algorithm uses an autoencoder to model read-count expectations according

to the gene covariation resulting from technical, environmental, or common genetic variations. Given these expectations, the RNA-seq

read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read

counts that significantly deviate from this distribution. The model is automatically fitted to achieve the best recall of artificially corrup-

ted data. Precision-recall analyses using simulated outlier read counts demonstrated the importance of controlling for covariation and

significance-based thresholds. OUTRIDER is open source and includes functions for filtering out genes not expressed in a dataset, for

identifying outlier samples with too many aberrantly expressed genes, and for detecting aberrant gene expression on the basis of

false-discovery-rate-adjusted p values. Overall, OUTRIDER provides an end-to-end solution for identifying aberrantly expressed genes

and is suitable for use by rare-disease diagnostic platforms.
Introduction

No clear pathogenic variant can be pinpointed for the ma-

jority of individuals suspected to suffer from a Mendelian

disorder after undergoing whole-exome or whole-genome

sequencing (WES or WGS, respectively).1–3 A possible

reason is that the pathogenic variant is regulatory. Accu-

rately identifying pathogenic regulatory variants is diffi-

cult. One difficulty is that any individual harbors a very

large number of rare non-coding variants, about 60,000

compared with 475 protein-affecting rare variants per

genome (with minor allele frequency [MAF] < 0.005).4

Another difficulty is that the interpretation of non-pro-

tein-coding regions of the genome remains challenging.5

Two recent studies have shown that using RNA

sequencing (RNA-seq) to directly investigate gene expres-

sion defects in cells of affected individuals provides a

complementary method to pinpoint pathogenic regulato-

ry defects.6,7 RNA-seq can help to reveal splicing defects,

the mono-allelic expression of heterozygous loss-of-func-

tion variants, and expression outliers (i.e., genes aberrantly

expressed outside their physiological range).6,7 The two

studies used different approaches to identify expression

outliers. Cummings et al.6 computed Z scores on the

log-transformed gene-length-normalized read counts by

subtracting the mean count and dividing by the standard

deviation. Expression outliers were identified as read

counts with an absolute Z score greater than 3. Cummings
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et al. did not apply a formal statistical test for outlier detec-

tion and also explicitly note that their outlier analysis was

underpowered to draw definitive conclusions.6 This study

did not yield any convincing pathogenic expression-

outlier candidates. In contrast, the study by Kremer

et al.7 identified four out of six newly diagnosed individ-

uals as expression outliers. Read-count outliers were

identified as those with an absolute Z score greater than

3 and statistical significance according to DESeq2, a statis-

tical test originally developed for differential expression

analyses,8 which the authors applied by testing each sam-

ple against the rest of the cohort. DESeq2 is based on the

negative binomial (NB) distribution, which can be used

to model overdispersed count data.9 Altogether, the reason

for the difference remains unclear because of the relatively

small number of diagnosed individuals, the absence of

ground truth, and the lack of a direct comparison between

the two approaches based on the same data.

The two studies differed not only in whether a statistical

test was applied but also in the way the data were

controlled for confounders. Cummings et al.6 used RPKM

(reads per kilobase per million mapped reads) expression

values. These control for variations in sequencing depth

but not for other sources of covariation among the read

counts. Controlling for further sources of covariation is

important because the identification of a gene as aber-

rantly expressed depends on the context, for example,

the sex of the donor. Genes encoded on the Y chromosome
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are not present and thus not expressed in women.

However, in men, loss of the expression of a Y-chromo-

some-encoded gene can be an aberrant expression event.

Hence, not taking the sex of the donor into account would

not allow for the detection of aberrantly silenced Y-chro-

mosome-encoded genes in males. Although the sex of

the donor is usually available and can be easily controlled

for, other contexts for gene expression—such as the exact

tissue of origin of the sample, the sample’s cell-type

composition, the genetic background, and technical

biases—might not be known a priori, causing similar but

less intuitive variations. Kremer et al.7 controlled expres-

sion levels for sex, biopsy site as inferred from the HOX

gene set, and common technical sources of variation,

which were identified by visual inspection of a hierarchical

clustering of the samples. In a study that identified

expression outliers, although not for the diagnosis of rare

diseases, Li et al.10 controlled for sex and the top three ge-

notype principal components, as well as for hidden

confounding effects estimated by the probabilistic estima-

tion of expression residuals (PEER) method.11 However,

the algorithms controlling for covariations in RNA-seq

read-count data used in the studies of Li et al.10 and Kremer

et al.7 were neither assessed nor tuned to detect aberrantly

expressed genes.

Here, we introduce OUTRIDER (Outlier in RNA-Seq

Finder), an algorithm that provides a statistical test for

outlier detection in RNA-seq samples while controlling

for covariations among the gene read counts (Figure 1A).

The modeling of covariation is performed by an autoen-

coder that controls for read-count variations caused by

factors not known a priori. Its parameters are optimized

automatically for recalling read counts corrupted in silico.

Autoencoders were introduced to find low-dimensional

representations of high-dimensional data.12–14 They have

been shown to be useful for extracting meaningful biolog-

ical features from RNA-seq data15 and imputing missing

values in single-cell RNA-seq data.16 A subclass of autoen-

coders, the so-called denoising autoencoders, are used

for reconstructing corrupted high-dimensional data by

exploiting correlations in the data.17 In OUTRIDER, the

autoencoder approach is used to control for the common

covariation patterns among genes.

