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ABSTRACT
Background: Epidemiologic evidence on the association of a
healthy Nordic diet and future type 2 diabetes (T2D) is limited.
Exploring metabolites as biomarkers of healthy Nordic dietary
patterns may facilitate investigation of associations between such
patterns and T2D.
Objectives: We aimed to identify metabolites related to a
priori-defined healthy Nordic dietary indexes, the Baltic Sea
Diet Score (BSDS) and Healthy Nordic Food Index (HNFI),
and evaluate associations with the T2D risk in a case-control
study nested in a Swedish population-based prospective
cohort.
Design: Plasma samples from 421 case-control pairs at baseline and
samples from a subset of 151 healthy controls at a 10-y follow-up
were analyzed with the use of untargeted liquid chromatography-
mass spectrometry metabolomics. Index-related metabolites were
identified through the use of random forest modelling followed
by partial correlation analysis adjustment for lifestyle confounders.
Metabolite patterns were derived via principal component analysis
(PCA). ORs of T2D were estimated via conditional logistic
regression. Reproducibility of metabolites was assessed by intraclass
correlation (ICC) in healthy controls. Associations were also
assessed for 10 metabolites previously identified as linking a healthy
Nordic diet with T2D.
Results: In total, 31 metabolites were associated with BSDS and/or
HNFI (−0.19 ≤ r ≤ 0.21, 0.10 ≤ ICC ≤ 0.59). Two PCs were
determined from index-related metabolites: PC1 strongly correlated
to the indexes (r = 0.27 for BSDS, r = 0.25 for HNFI, ICC = 0.45)
but showed no association with T2D risk. PC2was weakly associated
with the indexes, but more strongly with foods not part of the indexes,
e.g., pizza, sausages, and hamburgers. PC2 was also significantly
associated with T2D risk. Predefined metabolites were confirmed to
be reflective of consumption of whole grains, fish, or vegetables, but
not related to T2D risk.
Conclusions: Our study did not support an association between
healthy Nordic dietary indexes and T2D. However, foods such
as hamburger, sausage, and pizza not covered by the indexes

appeared to be more important for T2D risk in the current population.
Am J Clin Nutr 2018;108:564–575.
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INTRODUCTION

Diet plays an important role in the risk of developing
type 2 diabetes (T2D) (1, 2). Observational studies have shown
that higher consumption of individual food items such as
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whole grains (3, 4), fruits (5, 6), vegetables (6, 7), coffee
(8), and fish (7, 9) is inversely associated with risk of future
T2D, whereas red/processed meat intake is positively associated
(7, 10). By taking the complexity and interrelations of multiple
dietary exposures into account, dietary pattern analysis might be
more informative about the role of diet for the etiology of diet-
related diseases than single food item analysis (11, 12). Many
studies have suggested that better adherence to healthy dietary
patterns, as indicated by e.g., the Mediterranean Diet Score,
Dietary Approaches to Stop Hypertension (DASH) score, and
Healthy Eating Index, significantly reduces T2D risk (2, 13, 14).

A healthy Nordic diet has been defined as a dietary pattern
that complies with current dietary guidelines and includes
traditional Nordic food items, such as vegetables, fish, fruits,
whole grains, and various seafoods (15). In randomized control
trials (16–20), the healthy Nordic diet has been shown to have
similarly beneficial effects on cardiometabolic risk factors as the
Mediterranean diet (21). Moreover, higher reported adherence
to healthy Nordic dietary indexes, e.g., the Healthy Nordic
Food Index (HNFI) and the Baltic Sea Diet Score (BSDS),
has been inversely associated with, e.g., total mortality (21, 22)
and abdominal obesity (23) in observational studies. To our
knowledge, only 2 observational studies have investigated the
association of such dietary patterns with risk of developing T2D
(1, 24). One of these studies (24) did not find any association
in a Finnish population, whereas the other (1) found an inverse
association between reported adherence to HNFI and risk of T2D
in a Danish cohort.

Results from most observational studies on the role of diet
and T2D rely on self-reported dietary assessment, most often
food-frequency questionnaires (FFQs) (1, 7, 24). Such methods
are known to suffer from relatively large systematic and random
measurement errors, which may hamper discovery of potentially
existing diet-disease relations or detect spurious associations
(25, 26). Metabolomics has become a valuable tool for iden-
tifying metabolites that could objectively reflect specific food
exposures (27–29) or dietary patterns (30–32). Thus, it may
provide a complement to self-reported dietary assessments and
help to improve understanding of disease-related metabolic
processes influenced by diet (33–35). However, there are few
objective measures of adherence to dietary patterns, derived
either by data-driven methods or by a priori-defined patterns (30–
32, 36). In addition, to the best of our knowledge, no prospective
study has examined whether a specific metabolite related to a
dietary pattern is associated with incident T2D.

Therefore, we conducted an untargeted liquid
chromatography-mass spectrometry (LC-MS) metabolomics
study based on a case-control study nested within the prospective
Swedish Västerbotten Intervention Programme (VIP) (37). We
aimed to identify plasma metabolites associated with 2 a priori-
defined healthy Nordic dietary indexes, i.e., HNFI and BSDS,
and to investigate whether such metabolites are associated with
risk of developing T2D.

