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Abstract
Pancreatic cancer is a malignancy with an extremely 
poor prognosis. Chronic pancreatitis is a well-known risk 
factor for pancreatic cancer. Inflammation is thought 
to influence carcinogenesis through DNA damage and 
activation of intracellular signaling pathways. Many 
transcription factors and signaling pathways co-operate 
to determine and maintain cell identity at each phase of 
pancreatic organogenesis and cell differentiation. Recent 
studies have shown that carcinogenesis is promoted 
through the suppression of transcription factors related 
to differentiation. Pancreatitis also demonstrates tran
scriptional changes, suggesting that multifactorial epi
genetic changes lead to impaired differentiation. Taken 
together, these factors may constitute an important fra
mework for pancreatic carcinogenesis. In this review, we 
discuss the role of inflammation and de-differentiation 
in the development of pancreatic cancer, as well as the 
future of novel therapeutic applications.
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Core tip: Inflammation is involved in carcinogenesis 
by causing DNA damage. Recent studies show that 
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carcinogenesis is promoted by reprogramming factors 
and by suppressing transcription factors related to 
acinar cell differentiation. Pancreatitis also shows such 
transcriptional changes, suggesting that epigenetic 
changes by several causes leading to the impaired 
differentiation may constitute an important framework 
for pancreatic carcinogenesis. New diagnostic, preven
tive and/or treatment strategies based on the findings 
described in this review are expected to be clinically 
applied in the near future.
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INTRODUCTION
The worldwide incidence of pancreatic cancer is ap­
proximately 330000 cases in 2012, with trends indi­
cating that rates are higher in men and in developed 
countries. The number of deaths due to pancreatic 
cancer are also estimated to be approximately 330000 
people a year; it ranks 11th in cancer-related deaths[1,2]. 
The mean survival time is 19 mo and the 5-year su­
rvival rate is 5% or less; these figures indicate that 
pancreatic cancer has one of the worst prognoses 
across all forms of malignancy[2,3]. The early stages of 
pancreatic cancer are almost always asymptomatic. As 
a result, by the time symptoms become apparent, the 
disease is already at a very advanced stage. Because 
the 5-year survival rates of stage Ⅰ and Ⅳ pancreatic 
cancers are 43% and 7.7% respectively, early diagnosis 
and treatment are especially crucial to improve the 
overall prognosis of the disease.

One option, to aid in the earlier diagnosis of pan­
creatic cancer, is to elucidate more thoroughly the 
mechanism of carcinogenesis and identify high-risk gro­
ups to follow carefully. Well-known risk factors include 
smoking, obesity, diabetes, and chronic pancreatitis[4]. In 
particular, the risk of pancreatic cancer in patients with 
chronic pancreatitis is 13.3 times greater than that of 
healthy controls, suggesting that inflammation is deeply 
involved in the pathogenesis of pancreatic cancer[5,6].

It is well known that the KRAS mutation and 
mutational inactivation of the CDKN2A, TP53, and 
SMAD4 tumor suppressors play important roles in the 
development of pancreatic cancer[4,7-9]. Furthermore, 
recent studies have shown that carcinogenesis is pro­
moted by reprogramming factors and by suppression 
of transcription factors related to differentiation[10,11]. 
Interestingly, pancreatitis also shows the above trans­
criptional changes, suggesting that multifactorial epige­
netic changes that result in impaired differentiation have 
an important role in pancreatic carcinogenesis. 
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In this review, we will discuss the mechanisms 
of pancreatic carcinogenesis from the perspective of 
pancreatic inflammation and cell differentiation.