Differential-expression algorithms, such as DESeq28 and

edgeR,18 have been conceived to compare small predefined

groups of samples, typically treatment versus control, with

a handful of replicates. To manage such small sample sizes,

these approaches borrow information across genes to have

robust estimates of the within-group variability. The setup

for rare-disease diagnostics is different. In rare-disease

diagnostics, replicates are typically not available for most

individuals, and there is no typical experiment design of

treatment versus control; rather, there are several tens of

samples, where one sample is tested against all others.

Also, one is not interested in detecting a subtle fold change

between two controlled populations but rather in identi-

fying an outlier within a large population (Figure 1B). We
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note that DESeq2 and edgeR also have procedures based

on Cook’s distance and Pearson residuals8,19 to mark or

downweight outliers but with a different purpose than

for rare-disease diagnostics. These methods aim to increase

the robustness of the differential-expression analysis

rather than assess the significance of the outlier data

points. Here, we adopt a typical approach for outlier

detection for the univariate case by modeling the distribu-

tion of the population and testing each data point to

determine whether it significantly deviates from this distri-

bution.20

In this article, we describe the OUTRIDER algorithm,

which combines an autoencoder and a statistical test for

outlier detection, and delineate the added value of these

two components against state-of-the-art alternatives by

utilizing simulated data and two experimental datasets.
Material and Methods

Datasets
The RNA-seq read counts, in the following called counts, were

downloaded from Data S1 published as part of the study by

Kremer et al.7 for the rare-disease cohort. GTEx counts were ob-

tained from the Genotype-Tissue Expression (GTEx) Portal (V6P

counted with RNA-SeQC v.1.1.8).21 Counts for the Kremer et al.

dataset were computed according to the UCSC Genome Browser

build hg1922 with consideration of the full gene body. In

contrast, GTEx is based on the Gencode v.19 annotation,23 and

the count of a gene is defined as the number of paired-end read

pairs overlapping exons of that gene only. Samples with a low

RNA integrity number (RIN < 5.7) were filtered out from the

GTEx dataset. FPKM (fragments per kilobase per millions of reads)

values were obtained with DESeq2,8 where the gene length was

defined as the aggregated length of all the exons. We then filtered

for expressed genes, defined as genes for which at least 5% of the

samples had a FPKM value greater than 1 (Figure S1). Addition-

ally, we discarded genes that had zero counts in more than

75% of the samples.
Statistical Model
We assume that the count kij of gene j ¼ 1; .; p in sample

i ¼ 1;.;n follows a NB distribution with gene-specific dispersion

parameter qj and expected value cij:

P
�
kij
� ¼ NB

�
kij j mij ¼ cij; qj

�
: (Equation 1)

The used parameterization of the NB distribution can be found

in the Supplemental Material and Methods. We limited the

parameter range for qj to the interval [0.01, 1000]. The lower limit

prevents convergence issues for genes with unusual high disper-

sion (qj close to zero), and the upper limit is used to avoid overfit-

ting. The expected count cij is the product of the sample-specific

size factor si and the exponential of the factor yij:

cij ¼ si $ exp
�
yij
�

(Equation 2)

The size factors si capture variations in sequencing depth;

they are robustly estimated as the median of the ratios of the

gene read counts to their geometric means as implemented in

DESeq.24 The factors yij capture covariations across genes. They
ber 6, 2018
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Figure 1. OUTRIDER Overview
(A) Context-dependent outlier detection. The algorithm identifies gene expression outliers whose read counts are significantly aberrant
given the covariations typically observed across genes in an RNA-seq dataset. This is illustrated by a read count (left panel, fifth column,
second row from the bottom) that is exceptionally high in the context of correlated samples (left six samples) but not in absolute terms
for this given gene. To capture commonly seen biological and technical contexts, an autoencoder models covariations in an unsuper-
vised fashion and predicts read-count expectations. Comparing the earlier mentioned read count with these context-dependent
expectations reveals that it is exceptionally high (right panel). The lower panels illustrate the distribution of read counts before and after
controlling for covariations for the relevant gene. The red dotted lines depict significance cutoffs.
(B) Schema showing the differences in the experimental designs for differential expression analyses and outlier detection analyses;
relevant analysis packages are mentioned.
are modeled with an autoencoder of encoding dimension

1 < q < minðp; nÞ. Specifically,

yi ¼ hiWd þ b; (Equation 3)

hi ¼ x
�
iWe; (Equation 4)

where the p3q matrix We is the encoding matrix, the q3p matrix

Wd is the decodingmatrix, the q-vector hi is the encoded represen-

tation, and the p-vector b is a bias term. Having a decoding matrix

that is not the transpose of the encoding matrix, unlike for prin-

cipal-component analysis (PCA), turned out to be important,

most likely because the property that the matrix inverse equals

the matrix transpose does not generalize to the NB loss function.

The input vector to the autoencoder x
�
i is computed as follows:

~xij ¼ xij--xj; where (Equation 5)

xij ¼ log

�
kij þ 1

si

�
; (Equation 6)

where we add 1 to prevent computing the logarithm of 0, we

divide by the size factor to control for sequencing depth, and we

center gene-wise by subtracting the mean xj. In the following,

we call the combination of Equations 2–6 the autoencoder or, in

short, cij ¼ AEðkijÞ.