METHODS

Study cohort and sample collection

This case-control study was nested within the VIP (37)
(Figure 1). Detailed information on the VIP and selection of

participants is reported elsewhere (37, 38). Briefly, the inhabitants
of Västerbotten County were invited to participate in a health
survey at their local health care center at ages 30 (only recruited
until 1996), 40, 50, and 60 y. Recruitment for the VIP started in
1985 and participants included in the present study were recruited
from 1991 to 2005 (baseline).

In the VIP, T2D cases were diagnosed according to the
Diabetes Register in Northern Sweden (DiabNorth) (39). The
diagnosis criteria are based on the WHO standard for diabetes
diagnosis: a random fasting plasma glucose (FPG) ≥7 mmol/L
or 2-h plasma glucose ≥11.1 mmol/L in a patient with diabetes
symptoms. For people who had a single abnormal glucose test
but no diabetic symptoms, repeated blood glucose measurement
was required. Cases were ascertained by diabetes specialists.
We here included the 421 participants (men: n = 196, women:
n = 225) at baseline (a median time of 7 y before diagnosis)
who had an unthawed fasting plasma sample in the biobank and
a complete dietary questionnaire. Each case was individually
matched to 1 nondiabetic participant according to age (±2 y),
gender, sampling date (±90 d), and sample storage time. Among
the 421 selected healthy controls, 151 had data collected and
a follow-up sample drawn 10 y after baseline. These samples
were also included in the present study in order to estimate
the long-term reproducibility of potential dietary biomarkers.
The entire study protocol was approved by the Regional Ethics
Committee in Uppsala, Sweden (registration number 2014/011).

The present exploratory study aimed to explore plasma
metabolites associated with a priori-defined dietary patterns and
the risk of developing T2D among the Swedish population. No
participants were prospectively assigned to an intervention. Thus,
no clinical trial registration is required according to the recently
updated NIH definition of a clinical trial. The primary outcome of
the study was the incidence of T2D and it did not change during
the analyses.

Healthy Nordic dietary indexes

Two modified and validated versions of the Northern Sweden
FFQ were used: one with 84 food items and one with 64 items.
Detailed information about the FFQs is published elsewhere
(40–42). Food items were energy-adjusted by the density method
for dietary indexes (31). We excluded 2 participants with an
implausible caloric intake (<600 or >5000 kcal per day) and/or
an incomplete FFQ (≥10% missing values).

The BSDS was derived based on the approach described
in Kanerva et al. (43) and included 9 food components: 1)
fruits (apples, pears, berries, oranges, mandarins, grapefruits);
2) vegetables (tomatoes, cucumbers, cabbage, legumes, carrot);
3) whole grains (whole-grain bread and rye/oat/barley porridge);
4) fish (perch, cod, Baltic herring, salmon, white fish, shellfish);
5) red and processed meat (beef, pork, processed meat); 6) low-
fat milk products (milk with 0.5% fat, yogurt with ≤3% fat);
7) ratio of PUFAs to the sum of SFA and trans-fatty acids
(fat ratio); 8) alcohol; and 9) total fat. All components except
alcohol were scored according to gender-specific population
consumption quartiles (Q1–Q4). For fruits, vegetables, whole
grains, low-fat milk products, fish, and fat ratio, a score of 0, 1,
2, and 3 was given to questions Q1–Q4, respectively, whereas
for red and processed meat and total fat, the score was given in
reverse order. Alcohol scored 1 if intake was <20 g per day for
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FIGURE 1 Flowchart of participant selection from the Västerbotten Intervention Programme. Statistics (1): index-related metabolites were identified
through the use of random forest modelling amongst healthy controls (n= 421) followed by partial correlation analysis adjustment for several lifestyle-related
factors. Statistics (2): ORs of type 2 diabetes were estimated with the use of conditional logistic regression on case-control pairs (n = 842). Statistics (3): the
long-term reproducibility of index-related metabolites was assessed by intraclass correlation amongst healthy controls. T2D, type 2 diabetes.

men or <10 g per day for women, otherwise a score of 0 was
given (43). The resulting BSDS ranged from 0 to 25 points, with
higher scores representing stronger adherence to the Baltic Sea
diet (43).

The HNFI was calculated according to Olsen et al. (21), based
initially on 6 food items: fish, cabbage, rye bread, oatmeal,
apples/pears, and root vegetables (carrots). However, because
consumption of “rye bread”, “apples/pears”, and “oatmeal” was
not assessed specifically by the FFQs used, we instead used
“whole-grain bread”, “fruits (apples, pears, oranges, mandarins,
grapefruits)”, and “oat/rye/barley porridge”, respectively. The
index was calculated by summarizing scores, where each food
item was scored 0 or 1 when intake was less than or greater than
the sex-specific median intake of participants, respectively. The
HNFI ranged from 0 to 6 and a higher score was indicative of
stronger adherence (21).

Untargeted LC-MS metabolomics

Throughout this article, the term “feature” refers to a mass
spectral peak, i.e., a molecular entity with a unique m/z and
retention time as measured by an LC-MS instrument. The term
“metabolite” refers to a compound, with or without identification.