INFLAMMATION AND PANCREATIC 
CARCINOGENESIS
In 1863, Rudolph Virchow first reported inflamma­
tory cells in cancer tissues and hypothesized that 
inflammation promoted carcinogenesis[12]. In 1915, 
Yamagiwa induced skin cancer on the ears of rabbits 
by repeatedly painting them with coal tar, and expe­
rimentally revealed a case of carcinogenesis due to infla­
mmation[13]. Furthermore, several cancers are known to 
be epidemiologically related to inflammatory diseases. 
For example, Helicobacter pylori-related gastritis patients 
have a 2.6-fold increased risk of gastric cancer[14]. Viral 
hepatitis and inflammatory bowel disease are risk factors 
for liver cancer and colon cancer, respectively. Previous 
epidemiological studies have demonstrated that non-
steroidal anti-inflammatory drugs such as aspirin, lowers 
the overall risk of colon cancer[15,16]. Taken together, these 
results suggest that inflammation is frequently associated 
with carcinogenesis.

Chronic pancreatitis is a risk factor for pancreatic 
cancer[6]. Patients with hereditary pancreatitis, a rare 
cause of chronic pancreatitis and a strong risk for 
pancreatic cancer (49% of the patients develop pan­
creatic cancer by age 75 years), suffer from recurrent 
pancreatitis with pancreatic exocrine insufficiency and 
diabetes mellitus from a young age[17]. Mutations of 
the cationic trypsinogen (PRSS1) and serine protease 
inhibitor Kazal type 1 (SPINK1) genes cause heredi­
tary pancreatitis[18,19]. Because the risk of developing 
pancreatic cancer does not change with the presence 
or absence of PRSS1 or SPINK1 gene mutations, it is 
unlikely that the gene itself functions as an oncogene or 
tumor-suppressor gene[19,20]. The increased carcinogenic 
risk in hereditary pancreatitis patients is presumed to 
be carcinogenesis due to prolonged inflammation.

Notably, Bailey et al[21] conducted unsupervised 
clustering of pancreatic cancer RNA sequencing data, 
and they classified pancreatic cancers into four subtypes: 
Squamous, pancreatic progenitor, immunogenic, and 
aberrantly differentiated endocrine exocrine. Each 
subtype differently expresses unique transcription fac­
tors and downstream targets, which are important in line­
age specification and differentiation during pancreas 
development. Among them, the immunogenic subtype is 
associated with a significant immune infiltrate[21], which 
may be associated with pancreatitis and carcinogenesis.

The relationship between pancreatic cancer and 
inflammation has also been explored in experiments 
using genetically engineered mice. When Kras mutations 
were introduced during the embryonic stage in mice, 
pancreatic intraepithelial neoplasia (PanIN) formation 
was promoted while pancreatic cancer developed at a 
lower frequency[22]. The introduction of Kras mutations 
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alone induced pancreatic cancer development over 1 
year; however, when Trp53 and Cdkn2a defects were 
introduced, it only took 7 and 18 wk, respectively, to 
develop pancreatic cancer[23]. Furthermore, when pan­
creatitis was induced by administering caerulein in Kras 
mutant mice, carcinogenesis occurred at 12 wk[24]. 
These results demonstrated that some secondary ab­
normalities in Kras-mutated mice are necessary for 
rapid progression to invasive cancer, and that infla­
mmation promotes carcinogenesis in conjunction with 
Kras mutations.

DNA damage caused by inflammation may contri­
bute to carcinogenesis (Figure 1)[25]. Inflammatory cyto­
kines produce reactive oxygen species, which randomly 
oxidize DNA to cause genetic mutation[26]. NO, induced 
by inflammation, also inhibits DNA repair enzymes to 
promote mutations[27]. In fact, the duration of chronic 
pancreatitis correlates positively with the incidence 
of KRAS mutations, suggesting that DNA damage 
accumulates due to the persistence of inflammation, 
promoting further carcinogenesis[28].