Fitting the Parameters
Fitting the autoencoder is implemented as an iterative three-step

procedure in which the parameters We and Wd and the qj values

are iteratively updated until convergence. First, the encoder and

decoder matrices are initialized with PCA through the ‘‘pca()’’
The American
function provided by the package pcaMethods,25–27 the bias

vector is set to the mean of the log-transformed size-factor-

normalized counts xj ¼ mean
i

log ðð kij þ 1Þ=�
siÞÞ, and the dispersion

parameters are estimated by the method of moments, yet the

dispersion parameters are restricted to the interval [0.01, 1000].

Before the iterative procedure starts, the gene-specific entries of

the decoder matrix Wd and then the gene-specific dispersion pa-

rameters are fitted by maximum likelihood. The autoencoder is

then fitted through repetition of the following three update steps:

(1) the encoder matrix is updated, (2) the decoder matrix is up-

dated per gene, and (3) the dispersion parameters are refitted per

gene as detailed below. In each update step, the average negative

log-likelihood is minimized with respect to the current parameters

by the optimization method L-BFGS as implemented in ‘‘op-

tim().’’28 For all three steps, detailed derivations of the used loss

functions and the respective gradients can be found in the Supple-

mental Data.
Convergence Criteria for the Iterations of the

Update Steps
The autoencoder is updated in an iterative fashion. The three up-

date steps described above are repeated until the average negative

log-likelihood of each step in one iteration does not differ more

than the convergence threshold of 10�5 from the last step of the

previous iteration or at most 15 iterations.
Fitting the Encoding Dimension
The optimal autoencoder dimension is obtained through evalua-

tion of the performance of calling corrupted counts. To this end,

we artificially introduced corrupted counts kcij randomly with a
Journal of Human Genetics 103, 907–917, December 6, 2018 909



frequency of 10�2 to the given count matrix. These corrupted

counts are obtained as follows:

uij ¼ log2

�
kij
si

þ 1

�
; (Equation 7)

kcij ¼ round
�
si 2

uij5ezsuj

�
; (Equation 8)

where z, the amplitude of the corrupted count, is drawn from a

normal distribution characterized by a mean of log(3) and a stan-

dard deviation of log(1.6). The sign of the shift is randomly

selected. The optimal dimension is then selected as the dimension

maximizing the area under the precision-recall curve for identi-

fying corrupted counts.

p Value Computation
For every pair of gene j and sample i, we test the null hypothesis

that the count kij follows the distribution described by Equation

1. The algorithm computes two-sided p values by using the

following equation:

Pij ¼ 2$min

(
1

2
;
Xkij
k¼0

NB
�
kij j mij; qj

�
;1�

Xkij�1

k¼0

NB
�
kij j mij; qj

�)
:

(Equation 9)

The term 1/2 is included to handle cases when both other terms

exceed 1/2, which is possible because of the discrete nature of

the NB distribution.

Expression levels of different genes for the same sample are corre-

lated because of biological confounding effects such as co-regula-

tion, which cannot be entirely excluded even after controlling

by the autoencoder. The computed p values can therefore be

correlated. Multiple-testing correction was performed with the

Benjamini-Yekutieli false-discovery rate (FDR) method, which

holds under positive dependence.29

Z Score Computation
Z scores Zij are computed on a logarithmic scale as follows:

Zij ¼
lij � ml

j

sl
j

; (Equation 10)

where lij is the log-transformed controlled count calculated as

lij ¼ log2 ðð kij þ 1Þ=ðcij þ 1ÞÞ, slj is the standard deviation of lij for

gene j, and ml
j is the mean of lij for gene j.

Benchmark by Injection of Outliers
To assess the sensitivity and specificity of alternative outlier detec-

tion methods, we injected artificial outliers with pre-specified

amplitudeson the logarithmic scale (Z scores). Thisprocesswas sepa-

rate from the injection of corrupted data described earlier in Fitting

the Encoding Dimension. We used the outlier injection scheme

described in this section to independently assessOUTRIDER’s perfor-

mance in comparison with that of other approaches.

We used this benchmark separately for both datasets: the

GTEx skin tissue not exposed to the sun and the rare-disease

cohort from Kremer et al.7 The counts were replaced with a prob-

ability of 10�4 by an outlier count koij, defined as follows:

koij ¼ round
�
si 2

uj5ezsuj

�
; (Equation 11)

where uj is the mean of uij for gene j in the log space.
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Alternative Control Methods
We benchmarked OUTRIDER against PEER30 and PCA.25–27 Both

were used instead of the autoencoder to model covariations. In

the case of PCA, we obtained the matrix of expected counts by

using the first q loadings as the We and Wd matrices, where q is

the encoding dimension inferred for the autoencoder. The bias

term b was set to the gene means. In the case of PEER, we set

the number of factors to one-fourth of the number of samples

as suggested by Stegle et al.11 We then subtracted the residuals

from the log-transformed counts and multiplied the size factors

to obtain cij: For PEER, we used the provided residuals to

compute Z scores to avoid numerical inaccuracies due to con-

version to counts. For both PCA and PEER, we fitted a NB model

with a per-gene adjustment aj and a dispersion parameter qjon

top of the obtained controlled counts (Equation 12) to obtain

NB p values. We used the adjustment parameter to capture devi-

ations between the estimated mean from the log-normal model

and that from the NB model:

P
�
kij
� ¼ NB

�
kij j mij ¼ aj$cij; qj

�
: (Equation 12)

Enrichment Analysis
We obtained rare variants (MAF < 0.05 within all 652 GTEx sam-

ples and in gnomAD31) from the GTExWGS data (V7). We further

filtered this set for those with predicted moderate or high impact

according to the Variant Effect Predictor (VEP).32 To be compara-

ble with Li et al., we only used the 441 individuals considered in

their analysis for our enrichment analysis. As described in Li

et. al.,10 we computed enrichments for rare variants found within

outlier genes as the proportion of outliers having a rare variant

over the proportion of non-outliers having a rare variant.