The overall workflow of data processing is shown in
Supplemental Figure 1. A detailed description of untargeted
LC-MS metabolomics data acquisition and processing is pub-
lished elsewhere (38, 44). In brief, de-proteinized fasting heparin
plasma samples were analyzed by LC-qTOF-MS (Agilent
Technologies), consisting of a 1290 LC system, a Jetstream
electrospray ionization (ESI) source, and a 6540UHD accurate-
mass qTOF spectrometer. Samples were analyzed on reverse
phase (RP) and hydrophilic interaction chromatography (HILIC)
columns, with the use of both positive (ESI+) and negative
(ESI−) ionization modes. Data acquisition was performed
with the MassHunter Acquisition B.04.00 software (Agilent
Technologies). Plasma samples were analyzed in 8 batches and a
constrained randomization was applied to keep sample pairs and
follow-up samples within the same batch. Instrumental analyses
were performed with ∼250 injections per batch, including study
samples, and quality control samples constituted ∼16% of study
samples to monitor the stability and functionality of the system
(38, 44). Raw data acquired in each analytical batch were
converted to mzXML format and deconvolution was performed
with the open source R package “XCMS” (45). Two types of
quality control samples were used to monitor the stability of the
instrumental analysis, as described previously, and the R package
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“batchCorr” (44) was applied to correct for within- and between-
batch measurement errors. Features potentially generated from a
single metabolite were aggregated based on PUTMEDID-LCMS
(46), to reduce the over-representation of a particular metabolite.
Missing values were replaced with values randomly selected
from a normal distribution between 0 and the lowest measured
peak intensity within each feature. Poorly retained lipids in
HILIC chromatography (retention time < 70 s) were removed
from the data, because such lipids were better separated in RP
chromatography.

Statistics

Identification of metabolites associated with healthy Nordic
dietary indexes

Data obtained from RP and HILIC chromatography were
processed independently. In brief, sparse partial least squares
regression (R package “spls”) was applied as a prefilter to remove
the majority of uninformative features per chromatographic
mode (Supplemental Figure 1). The subset of features selected
by “spls” was then modeled with a random forest algorithm
incorporated into a repeated double crossvalidation framework
with unbiased variable selection. This approach has been shown
to effectively determine a parsimonious set of discriminative
features ranked according to their importance with reduced risk
of statistical overfitting (38, 47, 48). Model performance was
confirmed by permutation analysis (n = 200, P < 10−7) (38,
49). The dietary index was calculated with the use of energy-
adjusted FFQ data among healthy controls as the dependent
variable in the model. In total, 84 and 73 features were
selected to best predict the adherence to BSDS and HNFI,
respectively.

For each feature selected by random forest, direct associations
with each of the dietary indexes were assessed via partial
Spearman correlation analysis, adjusting for case-control status,
age at blood draw, gender, BMI (kg/m2), smoking status (smoker,
former smoker, occasional smoker, non-smoker), education (ele-
mentary school, vocational school, secondary school, university
education/college), and physical activity (inactive, moderately
inactive, moderately active, active). The correlation analysis
was repeated for individual food components of indexes. To
compensate for multiple testing, Bonferroni-adjusted P values
were calculated and the significance threshold was set at 0.05.
In total, 29 and 16 features were independently associated
with BSDS and HNFI, respectively, and thus were subjected to
identification and further analyses (Supplemental Figure 1; see
also “Metabolite identification” and Supplemental Table 1).

Associations between healthy Nordic dietary indexes and T2D

Associations between index-related metabolites at baseline
and likelihood of developing T2D were investigated through the
use of conditional logistic regression (R package “survival”). ORs
were calculated for quartiles and per SD increment. Three models
were constructed: Model 1: crude model with no adjustment;
Model 2: adjustment for lifestyle-related factors, i.e., smoking
status, education, physical activity at diet assessment, and daily
energy intake (kcal per day); and Model 3: further adjustment
for FPG (mmol/L). Sensitivity analyses were performed by

adjusting further for BMI, total cholesterol (mmol/L), triglyc-
erides (mmol/L), and systolic and diastolic blood pressure
(mm Hg), because we regarded these variables as mediators
rather than confounders (1). To compensate for multiple testing,
false discovery rate–adjusted q values were calculated and the
significance threshold was set at 0.05. In addition, we assessed
the association between BSDS or HNFI and individual core food
components of these indexes, measured by self-reported FFQ,
and the risk of T2D.

Moreover, we performed principal component analysis (PCA)
(R package “psych”) on index-related metabolites identified. We
only considered components that had an eigenvalue >2 and
that met the criteria of Very Simple Structure. The associations
between PCA scores and risk of T2D were investigated through
the use of conditional logistic regression, as mentioned earlier.
Partial Spearman rank correlations between metabolites and
energy-adjusted dietary variables, i.e., indexes and individual
food categories reported in FFQs with <0.5% missing values,
were calculated, adjusting for age, gender, case status, smoking
status, education, and physical activity. A “triplot” was developed
for multivariate risk modelling and visualization that combines
dietary exposures, metabolome, and T2D risk. In addition,
predictive ability of risk modeling for derived metabolite
principal components (PCs) was assessed with the use of the
area under the receiver operating characteristic curve (R package
“pROC”).