Although random genetic mutations caused by 
inflammation may contribute to carcinogenesis, work 
done by Guerra et al[29] suggests an alternative role of 
inflammation in the development of carcinogenesis. 
Guerra et al[29] used a Cre Tet-off system to control the 
expression of mutant Kras in mice. When mutant KRas 
was expressed during the embryonic stage, PanIN was 
formed at 1-3 mo. However, when mutant KRas was 
expressed in adult mice 2 mo after birth, PanIN was 

not formed. Furthermore, even when Cdkn2a or Trp53 
gene deficiencies were simultaneously introduced into 
adult mutant Kras mice, PanIN did not develop[29]. These 
results suggest that the carcinogenic potential through 
genetic mutation differs between the embryonic and 
adult stages in mice. Moreover, when pancreatitis was 
induced by administering caerulein to adult mutant 
Kras mice, PanIN developed and rapidly progressed 
to pancreatic cancer[30]. However, PanIN did not de­
velop after deletion of Cdkn2a or Trp53 in adult mice 
accompanied with caerulein pancreatitis. From these 
results, mutant Kras and inflammation are necessary 
components of pancreatic carcinogenesis in adult mice, 
with inflammation contributing to carcinogenesis by 
means other than the introduction of specific gene 
mutations as a result of DNA damage. Recent studies 
revealing the association of various signaling pathways 
and microenvironments with inflammation and pancre­
atic carcinogenesis may support this concept.

CELL-AUTONOMOUS INTRACELLULAR 
SIGNALING PATHWAYS IN PANCREATIC 
INFLAMMATION AND CARCINOGENESIS
Nuclear factor κB (NF-κB) is involved not only in infla­
mmation but also in cell differentiation and proliferation, 
both of which are activated in pancreatic cancer[31,32]. 
Mutant KRas is known to activate interleukin-1alpha (IL-
1α) via AP-1. IL-1α polyubiquitinates tumor necrosis fa­

Cell-autonomous

DNA damage Mutagenesis

NF-κB KRAS  mutation

Positive feedback loop

Normal pancreas

ERK, STAT3 activate

Macrophage-secreted cytokines

Pancreatic cancer

Inflammasome Treg, Th17 Cytotoxic Tcell

Non cell-autonomous

Figure 1  Inflammation induces carcinogenesis both cell-autonomously and non-cell-autonomously. DNA damage caused by inflammation contributes to 
mutagenesis. Nuclear factor κB and KRAS activate each other and sustained KRAS activity promotes carcinogenesis. Macrophage-secreted cytokines activate the 
ERK and STAT3 signaling pathways in epithelial cells. Inflammasomes inactivate cytotoxic T cells via the activation of Th17 and regulatory T cells. NF-κB: Nuclear 
factor κB.
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ctor receptor-associated factor 6 and activates IKK2/β, 
which activates NF-κB. NF-κB subsequently upregulates 
IL-1α and p62 transcription, which in turn re-activates 
NF-κB in a positive feedback loop[33]. Because activated 
NF-κB activates KRas, another positive feedback loop 
is generated, resulting in sustained KRas activity which 
may promote pancreatic cancer development[34]. 

Additionally, Toll like receptor 4 (TLR4) and TLR7 
are upregulated within the pancreatic cancer micro­
environment[35,36]. TLRs are receptors that recognize 
pathogen-associated molecular patterns and diverse 
byproducts of inflammation and cellular injury. Acti­
vated TLRs induce the activation of NF-κB pathway 
within acinar cells, which may further promote the deve­
lopment of pancreatic cancer.

NON CELL-AUTONOMOUS 
INTRACELLULAR SIGNALING PATHWAYS 
IN PANCREATIC INFLAMMATION AND 
CARCINOGENESIS
The IL-6 / STAT3 pathway is also involved in pancreatic 
cancer and inflammation[37]. While caerulein-induced 
pancreatitis transiently activates STAT3, prolonged 
activity and PanIN development were both observed in 
Kras mutant mice[38]. In these mice, pancreatic Kras-
mutant epithelial cells recruited macrophages, which 
secreted IL-6, result in the STAT3 activation in epithelial 
cells and formation of PanIN. Conversely, inactivation 
of IL-6 trans-signaling or inhibition of STAT3 resulted in 
decreased PanIN formation[39].