Implementation
OUTRIDER is implemented as an R package that is available

through Bioconductor.
Results

We considered two RNA-seq datasets, which we refer to

as the Kremer and GTEx datasets. The Kremer dataset

contained 119 RNA-seq samples from skin fibroblasts of

individuals with a suspected rare mitochondrial disor-

der.7 This dataset was analyzed in a previous study,

where the systematic effects were controlled by manual

inspection of sample correlation matrices.7 In this previ-

ous study, four genes were identified as aberrantly

expressed out of six pathogenic genes detected by RNA-

seq analysis and validated by functional assays.7 This

dataset therefore served as our benchmark dataset for

rare-disease applications. The GTEx dataset contained

250 RNA-seq samples obtained from the not-sun-

exposed skin tissue in the GTEx project (V6P).21 Unless

stated otherwise, we focused on these skin samples

because the tissue was similar to the tissue of origin of

the Kremer dataset. The donors of the GTEx samples

did not suffer from any condition and were not under

treatment. Nevertheless, aberrant gene expression in

these samples has been reported.10
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For both datasets, we filtered out genes not expressed

across the whole dataset, resulting in 10,556 genes in the

Kremer dataset and 17,065 genes in the GTEx dataset (Fig-

ures S1A and S1B). In the GTEx dataset, we additionally

filtered out one sample because of a low RIN (<5.7), result-

ing in 249 samples. Both datasets exhibited a strong corre-

lation structure with very distinct sample clusters (Figures

S2A and S2E). These correlations could have arisen from

biological variations such as the sex of the donor, the

origin of the tissue, population structure, or hidden

confounders such as poorly understood systematic tech-

nical variations.7,10 Applying the autoencoder on the

counts allowed covariations to be estimated and controlled

for. The dimension of the autoencoder was fitted with a

scheme in which a fraction of counts were artificially

corrupted and fitted with OUTRIDER. Then the optimal

dimension for the autoencoder was selected as the dimen-

sion maximizing the area under the precision-recall curve

for identifying corrupted counts.We estimated the optimal

encoding dimension to be 45 for the GTEx dataset and 21

for the Kremer dataset. Running the same assessment by

using PCA instead of the autoencoder yielded 54 and

24 principal components, respectively. Encoding dimen-

sions close to the estimated optimum yielded similar re-

sults. Moreover, using different corruption amplitudes

had little impact on the optimal encoding dimension

(Figure S3). After we controlled for covariation, clusters dis-

appeared from both datasets (Figure S2).

Improving the Detection of Outliers by Using a NB

Model

The OUTRIDER algorithm assumes that counts follow a NB

distribution with a mean that is the expected value pro-

vided by the autoencoder. Assuming NB distributions

with gene-specific dispersions, it detects expression out-

liers as significant deviations of the observed counts from

these expected values. In contrast, PCA and PEER assume

normal distribution and therefore require some transfor-

mation of the count data, typically the log-transformation.

To understand the differences between OUTRIDER, PCA,

and PEER, we performed simulations of counts by

assuming either (1) a simulation scheme corresponding

to the assumptions of OUTRIDER or (2) a simulation

scheme close to the assumptions of PCA and PEER. For

both simulation schemes, the latent space was set to

have ten dimensions. For the first simulation scheme, we

drew counts from the NB distribution. For the second

scheme, we drew values from a log-normal distribution

and rounded them to the nearest integer to obtain counts.

Means fitted by OUTRIDER were closer to the simulated

means than means fitted by PCA or PEER throughout the

entire range of counts on the basis of the NB simulation

scheme (Figure S4A). In the log-normal case, all three

methods were almost equal, but for low expression levels

(simulated means lower than 30), OUTRIDER performed

better than PCA or PEER on the log-normal simulated

data. These simulation analyses emphasize the relevance
The American
of using a count distribution for fitting the expected

counts, especially in the low count range.

We then applied OUTRIDER on experimental data.