Assessment of long-term reproducibility of metabolites

Reproducibility of metabolites was estimated by intraclass
correlation (ICC) between the 2 sampling occasions over the
10-y period among the subset of healthy participants (n= 151). If
the meanmetabolite concentration between 2 sampling occasions
differed significantly, indicating systematical differences over
years, ICC was instead calculated on rank-transformed data.
Predicted PC scores of the subset of controls were calculated by
projecting metabolite concentrations from the subset of controls
onto the initial PCA coordinate basis. ICCs of predicted PC
scores were further estimated, reflecting the reproducibility of
metabolite patterns.

Associations between previously identified dietary biomarkers of
Nordic healthy foods and T2D

We also investigated associations between metabolites pre-
viously associated either with a healthy Nordic dietary pattern
index, or with core foods of such a dietary pattern, and
T2D risk. These metabolites were: trimethylamine N-oxide
(associated with fish and/or meat) (50), 1-methylhistidine
(meat and fish) (50), propionylcarnitine (meat) (50, 51),
2-methylbutyrylcarnitine (meat) (50, 51), threonate (fruits)
(31), hippuric acid (fruits and vegetables) (30, 52, 53), in-
dolepropionic acid [BSDS (31)], 3-carboxy-4-methyl-5-propyl-
2-furanpropionic acid (CMPF, fish) (54), 3-carboxy-4-methyl-5-
pentyl-2-furanpropionic acid (fish, Mediterranean diet) (55, 56),
and nonadecyl-benzenediol glucuronide (AR 19:0-gln, whole
grains) (54).

All statistical analysis was conducted in R version 3.4.0,
except for ICC, which was performed with the use of
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SAS macro “%ICC9” (SAS version 9.3, SAS Institute),
available online from: https://www.hsph.harvard.edu/donna-
spiegelman/software/icc9/.

Metabolite identification

For each of the features related to the 2 indexes (29 for
BSDS and 16 for HNFI), identification was accomplished based
on accurate mass (mass tolerance ≤15 ppm) and MS/MS
fragmentation matched against online databases or the literature.
The confidence level of annotation was categorized according
to the Metabolomics Standard Initiative (MSI) (57). Annotated
classes (MSI 3) were presented as “putative chemical class
mass @retention time”, whereas unknown compounds (MSI 4)
were presented as “analytical mode m/z @ retention time” only
(Supplemental Table 1).

RESULTS

Baseline characteristics of the study population are shown
in Table 1. Several known T2D risk factors were higher
in participants who later developed T2D thanamong controls
at baseline. Regardless of T2D development, intake of food
components of the indexes increased with higher adherence
to the corresponding indexes, and food components scored in
reverse order were consumed to a lesser extent by participants
who scored high (Supplemental Figures 2 and 3). The score
distribution of the indexes did not differ between cases and
controls (Supplemental Figure 4). No significant differences
were observed in known T2D risk factors across low to high
reported adherence to the indexes (Supplemental Figures 5 and
6).

We identified 24 individual metabolites associated with
BSDS (r = −0.19 to 0.21), independent of case/control
status, age, gender, BMI, and lifestyle-related factors,
and 13 metabolites associated with HNFI (r = −0.17
to 0.16) (Table 2). Among these metabolites, 6 were
associated with both indexes: docosahexaenoic acid (DHA),
lysophatidylethanolamine (lysoPE 22:6), γ -tocopherol,
and 3 unknown metabolites, i.e., RP383.1671@10.53,
RP490.3516@8.99, and RP197.0926@3.17. Metabolites that
were positively associated with the indexes were also positively
correlated with whole grains, fruits, vegetables, and fish, and
negatively correlated with red/processed meat and total fat.
The opposite was observed for metabolites that were inversely
associated with the indexes (Table 2).

Among the 31 index-related metabolites, 12 were positively
associated with risk of T2D and 10 were inversely associated in-
dependently of baseline lifestyle factors (Figure 2, Supplemen-
tal Table 2). Further adjustment for FPG did not substantially
affect the results. However, no associations remained significant
after further controlling for BMI, triglycerides, total cholesterol,
and blood pressure. We did not find any association between the
indexes, or individual foods included in the indexes derived from
the FFQ, and future T2D (Supplemental Table 3).

To account for the intercorrelations among the metabolites
(−0.39 ≤ r ≤ 0.85, Supplemental Figure 7), 2 PCs were
determined that accounted for 74% of the total variance in
metabolite concentrations (Supplemental Table 4). PCs’ scores
and individual metabolites were strongly correlated with the

2 dietary indexes, food components of the indexes, and to
varying degrees with several food categories not captured by the
indexes (Supplemental Figure 8). A “triplot” was developed
to consider the intercorrelations between metabolites (PCA
loadings), multiple dietary variables (correlation with PCA
scores), and T2D risk (ORs of PCA score) simultaneously
(Figure 3): PC1 was strongly associated with reported adherence
to the indexes but was not associated with T2D risk. In contrast,
PC2 related strongly in particular to consumption of, e.g.,
sausage, hamburger, or pizza, and was strongly associated with
T2D risk, which yielded substantially better risk prediction than
PC1 (Supplemental Figure 9).