Various studies have revealed that macrophages 
play an important role in pancreatitis, and are likely to 
be related to pancreatic carcinogenesis[40]. As mention­
ed above, macrophages secrete IL-6 and activate the 
STAT3 signaling pathway to promote pancreatic car­
cinogenesis. In addition, macrophages are observed 
around acinar ductal metaplasia (ADM) lesions, which 
are precancerous lesions formed in response to pan­
creatitis. They secrete inflammatory cytokines such as 
TNFα, and the chemokine regulated upon activation 
of normal T cell expressed and presumably secreted 
(RANTES). They also promote ADM formation through 
activation of NF-κB and matrix metalloproteinase-9[41,42]. 
Macrophages that migrate around ADM and PanIN are 
polarized dominantly from M1 to M2 by stimulation of 
IL-13. M2 macrophages secrete CCL2 and IL-1ra, which 
activate the ERK signaling pathway and promote the 
growth of PanIN[43].

Th17 is associated with many inflammatory con­
ditions, such as inflammatory bowel diseases. In the 
pancreas, the NOD-like receptor family pyrin domain-
containing 3 (NLRP3) inflammasome is also activated 
in pancreatitis[44]. Macrophages expressing NLRP3 ina­
ctivate cytotoxic CD8+ T cells through the activation of 
Th17 and regulatory T cells, which also contribute to the 
promotion of pancreatic cancer development[45].

PANCREATIC ORGANOGENESIS AND 
DIFFERENTIATION
The Guerra et al[29] study demonstrated that KRAS gene 
mutations induce PanIN formation in the embryonic, 
but not the adult stage. From these results, cell 
differentiation status at the embryonic or adult stage 
may control organ carcinogenesis. Research on the 
inflammation and differentiation of pancreatic cells has 
been increasing in recent years, and elucidation of pan­
creatic embryology on a cellular level would provide 
great understanding to pancreatic cancer development.

Pancreatic development begins with the evagina­
tion of dorsal mesenchyme of foregut endoderm on 
embryonic day 26 (E26) in humans and E9.5 in mice[46-48] 
(Figure 2). The ventral pancreatic bud emerges at 6 d 
in humans and at 12 h in mice after the appearance of 
the dorsal pancreatic bud. Branching begins immediately 
after evagination. Stalk elongation and gut rotation occur 
on the ventral and dorsal side, while fusion of the ventral 
and dorsal pancreas occurs during E12 to E13 in mice 
and E37 to E42 in humans. During E13-14 in mice, there 
is a dramatic increase in endocrine cells, particularly 
β-cells, known as “secondary transition”. Similarly, aci­
nar cells develop and acinar enzyme gene expression 
increases. After E15 in mice, the destiny of pancreatic 
cells is determined.

Pancreatic tissue consists of acinar, duct, and 
endocrine cells. Lineage tracing using CreERT mice 
revealed that multipotent progenitor cells differentiate 
into respective cell populations[49]. Multipotent progenitor 
cells co-express homeobox protein PDX1, Sry-box pro­
tein SOX9, and basic helix-loop-helix (bHLH) protein 
PTF1A. As differentiation continues, the expression of 
PDX1, SOX9 and PTF1A are restricted in endocrine, duct, 
and acinar cells respectively. During early branching 
morphogenesis, the branch tip is composed of PDX1, 
PTF1A, and Cpa1 positive multipotent progenitor 
cells that can differentiate into all three type of cells; 
however, cells in the tip area lose their multipotency 
and change into pro-acinar cells after E14[50]. The trunk 
region is composed of bipotent progenitor cells that can 
differentiate into either duct or endocrine cells[51]. Some 
of these cells express neurogenin 3 (NGN3) and will 
differentiate further into endocrine cells[52].

Various transcription factors and signaling pathways 
are involved in acinar cell development. NR5A2 is a 
member of the nuclear hormone receptor family, and 
is responsible for pancreatic exocrine secretion in the 
mature pancreas[53]. NR5A2 regulates the various stages 
of development and is required for OCT4 expression in 
the epiblast[54]. It is also required for gastrulation and 
acinar cell maturation during secondary transition[55,56]. 
Since there is decreased expression of pancreas-re­
lated transcription factors during secondary transition, 
NR5A2 is thought to regulate pancreatic differentiation 
in cooperation with other transcription factors at this 
stage[56].