Quantile-quantile plots for individual genes indicated

that OUTRIDER reasonably modeled the count distribu-

tion (Figures 2 and S5) on the GTEx and Kremer datasets

and that the resulting p values can be used for detecting

outliers (Figures 2C and 2D). To untangle the contribution

of the autoencoder from the p value computation, we

substituted the autoencoder with either PCA or PEER to

estimate the expected counts. Across all genes, the

OUTRIDER p values deviated less from the expected uni-

form distribution than the NB p values computed on top

of PCA or PEER (Figures 3A and 3B). These results show

that, on experimental data, the distribution of the data is

better captured when modeling the covariation with

OUTRIDER than when using either PCA or PEER. Consis-

tent with these observations, the distribution of the num-

ber of outlier counts per sample at a FDR less than 0.05

(Benjamini-Yekutelli method29) was more even for

OUTRIDER than for PCA and PEER for both datasets (Fig-

ures 3C and 3D). Moreover, samples with a high number

of outliers according to OUTRIDER had similar numbers

of outliers according to PCA and PEER. In contrast, in sam-

ples with a high number of outliers according to PCA and

PEER, OUTRIDER did not find any or only a few outliers. To

showcase this, we picked the most aberrant sample by

PEER and compared it with the prediction by OUTRIDER

in Figures 3E and 3F. In order to flag such aberrant samples,

we introduced a cutoff (number of outliers > 0.5% of ex-

pressed genes). Accumulated over all GTEx tissues, we

found 9, 18, and 214 out of 8,166 samples to be aberrant

by using OUTRIDER, PCA, and PEER, respectively. Alto-

gether, the smaller number of samples with an excessive

number of outliers found by OUTRIDER further indicates

that OUTRIDER captures the data distribution better

than PCA and PEER.

Recall Benchmark

We then benchmarked OUTRIDER for recalling outliers. To

this end, we injected simulated outliers into the GTEx and

Kremer datasets and monitored the fraction of these simu-

lated outliers that could be recalled. Simulated outliers

were injected with a frequency of 10�4 into the count

matrices, resulting in 381 injected outliers for the GTEx da-

taset and 113 injected outliers for the Kremer dataset.

The injection of outliers was done according to three

scenarios: (1) all underexpressed, (2) all overexpressed,

and (3) 50% overexpressed and 50% underexpressed.

Each scenario was repeated for four different simulated

amplitudes (with Z score values of 2, 3, 4, and 6). Wemoni-

tored the recall of injected read-count outliers and the

precision, i.e., the number of injected outliers among the

reported outliers, by using different detection methods.

We note that the precision and the recall in this setup

were underestimated because the original data also

contained genuine outliers. The precision-recall curves
Journal of Human Genetics 103, 907–917, December 6, 2018 911
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Figure 2. Using the NB Distribution for
Significance Assessment
Normalized RNA-seq read counts plotted
against their rank (A and C) and quantile-
quantile plots of observed p values against
expected p values with 95% confidence
bands (B and D); outliers are shown in red
(FDR < 0.05). Shown are data for TRIM33
(MIM: 605769) with no detected expression
outlier (A and B) and data for SLC39A4
(MIM: 607059) with two expression outliers
(C and D).
showed that the OUTRIDER ranking outperformed

ranking by Z score with PCA or PEER, except for simulated

Z scores of 6 (Figure 4). Moreover, the twomost commonly

used Z score cutoffs6,10 (j2j and j3j) recalled almost all the

outliers (median ¼ 97%) for both PCA and PEER but at

the cost of a high FDR (precision < 0.02). The advantage

of p values is that they provide a principled way to

establish a cutoff that accounts for statistical significance

and multiple testing. Combining either PCA or PEER to

model the expected counts with the NB model to

obtain p values and FDR estimates led to improved

precision-recall curves over PCA and PEER with Z score

ranking, particularly for the underexpressed simulations

(Figures S6 and S7). This analysis delineates the impor-

tance of using a count distribution and a p-value-based

strategy.

Furthermore, we investigated the performance of an

alternative strategy to detect outliers that can be easily

implemented in DESeq28 or edgeR.19 We controlled for

known confounders as covariates and used Cook’s dis-

tance, as done in DESeq2,8 and the Pearson residuals, as

done in edgeR,19 instead of the p value to score outliers

(Supplemental Material and Methods). For the Kremer da-

taset, these known confounders were sex and the body site

inferred from the HOX gene set.7 For the GTEx dataset,

these were sex, age, and ischemic time. Both methods

gave the same rankings because Pearson residual and

Cook’s distance are monotonically related. However,

both showed much poorer precision-recall curves than
912 The American Journal of Human Genetics 103, 907–917, December 6, 2018
the PCA, PEER, and OUTRIDER alterna-

tives on the Kremer and GTEx datasets

(Figures S6 and S7).

At the FDR ¼ 0.05 cutoff, the recall

was limited between 0.3 for injected

outliers with jZj ¼ 2 and 0.8 for injected

outliers with jZj ¼ 6 (Figure 4). To inves-

tigate which type of outliers were not

recovered, we stratified the precision-

recall curves by mean expression levels

of the gene. Figure S8 shows the results

for the jZj ¼ 4 scenario with over- and

underexpressed genes, which is repre-

sentative of the other jZj levels and sce-

narios. Here, we observed that in the
lowest bin (mean count < 57; Figure S8B), the p value

ranking outperformed the Z score ranking. This is due to

the instability of Z scores for small counts. Nevertheless,

we observed an increase in the precision for the Z score

ranking with increasing mean count. Altogether, this un-

derlines the importance of using p values instead of

Z scores, particularly for genes with low expression levels.

Applying OUTRIDER to the Kremer dataset resulted in a

recall of 61 outliers (9.9%) identified by Kremer et al.

(Figure S9A) on the basis of the 48 previously undiagnosed

samples.7 Additionally, OUTRIDER detected 85 new

expression outliers, of which 54 were downregulated.