Among the 31 index-related metabolites, 15 showed good
reproducibility among healthy controls (0.4 ≤ ICC ≤ 0.59)
(Table 2). PC1 showed higher reproducibility (ICC 0.46) than
PC2 (ICC 0.35).

In addition, among 10 a priori-selected metabolites previously
known to be associated with a healthy Nordic diet, we
confirmed associations for indolepropionic acid (BSDS), CMPF
(fish), 3-carboxy-4-methyl-5-pentyl-2-furanpropionic acid (fish),
threonate (vegetables), and AR 19:0-Gln (whole grains) (Sup-
plemental Figure 10). No association between these metabolites
and T2D risk was found, with the exception of indolepropionic
acid, which was inversely associated (Supplemental Table 2).

DISCUSSION

We identified plasma metabolites associated with 2 healthy
Nordic dietary indexes by applying untargeted metabolomics
in combination with a robust data processing pipeline. For
the first time, to our knowledge, we used both FFQ data
and metabolomics to investigate the association between these
indexes and T2D risk. Our study also provides information
on the reproducibility of metabolites over 10 y and highlights
the potential of some index-related metabolites as biomarkers
representing a habitual dietary intake in free-living populations.
Moreover, the metabolomics investigations provided comple-
mentary information to dietary indexes, and confirmed the lack
of association between stronger adherence to a healthy Nordic
dietary index and T2D risk. In contrast, foods such as pizza,
hamburgers, and sausage were predominately associated with
increased T2D risk in the current population.

Associations of plasma metabolites with healthy Nordic
dietary indexes

Overall, the magnitude of correlations between indexes and
metabolites was moderate and in the same range as previously
reported for BSDS and other indexes, e.g., Healthy Eating Index
2010 and the WHO Healthy Diet Indicator (r= −0.14 to ∼0.25)
(31). Only 6 metabolites were related to both BSDS and HNFI.
The small overlap may be attributed to the different food items
used to score adherence (31).

We identified metabolites with good reproducibility over
10 y (ICC ≥ 0.4) that have been suggested as biomarkers
of particular foods that are key contributors to the indexes,
i.e., EPA and DHA (fish) (58, 59), and pipecolic acid betaine
(whole grains) (54, 60). However, the underlying causes of the
associations between most individual metabolites and dietary

https://www.hsph.harvard.edu/donna-spiegelman/software/icc9/
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TABLE 1
Baseline characteristics of participants in the Swedish Västerbotten Intervention Programme who were included
in the nested case-control study of incident type 2 diabetes1

Characteristic Cases (n = 421) Controls (n = 421) P

Men2, % 46.5 46.5
Age2, y 50.4 ± 7.9 50.4 ± 7.9
BMI, kg/m2 29.7 ± 4.72 25.5 ± 3.8 <0.001
Fasting plasma glucose, mmol/L 6.1 ± 0.9 5.5 ± 1.2 <0.001
2-h plasma glucose, mmol/L 8.4 ± 2.8 6.5 ± 1.6 <0.001
Triglycerides, mmol/L 2.0 ± 1.3 1.3 ± 0.7 <0.001
Total cholesterol, mmol/L 5.9 ± 1.3 5.7 ± 1.1 0.005
Systolic blood pressure, mm Hg 138.9 ± 17.8 128.1 ± 16.7 <0.001
Diastolic blood pressure, mm Hg 85.1 ± 10.4 79.4 ± 9.7 <0.001
Total caloric intake, kcal/d 1742.5 ± 617.5 1745.8 ± 622.7 0.58
Smoking status, % 0.03
Smoker 21.7 18.2
Former smoker 29.1 26.4
Occasional smoker 0.7 3.8
Former occasional smoker 9.5 6.9
Non-smoker 39.0 44.2

Physical activity index, % 0.08
Inactive 17.2 16.3
Moderately inactive 36.4 35.0
Moderately active 28.8 28.1
Active 17.7 20.1

Education, % 0.03
Elementary school 33.3 28.6
Vocational (training) school 28.8 26.2
Secondary school 21.5 21.1
University education/college 16.3 23.6

BSDS and food components,3 g · d−1 · 1000 kcal−1

BSDS 13 (7, 19) 13 (7, 19) 0.74
Fruits 59.1 (10.9, 161.9) 59.7 (12.5, 159.1) 0.97
Vegetables 44.6 (10.1, 145.7) 41.2 (10.4, 138.9) 0.59
Whole grains 49.1 (15.3, 122) 45.9 (15.3, 128.7) 0.59
Fish 9.8 (0.5, 21.5) 9.7 (2.2, 19.3) 0.43
Red/processed meat 46.6 (27.3, 74.7) 43.7 (24.6, 72.2) 0.06
Low-fat dairy products 19.6 (0, 207.3) 14.7 (0, 229.6) 0.68
Fat ratio 0.3 (0.2, 0.5) 0.3 (0.2, 0.5) 0.28
Total fat 36.9 (28.1, 47.1) 36.3 (28.3, 44.0) 0.05
Alcohol 1.8 (0, 7.6) 2.3 (0, 9.9) 0.04