December 6, 2018|Volume 6|Issue 15|

Seimiya T et al . Inflammation and de-differentiation in pancreatic carcinogenesis



886WJCC|www.wjgnet.com

MIST1 is a bHLH transcription factor, highly expre­
ssed in acinar cells, as well as the stomach, prostate, 
and seminal vesicles[57]. Mice with Mist1 gene knockout 
developed highly disorganized acinar cells with impair­
ed exocytosis[58]. Furthermore, ADM formation and sus­
ceptibility to caerulein pancreatitis were increased in 
these mice[59]. MIST1 is thought to be required for the 
maintenance of acinar cell identity.

The Wnt/β catenin signaling pathway is necessary for 
differentiation of acinar cells. Pancreatic hypoplasia was 
observed in β-catenin knockout mice[60]. Furthermore, 

acinar cell proliferation was promoted by deficiencies 
in the Apc gene, which has endogenous β-catenin 
inhibitory activity. Because this abnormal proliferation 
stops when c-myc is deleted, c-myc is considered to 
be an important downstream component of the Wnt/β 
catenin pathway[61].

The Hippo signaling pathway has been associated 
with pancreatic development. Deletion of the core 
Hippo kinase genes Mst1 and Mst2 induced pancreatic 
hypoplasia via YAP, the downstream mediator. In­
terestingly, in Mst1 and Mst2 double knockout mice, 
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Figure 2  Pancreatic organogenesis and cell differentiation. The pancreatic bud arises from the endoderm foregut. During early branching morphogenesis, the 
branch tip is composed of multipotent progenitor cells that change into acinar cells. The trunk region is composed of bipotential progenitor cells that can differentiate 
into either duct or endocrine cells. As differentiation continues, the expression of PTF1A, NR5A2, and MIST1 is restricted in acinar cells. 
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expression levels of MIST1, PTF1A, and NR5A2 were 
equivalent to those seen in wild type mice, with normal 
pancreatic sizes at birth. However, after 1 mo, the acinar 
cells changed to duct-like cells while the overall size of 
the pancreas was approximately half that of wild type 
mice. This suggests that the Hippo signaling pathway is 
necessary to maintain acinar cell identity and pancreas 
size after birth in mice[62].

The Notch signaling pathway is also indirectly related 
to acinar cell differentiation via lateral inhibition. NGN3 
is a transcription factor that promotes differentiation to 
endocrine cells. Cells expressing NGN3 upregulate the 
expression of DLL1, which is a Notch ligand. DLL1 binds 
to the Notch receptor of surrounding cells and activates 
the Notch signaling pathway, thereby upregulating 
HES1 expression. HES1 inhibits NGN3 and suppresses 
endocrine cell proliferation. HES1 also maintains the 
expression level of PTF1A in multipotent progenitor cells 
and is thought to contribute to multipotent progenitor 
cell proliferation[63].

PANCREATIC CELL DE-
DIFFERENTIATION, INFLAMMATION, 
AND CARCINOGENESIS
As described above, pancreatic cell differentiation and 
their identities are maintained by the cooperation of 
various transcription factors and signaling pathways. 
However, recent research has revealed that differen­
tiated pancreatic cells show plasticity under specific 
circumstances. Acinar cells transdifferentiate or de­
differentiate into duct cells and endocrine cells after 
pancreatic duct ligation. During this change, cells ex­
press SOX9 and HNF1β multipotency factors[64,65]. The 
conversion from an acinar cell to embryonic progeni­
tor phenotype that exhibits ductal markers, is called 
ADM. ADM is thought to be a reversible process and 
is frequently observed in pancreatic inflammation and 
injury. However, it becomes irreversible when combined 
with a Kras mutation. This alteration results in a lesion 
that is considered a precancerous stage of pancreatic 
cancer[66,67].

Epigenetic factors play crucial roles in differentiation 
and carcinogenesis. A recent study showed that Brg1, 
a catalytic ATPase subunit of the SWI/SNF chromatin 
remodeling complex, is inactivated in approximately 
10% of pancreatic cancer[68]. Brg-1 binds to the SOX9 
promoter and regulates the expression of SOX9. Acinar 
cell-specific deletion of Brg-1 attenuates ADM/PanIN 
formation in Kras mutant mice[69].