OUTRIDER was able to recall all six pathogenic events

(three expression outliers, one mono-allelic expression,

and two splicing defects) validated by Kremer et al. Despite

the fact that CLPP (MIM: 601119) and MCOLN1 (MIM:

605248) were only reported as having splice defects

by Kremer et al., the resulting loss of expression was

detected by OUTRIDER. On the Kremer dataset, PCA

called 3.8 more outliers than OUTRIDER and missed

two pathogenic events, and PEER called 7.8 times more

outliers than OUTRIDER andmissed one pathogenic event

(Figure S9B). These results are consistent with the results

from the simulations.

To further evaluate the performance of OUTRIDER on

experimental data, we assessed the enrichment of rare

variants among outliers, given that previous studies

linked rare variants with aberrant gene expression.10,33

We applied OUTRIDER, as well as PCA and PEER, on all



Figure 3. RNA-Seq Expression-Outlier
Detection
(A and B) Quantile-quantile plots for the
GTEx (A) and Kremer datasets (B).
Observed p values are plotted against the
expected p values for three different
methods. The diagonal marks the expected
distribution under the null hypothesis
with 95% confidence bands (gray).
(C and D) Number of aberrant genes
(FDR < 0.05) per sample for the data
shown in (A) and (B) (C and D, respec-
tively). The dashed line represents the
abnormal sample cutoff (>0.5% aberrantly
expressed genes).
(E and F) p values versus Z scores for a
representative abnormal sample in PEER
(E) and the same sample in OUTRIDER
(F). Genes with significantly aberrant read
counts are marked in red.
GTEx tissues and computed enrichments of rare variants

within expression outliers on the basis of different p value

cutoffs (Figure 5). We considered variants with a MAF <

0.05 and a predicted moderate or high impact according

to the VEP,32 which gave a manageable amount of variants

to handle and covered the variants causingnonsense-medi-

ated decay and transcript amplification. OUTRIDER

showed higher enrichments than PCA and PEER across all

tissues for three different nominal p value cutoffs (Figure 5).

Furthermore, the highest enrichment was achieved with

the highest cutoff regardless of the control method

(Figure 5). We observed the same trend when we calculated

the enrichment on the basis of Z score cutoffs (Figure S10).

Overall, OUTRIDER had across all cutoffs the highest

enrichment in comparison with the other approaches,

including the original Z scores computed by Li et al. in a

PEER-based approach.10 Only in the case of jZj > 5 did

OUTRIDER and PCA achieve similar enrichment scores.

Finally, we investigated the sensitivity of sample size. To

this end, we used the Kremer dataset and the six known

pathogenic events to estimate the required dataset to reach

significance. We monitored the nominal p values of the

pathogenic events after randomly removing samples

from the dataset and keeping the samples containing these

six pathogenic outliers (Figure S11). As expected, the

p values slowly increased toward 1 as sample size

decreased. Although OUTRIDER had overall lower p values

than PCA and PEER, our approach needed 60 samples to
The American Journal of Human Gene
recall the majority of the pathogenic

events. PCA and PEER, which had

similar p values, needed at least 80

samples to recover most of those

events.

Discussion

We have introduced OUTRIDER, an

end-to-end solution for identifying
expression outliers within RNA-seq data, controlling for

hidden confounders in an automated fashion, and

providing estimates of statistical significance. OUTRIDER

combines an autoencoder that allows for automatically

controlling technical and biological variations among

genes and a statistical test based on the NB distribution.

OUTRIDER outperformed preceding methods in recall-

ing simulated outliers and pathogenic outliers from a

rare-disease cohort and yielded outliers with a higher

enrichment of rare variants in a cohort of healthy do-

nors. OUTRIDER has two advantages over preceding

methods. First, it computes p values that can be adjusted

to control the FDR. Z-score-based approaches lack p

values, so the setting of cutoffs is arbitrary. Second, the

model’s parameters are automatically fitted through opti-

mization of the model’s ability to recall corrupted

counts. OUTRIDER is implemented and made available

as an R Bioconductor package. The package allows for a

full analysis to be made with only a few lines of code

and provides plotting functionality for visualizing the re-

sults. Furthermore, the package comes along with a

comprehensive vignette guiding the user through a

typical analysis.

We implemented OUTRIDER so that it is not restricted to

the provided autoencoder, allowing the statistical test to be

used with alternative methods modeling the expected

counts. In particular, PCA and PEER can be substituted

for the autoencoder. Alternatively, autoencoders with
tics 103, 907–917, December 6, 2018 913
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low counts). The read counts were controlled for gene covariation with OUTRIDER (green), PCA (orange), or PEER (blue). The ranking of
outliers was bootstrapped to yield 95% confidence bands.
additional layers could be employed to capture nonlinear

relationships. However, the analysis of correlations post-

control did not suggest the need for a more complex au-

toencoder. This is consistent with the study of Way and

Greene, who modeled covariations in RNA-seq samples

by using a single-layer autoencoder.15 Independently of

the way the counts are controlled, OUTRIDER offers func-

tionality for finding the optimal encoding dimension by

using a modeling scheme based on corrupted count data.

An advantage of this hyperparameter optimization is that

no manual intervention is needed.