HNFI and food components,4 g · d−1 · 1000 kcal−1

HNFI 3 (1, 5) 3 (1, 5) 0.91
Fruits 54.7 (8.1, 155.7) 53.5 (10, 143.9) 0.82
Cabbage 8.5 (0.8, 39.6) 8.4 (0.8, 34.8) 0.75
Carrot 12.4 (1.5, 56.6) 10.2 (1.4, 50.7) 0.34
Whole-grain bread 31.8 (10.7, 60.6) 30.7 (10.9, 63.6) 0.96
Whole-grain porridge 8.9 (0, 85.2) 9.8 (0, 74.3) 0.86
Fish 9.8 (0.5, 21.5) 9.7 (2.2, 19.3) 0.43

1Clinical parameters are means ± SDs or percentages. Index and corresponding food component values
are median (10th, 90th percentile). P value indicates the significance between cases and controls. Differences in
medians of dietary variables were tested by the use of Wilcoxon’s rank-sum test, and differences in categorical
variables were assessed by the use of a chi-square test. BSDS, Baltic Sea Diet Score; HNFI, Healthy Nordic Food
Index.

2Matching factors.
3BSDS calculated based on 9 food components: fruits (apples, pears, oranges, mandarins, grapefruits,

berries), vegetables (tomatoes, cucumbers, cabbage, legumes, carrots), whole grains (whole-grain bread and
barley/oat/rye porridge), fish (perch, cod, Baltic herring, salmon, white fish, shellfish), red and processed meat
(beef, pork, processed meats, sausages), low-fat milk products (milk with 0.5% fat, yogurt with ≤3% fat), ratio
of PUFAs to the sum of SFA and trans-fatty acids (fat ratio), total fat, and alcohol.

4HNFI calculated based on 6 food components: fruits (apples, pears, oranges, mandarins, grapefruits),
cabbage, carrot, whole-grain bread, whole-grain porridges (oat/rye/barley porridge), and fish (same species as
BSDS).
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TABLE 2
Plasma metabolites identified in fasting samples at baseline and their associations with the BSDS and HNFI dietary indexes in a nested case-control study in
the Västerbotten Intervention Programme1

Metabolite2 rWith index3 rWith food components3 ICC4

BSDS and HNFI
DHA 0.19, 0.17 Fish (0.20), fruits (0.11), alcohol (0.12) 0.46 (0.34, 0.58)
RP383.1671@10.53 0.16, 0.14 Fish (0.18), alcohol (0.15) 0.44 (0.31, 0.57)
RP490.3516@8.99 0.16, 0.15 Fish (0.25), FR (0.12), alcohol (0.18) 0.47 (0.35, 0.60)
lysoPE(22:6) 0.14, 0.11 Fish (0.11), whole grains (0.13) 0.32 (0.19, 0.47)
γ -Tocopherol −0.17, −0.12 Meat (0.13), alcohol (−0.16), vegetables (−0.17) 0.16 (0.09, 0.33)
RP197.0926@3.17 −0.12, −0.12 Alcohol (0.13), carrot (−0.15) 0.27 (0.14, 0.44)

BSDS
RP303.6468@9.98 0.22 Fish (0.28), low-fat milk products (0.13), FR (0.15), alcohol (0.14),

fruits (0.13)
0.47 (0.35, 0.59)

RP684.5545@13.41 0.20 Fish (0.21), alcohol (0.13), FR (0.12) 0.47 (0.42, 0.63)
lysoPC(22:6) 0.18 Fish (0.23), alcohol (0.13), vegetables (0.13) 0.42 (0.30, 0.55)
RP826.5442@12.17 0.16 Fish (0.17), fruits (0.14) 0.33 (0.20, 0.48)
RN427.1641@10.59 0.16 Fish (0.13), fruits (0.13), total fat (−0.12) 0.35 (0.23, 0.50)
EPA 0.15 Fish (0.21) 0.29 (0.17, 0.45)
RN153.0190@3.5 0.14 Meat (−0.16), whole grains (0.20) 0.59 (0.48, 0.69)
HP143.1179@1.55 0.14 Fruits (0.12) 0.40 (0.28, 0.54)
RN446.1541@10.59 0.14 FR (0.12)
RP827.5356@11.88 0.12 Fish (0.13), total fat (−0.12) 0.37 (0.24, 0.51)
Steroid glucuronide 659.3664@9.4 0.12 Whole grains (0.22) 0.49 (0.37, 0.61)
RP816.5684@12.52 0.12 Vegetables (0.11) 0.47 (0.35, 0.60)
RN201.1498@8.23 −0.14 FR (−0.23), low-fat milk products (−0.16), total fat (0.13),

vegetables (−0.12)
0.35 (0.22, 0.50)

RN830.5845@12.46 −0.12 Vegetables (−0.12) 0.15 (0.05, 0.37)
lysoPC(18:0) −0.16 FR (−0.26), low-fat milk products (−0.16) 0.25 (0.13, 0.43)
PC(18:2/15:0) −0.14 Fish (−0.16), alcohol (−0.15), FR (−0.23), low-fat milk products

(−0.14)
0.35 (0.22, 0.50)

RN814.5610@12.14 −0.18 Fish (−0.16), alcohol (−0.21), FR (−0.21), low-fat milk products
(−0.13), vegetables (−0.16), fruits (−0.13)

0.11 (0.02, 0.38)