NR5A2 suppression and forced expression of SOX9 
or PDX1 can induce ADM[11,70-72]. These results suggest 
that transcriptional changes that cause the loss of aci­
nar cell identity promote ADM formation. Interestingly, 
although the pancreatic tissues of Nr5a2+/- mice are 
histologically normal, transcriptome analyses of Nr5a2+/- 
mice show inflammasome upregulation. In humans, simi­
lar transcriptomic changes occur in the pancreas with 

low levels of NR5A2 expression. Furthermore, NR5A2 is 
relocated from the promoters of differentiation-specific 
genes to the promoters of inflammation-related genes. 
AP-1 is upregulated in these mice and the deletion of 
Jun results in the downregulation of AP-1 and NR5A2 
binding to AP-1 and inflammatory gene promoters[73].

In another study, temporal activation of repro­
gramming factors (Oct3/4, Sox2, Klf4, c-Myc) in the 
pancreas of Kras mutant mice promoted ADM forma­
tion and pancreatic cancer[10] (Figure 3). In previous 
transcriptome analyses, when the reprogramming 
factors are activated, acinar cell-related genes Ptf1a 
and Mist1 were downregulated. In addition, when 
pancreatitis was induced via caerulein administration 
in Kras mutant mice, similar transcriptional patterns 
were observed. Conversely, forced expression of Ptf1a 
or Mist1 in Kras mutant mice with caerulein-induced 
pancreatitis suppressed PanIN formation. These results 
demonstrate the crucial role of epigenetic regulation in 
the initiation of pancreatic carcinogenesis.

FUTURE PERSPECTIVES
A growing body of research in pancreatic carcinogen­
esis demonstrates that the loss of acinar cell identity 
caused by the suppression of transcriptional networks 
by reprogramming factors plays a crucial role in ADM 
formation. In addition, Kras mutation and epigen­
etic regulation play important roles in pancreatic car­
cinogenesis. Furthermore, inflammation induces an 
intracellular transcriptional state similar to the de-
differentiated state of pancreatic cells, implying that 
inflammation, cell differentiation, and carcinogenesis 
are very closely related.

Some questions remain to be resolved. Inflammation 
may induce not only de-differentiation but also stem 
cell damage and impaired differentiation, and sub­
sequently cause carcinogenesis. Further research is 
needed to determine the origin of pancreatic cancer. 
There is a strong association between chronic pan­
creatitis and pancreatic cancer. However, only 1.34% 
of pancreatic cancers are thought to be caused by 
chronic pancreatitis[74]. Furthermore, pancreatic can­
cer concomitant with intraductal papillary mucinous 
neoplasm, a premalignant lesion of pancreatic cancer, 
is not associated with pancreatitis or pancreatic atro­
phy[75]. However, these epidemiological and patholo­
gical data do not completely deny the connection bet­
ween carcinogenesis and inflammation. One possible 
explanation is that pro-inflammatory states may exist in 
the absence of histologically observed pancreatitis[73]. 
Further studies are required to clarify the inflammation-
like changes in “inflammation-absent” pre-neoplastic 
pancreatic lesions. This may subsequently allow the 
identification of high-risk patients.

Many novel therapeutic strategies for pancreatic 
cancer are aimed at reprogramming pancreatic cancer 
cells to behave like normal pancreatic cells[76]. For exa­
mple, PD 325901 inhibits MEK1/2 and induces PanIN 
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re-differentiation into acinar cells[77]. Another study has 
shown that the overexpression of bHLH transcription 
factors E47 and PTF1A resulted in increased acinar cell 
gene expression, suppressing cancer proliferation[78,79]. 
It is highly expected that in the near future, new dia­
gnostic and/or treatment strategies based on the fin­
dings described in this review will be clinically applied, 
improving the prognosis of patients with pancreatic 
cancer.
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