Current standard methods used to control for co-

variations of RNA-seq data across individuals include

PEER10,34,35 or PCA.36 Both approaches assume the input

data to be log-normal distributed, which is suboptimal

for count data. To directly work on counts instead of trans-

formed counts, we introduced OUTRIDER, which uses the
914 The American Journal of Human Genetics 103, 907–917, Decem
NB distribution, a more suitable distribution for count

data. On simulated counts, we observed better inference

of the expected counts by using OUTRIDER than by using

either PEER or PCA on log-transformed counts. This was

especially true for genes with low expression and for

underexpressed outliers. Altogether, this resulted in better

rankings of outliers and a significantly improved enrich-

ment of rare variants among expression outliers detected

in RNA-seq read counts. This improved model for RNA-seq

read counts could potentially boost studies that are distinct

from outlier calling and rely on controlling for covaria-

tions. In particular, mapping of expression quantitative

loci could be attempted but was not investigated in this

study. Also, one could in principle extend OUTRIDER to

include known confounding covariates, for instance, by

adding them along with the latent factors before the

decoder layer. However, the robustness and the practical
ber 6, 2018
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Enrichment of rare (MAF < 0.05) moderate- and high-impact var-
iants (according to the VEP) computed on genes found to be aber-
rantly expressed by OUTRIDER is plotted against enrichments
computed on genes found to be aberrantly expressed by PCA or
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added value of such a hybrid approach would have to be

investigated.

In differential expression analyses, outlier detections are

used for obtaining robust estimators of fold changes and

within-group variance. Notably, DESeq28 uses Cook’s dis-

tance to flag extreme observations, whereas edgeR19 uses

Pearson residuals to downweight the impact of extreme

observations on the model. This idea is distinct from our

aim of assessing the significance of outliers. Nonetheless,

these or similar robust estimators37 could be incorporated

into OUTRIDER to improve the estimation of expected

counts. This would, however, come with the disadvantage

of adding more parameters and a certain degree of

circularity.

We have not addressed the handling of replicate samples

because we do not expect them to be performed by default

in diagnostic settings. The reason for this is that expression

outliers are events that show strong effects; therefore,

replicates are not essential for detecting these types of
The American
events. If a putative disease-causing event, such as an aber-

rantly expressed gene, is detected, follow-up experiments

involving assays complementary to RNA-seq are preferred

over replicates to establish the functional link of the event

to the disease.1,5 In contrast, if an RNA-seq sample is

suspected to have a technical problem, a new library can

be prepared, and the new data are substituted for the

former. Neither of these situations results in replicate

samples. When replicates are available, users can exclude

the replicated samples from the fit to not lower the

specificity. Afterward, they can combine the p values of

replicate samples by using Fisher’s method of combining

p values38 by assuming independence of the read counts

conditioned on the expected means predicted by the au-

toencoder. The same strategy could be applied for

pseudo-replicate samples, such as affected individuals of

the same family. More elaborated statistical tests have

been designed to leverage family structures in normal

population studies.34,39 These methods are based on the

normal distribution and log-transformed counts. Our

comparison to PEER and PCA suggests that these methods

could be improved by a count distribution such as the NB.

Another related issue is the modeling of multiple sam-

ples from the same individual. In analyzing GTEx samples,

Li et al. have shown that some outliers are shared across

multiple tissues for a given individual.10 If tissues are fitted

jointly, it can be difficult to detect outliers shared across

tissues because they might be modeled as expected covari-

ation by the autoencoder and because the large number of

outlier data points could lead to a poor fit of the NB distri-

bution. In a rare-disease diagnostic setting, we do not

expect a large number of tissues to be available per individ-

ual. To study the GTEx data, we suggest following the

strategy of Li et al.,10 i.e., to fit a model per tissue and

summarize results across tissues with a meta-analysis

strategy. We have performed the tissue-wise p value

computations with OUTRIDER and provide them on our

website (Web Resources).

In general, the autoencoder controlling scheme and the

count modeling approach benefit from additional

sequencing data; the more data of unrelated individuals

that can be combined, the better the estimation of the

typical patterns within a population will be. This holds

true when the overall data are equally distributed across

population structures or sequencing protocols because

each sample is assumed to be an independent representa-

tive of the whole population. This assumption was

partially violated in this study because RNA-seq datasets

such as GTEx comprise >85% individuals of European

descent.21 Such overrepresentation of a given population

in the dataset is disadvantageous in general, and additional

samples from underrepresented groups would be especially

beneficial. More testing is needed for assessing whether

our strategy for controlling counts can control for different

data sources, including data from multiple sequencing

platforms or control datasets. The ability to control

for different protocols would enable count data to be
Journal of Human Genetics 103, 907–917, December 6, 2018 915



combined from multiple sources. This would allow studies

with a few samples to merge their results with sources

such as the publicly available GTEx dataset.21 Currently,

the best practice is to use the same cell-handling and

library-preparation protocol that reduces the analyzable

dataset and therefore limits the statistical power. Accord-

ing to a power analysis, 50–60 samples were enough for

OUTRIDER to recall most of the known pathogenic events,

which are mainly a complete loss of expression. To allow

for the detection of more subtle outliers, a larger cohort

size is recommended.