RP431.3516@11.96 −0.17 Vegetables (−0.15), meat (0.13) 0.23 (0.12, 0.39)
HNFI

RN472.1596@10.53 0.16 Alcohol (0.14), FR (0.14), fish (0.15), cabbage (0.13) 0.15 (0.05, 0.37)
HN151.0065@4.97 0.13 Cabbage (0.13) 0.37 (0.24, 0.51)
RN457.1742@10.50 0.13 Cabbage (0.14), FR (0.14), vegetables (0.13) 0.34 (0.22, 0.49)
3,4,5-trimethoxycinnamic acid 0.12 Fish (0.14), whole grains (0.15) 0.34 (0.22, 0.49)
RP225.1482@9.15 0.12 Fruits (0.13), whole grains (0.16) 0.44 (0.32, 0.57)
Pipecolic acid betaine 0.11 Whole grains (0.22) 0.27 (0.15, 0.44)
RN203.0022@3.00 0.11 0.49 (0.37, 0.61)

1BSDS, Baltic Sea Diet Score; FR, fat ratio; HN, hydrophilic interaction chromatography ESI– mode; HNFI, Healthy Nordic Food Index; HP, hydrophilic
interaction chromatography ESI+ mode; ICC, intraclass correlation coefficient; lysoPC, lysophosphatidylcholines; lysoPE, lysophatidylethanolamine; MSI,
Metabolomics Standard Initiative; RN, reverse phase chromatography ESI− mode; RP, reverse phase chromatography ESI+ mode.

2Identified metabolites associated with the healthy Nordic dietary indexes. Metabolites denoted as classes (MSI 3) are presented as “putative chemical
class mass @retention time”, whereas unknown compounds (MSI 4) are presented as “analytical mode m/z @ retention time”.

3Partial Spearman rank correlation coefficients between metabolites and dietary indexes (BSDS, HNFI) and energy-adjusted individual food components
of indexes, controlling for age, gender, case/control status, BMI, smoking status, education, and physical activity index. Statistically significant with Bonferroni
correction for multiple statistical testing at P < 0.05.

4Representing long-term reproducibility of metabolites among healthy controls (n = 151) over 10 y. ICC ≥ 0.4 denotes good reproducibility.

indexes are not easily interpreted. The majority of index-
related metabolites were associated with multiple food items
included in the indexes, which may possibly reflect the co-
consumption of foods in the study population (35, 61, 62),
or endogenous formation of these metabolites in response to
multiple dietary exposures (32). Of note, our data clearly suggest
that the latent variable of index-related metabolites accounted
for intercorrelations (PC1), could better reflect adherence to
the indexes, compared to individual metabolites and showed
good long-term reproducibility. This observation is in line

with other studies supporting that multiple biomarkers may
provide more accurate measures of dietary exposures. Moreover,
a dietary index may have a metabolite profile that mainly
reflects the underlying components used to score adherence,
but the concentrations of index-related metabolites may be
affected by other foods that are not part of the index (Figure 3,
Supplemental Figure 7), in agreement with previous studies (30,
63). For instance, γ -tocopherol was inversely correlated with
indexes, fruits, and vegetables and positively correlated with
margarine, oil, and hamburgers. Collectively, our results suggest
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FIGURE 2 ORs per SD increment (95% CI) of type 2 diabetes calculated with conditional logistic regression for individual index-related metabolites.
Model 1: crude model. Model 2: adjustment for lifestyle-related factors, i.e., smoking status, education, physical activity at diet assessment, and daily energy
intake (kilocalories per day). Model 3: further adjustment for fasting plasma glucose (millimoles per liter). BSDS, Baltic Sea Diet Score; HNFI, Healthy
Nordic Food Index; lysoPC, lysophosphatidylcholines; lysoPE, lysophatidylethanolamine; +, positive association with dietary indexes; –, inverse association
with dietary indexes.

that index-related metabolites have great potential to be reflective
of adherence to habitual dietary patterns and might provide
information complementary to the FFQ-based indexes consisting
of limited food components.

Associations between healthy Nordic dietary indexes
and T2D

We found no association between healthy Nordic dietary
indexes and the risk of developing T2D. This was surprising,
given the beneficial cardiometabolic effects shown for healthy
Nordic dietary patterns and/or food items in dietary intervention
studies and observational studies (11, 19, 22, 64). In the present
study, the metabolite pattern that was strongly correlated with

healthy Nordic dietary indexes and their core food components
(in particular, fish and fruits) was almost orthogonal to ORs of
T2D direction, indicating a lack of association with T2D risk.
Fish has been shown to have health-promoting effects on T2D
prevention (65–68), although contradictory results exist (69, 70).
It is regarded as a central healthy item in both indexes, with
positive scores. We found no association between FFQ-measured
fish intake and T2D; instead, positive associations between well-
known biomarkers of fish consumption, i.e., EPA and DHA,
were observed. This observation may relate to the presence of
persistent organic pollutants known to occur in fish from the
Baltic Sea (71–73), which might adversely affect the potential
beneficial role of fish (9, 73). Moreover, although mechanisms
remain unclear, our data suggest that fruit consumption was not
associated with T2D risk, in line with previous studies (6, 74).