The initial aim of developing OUTRIDER was to create a

framework for detecting expression outliers for RNA-seq

data in a rare-disease diagnostic setting. OUTRIDER will

be useful for the identification of potentially disease-

causing genes in individuals for whom current methods,

such as WES and WGS, only provide variants of unknown

significance. However, our approach is not restricted to

such data or experiments. Our re-analysis of the tissues

of the GTEx dataset10 indicates that OUTRIDER can

provide a more accurate set of expression outliers than ex-

isting methods also for studying expression outliers in

normal populations. In principle, OUTRIDER could model

any count data derived from next-generation sequencing.

Our approach could also be applied to data such as DNA

accessibility from ATAC-seq reads. In this case, promotor

regions or enhancers would be used as features instead of

gene bodies. Finally, the methodology of OUTRIDER could

be adapted to detect splicing outliers or outliers in prote-

omics or metabolomics.
Supplemental Data

Supplemental Data include 11 figures and Supplemental Material

and Methods and can be found with this article online at https://
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et Marie Curie).

13. Bourlard, H., and Kamp, Y. (1988). Auto-association by

multilayer perceptrons and singular value decomposition.

Biol. Cybern. 59, 291–294.

14. Hinton, G.E., and Zemel, R.S. (1994). Autoencoders, mini-

mum description length and Helmholtz free energy. In Ad-

vances in Neural Information Processing Systems 6, J.D.

Cowan, G. Tesauro, and J. Alspector, eds. (Morgan-Kauf-

mann), pp. 3–10.

15. Way, G.P., and Greene, C.S. (2018). Extracting a biologically

relevant latent space from cancer transcriptomes with varia-

tional autoencoders. Pac. Symp. Biocomput. 23, 80–91.

16. Eraslan, G., Simon, L.M., Mircea, M., Mueller, N.S., and Theis,

F.J. (2018). Single cell RNA-seq denoising using a deep count

autoencoder. bioRxiv. https://doi.org/10.1101/300681.

17. Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.

(2008). Extracting and composing robust features with

denoising autoencoders. In Proceedings of the 25th Interna-

tional Conference on Machine Learning (International Ma-

chine Learning Society), pp. 1096–1103.

18. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010).

edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics 26,

139–140.

19. Zhou, X., Lindsay, H., and Robinson, M.D. (2014). Robustly

detecting differential expression in RNA sequencing data

using observation weights. Nucleic Acids Res. 42, e91.

20. Barnett, V., and Lewis, T. (1974). Outliers in statistical data

(Wiley).

21. GTEx Consortium (2015). Human genomics. The Genotype-

Tissue Expression (GTEx) pilot analysis: multitissue gene regu-

lation in humans. Science 348, 648–660.

22. Casper, J., Zweig, A.S., Villarreal, C., Tyner, C., Speir, M.L.,

Rosenbloom, K.R., Raney, B.J., Lee, C.M., Lee, B.T., Karolchik,

D., et al. (2018). The UCSC Genome Browser database: 2018

update. Nucleic Acids Res. 46 (D1), D762–D769.

23. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Die-

khans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A.,

Searle, S., et al. (2012). GENCODE: the reference human
The American
genome annotation for The ENCODE Project. Genome Res.

22, 1760–1774.

24. Anders, S., and Huber, W. (2010). Differential expression anal-

ysis for sequence count data. Genome Biol. 11, R106.

25. Wold, H. (1966). Estimation of Principal Components and

Related Models by Iterative Least Squares (Academic Press).

26. Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K.,

and Ishii, S. (2003). A Bayesian missing value estimation

method for gene expression profile data. Bioinformatics 19,

2088–2096.

27. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie,

T., Tibshirani, R., Botstein, D., and Altman, R.B. (2001).

Missing value estimation methods for DNA microarrays. Bio-

informatics 17, 520–525.

28. Byrd, R.H., Lu, P., Nocedal, J., and Zhu, C. (1995). A Limited

Memory Algorithm for Bound Constrained Optimization.

SIAM J. Sci. Comput. 16, 1190–1208.

29. Benjamini, Y., and Yekutieli, D. (2001). The control of the false

discovery rate in multiple testing under dependency. Ann.

Stat. 29, 1165–1188.

30. Stegle, O., Parts, L., Durbin, R., and Winn, J. (2010). A

Bayesian framework to account for complex non-genetic fac-

tors in gene expression levels greatly increases power in

eQTL studies. PLoS Comput. Biol. 6, e1000770.

31. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks,

E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J.,

Cummings, B.B., et al.; Exome Aggregation Consortium

(2016). Analysis of protein-coding genetic variation in

60,706 humans. Nature 536, 285–291.

32. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S.,

Thormann, A., Flicek, P., and Cunningham, F. (2016). The

Ensembl Variant Effect Predictor. Genome Biol. 17, 122.

33. Zeng, Y., Wang, G., Yang, E., Ji, G., Brinkmeyer-Langford, C.L.,

and Cai, J.J. (2015). Aberrant gene expression in humans.

PLoS Genet. 11, e1004942.

34. Pala, M., Zappala, Z., Marongiu, M., Li, X., Davis, J.R., Cusano,

R., Crobu, F., Kukurba, K.R., Gloudemans, M.J., Reinier, F.,

et al. (2017). Population- and individual-specific regulatory

variation in Sardinia. Nat. Genet. 49, 700–707.

35. Lappalainen,T., Sammeth,M., Friedländer,M.R., ’tHoen,P.A.C.,

Monlong, J., Rivas, M.A., Gonzàlez-Porta, M., Kurbatova, N.,
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