572 SHI ET AL.

FIGURE 3 Associations between diet, index-relatedmetabolites, and risk of developing T2D. The “triplot” represents the correlations betweenmetabolites,
dietary variables, and ORs of T2D. Correlations between PC scores and dietary variables (individual foods in blue circles and dietary indexes in green circles)
and ORs per SD (95% CI) of T2D for scores (red squares) are superimposed. Correlations between PC scores and dietary variables are visualized if partial
Spearman correlation at a Bonferroni-adjusted P < 0.05 controlled for age, gender, case/control status, BMI, smoking status, education, and physical activity.
ORs were obtained from a lifestyle factors–adjusted conditional logistic regression model and a model further adjusted for fasting plasma glucose (millimoles
per liter), BMI, total cholesterol (millimoles per liter), triglycerides (millimoles per liter), and blood pressure (mm Hg). For simple interpretation, metabolites,
individual foods, and ORs pulling along the same axis in the plot are associated. Dietary indexes are orthogonal to ORs and therefore not associated with
T2D risk. Metabolites denoted as classes (MSI 3) are presented as “putative chemical class mass @retention time,” whereas unknown compounds (MSI 4) are
presented as “analytical mode m/z @ retention time.” HN, hydrophilic interaction chromatography ESI− mode; HP, hydrophilic interaction chromatography
ESI+ mode; lysoPC, lysophosphatidylcholines; lysoPE, lysophatidylethanolamine; MSI, Metabolomics Standard Initiative; PC, principal component; RN,
reverse phase chromatography ESI− mode; RP, reverse phase chromatography ESI+ mode; T2D, type 2 diabetes.

In contrast, whole grains and some vegetables correlated with
several index-related metabolites with high PC2 loadings that
were inversely associated with T2D risk, supporting their
beneficial role in T2D prevention (3, 7). Of note, the likelihood
of developing T2D was predominantly associated with higher
consumptions of foods that were not part of the indexes, such
as pizza, hamburger, and sausages, in line with a previous study
applying data-driven methods (75).

In addition to the metabolites identified through the use of
the data-driven approach, we also assessed, to our knowledge
for the first time, whether a priori–defined metabolites shown
to be affected in response to core foods of a healthy Nordic

diet in dietary interventions could be used as dietary exposure
biomarkers in a free-living population and their associations with
T2D risk. Our results highlighted the potential of AR 19:0-Gln,
CMPF, 3-carboxy-4-methyl-5-pentyl-2-furanpropionic acid, and
threonate as biomarkers of whole grains, fish, and vegeta-
bles. However, the null association of these biomarkers with
T2D risk confirmed the limited effect of “healthy” foods in
T2D prevention in the current population. Although BSDS-
related indolepropionic acid was inversely associated with
T2D, the poor reproducibility (ICC = 0.23) limits its use
as a dietary biomarker and may affect the precision in risk
estimates.
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Strengths and limitations

This is the first study to our knowledge to investigate
associations between adherence to a healthy Nordic diet, assessed
both by FFQ and by biomarkers, and future T2D. Identifying
metabolites related to the established dietary indexes, instead
of patterns derived with data-driven approaches, allows for
other studies conducted in different populations to reproduce
and validate our findings. Moreover, we assessed the long-term
reproducibility of index-related metabolites, suggesting whether
they could be used for objective assessment of dietary habits,
which has rarely been investigated before.

There are several limitations of the study. First, our dietary data
were collected via FFQs, a method which is known to suffer from
large measurement errors (25, 26, 76). In fact, under-reporting
was indicated to a larger extent among cases (n = 61) than
controls (n = 38), as measured by the number of individuals
below the 10th percentile of the ratio between total caloric
intake and estimated basal metabolic rate. However, exclusion
of case-control pairs, based on indicated under-reporting, did
not significantly affect the results (data not shown). Second,
observed diet-metabolite associations are most likely weaker
than the true associations owing to the measurement errors in
self-reported dietary intake data and variations in metabolites
(31). Our study may be subject to false-negative results, i.e., we
may have missed some actual associations, which may hamper
discovery of potential diet-disease relations. However, in the
additional analysis, no association between potential biomarkers
of key foods of healthy Nordic dietary indexes and T2D helped to
confirm the limited effect of “healthy” foods in preventing T2D.
Third, even with extensive efforts in metabolite identification, we
did not manage to annotate all metabolites. However, unknown
compounds did not affect the investigation and interpretation
of our major primary focus in this study, i.e., the associations
between studied dietary indexes and T2D risk. Furthermore,
we cannot exclude the risk of residual confounding because of
unmeasured confounders related to lifestyle habits in models. In
addition, only 1 previous observational study has explored serum
metabolites associated with established healthy dietary indexes,
including BSDS, but metabolite profiles are difficult to compare
with our data owing to a large number of unknown metabolites
in both metabolite sets (31). Replication of our findings in other
cohorts is necessary.

In conclusion, several fasting plasma metabolites were iden-
tified to be associated with predefined healthy Nordic dietary
indexes. However, no association was observed between the 2
dietary indexes investigated and T2D risk, either for intake data
derived from FFQs or for biomarkers of exposures. Foods not
covered by the indexes, e.g., hamburgers, pizza, and sausages,
appeared to be major contributors to increased risk of developing
T2D in the current population.
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