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Suc is the principal transport form of assimilates in 
the majority of plant species. Synthesized in the cyto-
sol of mesophyll cells (source organ), it is transport-
ed to the leaf vasculature, from where it is distributed 
toward the various sink organs of the plant (Lalonde  
et al., 2004; Ruan, 2014). Suc affects almost all processes  
in plants due to its primary role in growth and as  
an energy source. In addition, Suc also is a relevant 
signal sensed by sophisticated signaling networks 
and involved in various adaptive and stress responses 
(Moghaddam and Van den Ende, 2013; Smeekens and 
Hellmann, 2014). Last but not least, Suc is the major 
storage form of sugars in plants. For human consump-
tion, it is derived primarily from the sugar crops sug-
arcane (Saccharum spp.) and sugar beet (Beta vulgaris), 
in which sugar can account for up to 20% of the plant’s 
fresh weight.

Efforts toward an improved understanding of the 
metabolism, transport, and storage of Suc are central 
to countless research projects, including breeding and 
biotechnological attempts. An ability to visualize and 
quantify Suc over time and space (i.e. Suc mapping) 

would serve to advance our understanding of relevant 
growth- and yield-related processes. However, current 
technologies in use for Suc mapping are inadequate 
where there is a need to quantitatively visualize its 
distribution within a tissue. Mass spectrometry-based 
imaging like the matrix-assisted laser-desorption ion-
ization technique can detect various classes of metab-
olites (Boughton et al., 2016; Murray et al., 2016), but 
its level of resolution and specificity is compromised 
when the detection target is, like Suc, of low Mr (issues 
with matrix effects). Positron emission tomography 
has been used to trace photoassimilate allocation, but 
so far it has been unable to demonstrate a sufficient 
level of chemical or spatial resolution when targeted to 
Suc (Partelová et al., 2017). Magnetic resonance imag-
ing (MRI) is able to measure Suc in a label-free manner 
in vivo (Rolletschek et al., 2011), but its imaging is difficult 
when Suc is present at a low concentration (Borisjuk  
et al., 2012). The fluorescence resonance energy transfer  
(FRET) method, in principle, provides a high level of 
chemical and spatial resolution (Niittylae et al., 2009). 
Suc-specific FRET sensors are available and used, for 
example, to determine Suc transport activity (Chen  
et al., 2012; Bezrutczyk et al., 2018). However, in addi-
tion to some technical limitations, their practicality 
in the crop context is questionable, given the need to 
genetically transform the plant. Finally, quantitative 
bioluminescence has been applied for the visualization  
of Suc gradients within complex seed tissues (Borisjuk 
et al., 2002). That was actually the first visualization of 
Suc distribution in plants. The assay relies on complex 
enzymatic cocktails developed to specifically measure 
Suc directly in tissue sections via bioluminescence and 
single-photon counting. While enabling Suc imaging 
with a resolution close to the single-cell level, the method  
remained technically challenging and with limited 
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versatility in application. It was further disadvantaged 
by not supporting a reasonable sample throughput.

Fourier-transform infrared (FTIR) spectroscopy has 
found widespread applications in medical research, 
bacteriology, and plant and food science (Baker et al., 
2014; Salzer and Siesler, 2014). Infrared spectroscopy 
offers substantial analytical potential and when cou-
pled to a microscope provides, besides chemical, also 
spatial resolution at the low-micrometer level. How-
ever, its exploitation for the quantitative analysis of 
metabolite distribution in tissue sections is so far lim-
ited by the complexity of the resulting spectral matrix, 
which obscures specific metabolite signatures. There-
fore, it requires an algorithmic decomposition to re-
cover a given compound-specific signal. In addition, 
means to standardize the analytical procedure and to 
reproduce the data quantitatively are lacking. To date, 
FTIR microscopy has not been used to image Suc dis-
tribution in plants.

The incentive to develop a novel imaging method 
was the need to obtain a quantitative visualization of 
the distribution of Suc within heterogenous tissues. 
The method should be versatile and easily applicable to 
crops (i.e. not depending on prior genetic transforma-
tion). This article describes an imaging platform based 
on FTIR spectroscopy and demonstrates its analytical 
power for the analysis of cereal crops as well as some 
Arabidopsis (Arabidopsis thaliana) plants. The imaging 
proved able to quantitatively model Suc distribution in 
the various plant organs at a resolution of ∼12 µm and 
with high mapping accuracy. Imaging data acquired 
for developing cereal grains were in accordance with 
previous assumptions, while the analysis of Arabidop-
sis plants uncovered some unexpected patterning of 
Suc in the hypocotyl of sweet mutants.

RESULTS

Experimental Design for Quantitative Imaging of Suc

The basis of the procedure is depicted in Figure 1. The 
sample is initially snap frozen in liquid nitrogen, then 
cryosectioned and placed on a membrane support. The 
use of a membrane (rather than the more conventional  
glass) to support the tissue sections allows for mea-
surements to be made in the mid-infrared region (less 
than 2,500 cm−1), a part of the spectrum that is masked 
by glass (Fig. 1A). Along with providing a wider ob-
servation window, the membrane also is less expensive 
than the BaF2 platform that is generally recommended 
for FTIR microscopy. Most importantly, the membrane 
preserves a unique spectral fingerprint, thereby intro-
ducing a ubiquitous and spatially homogenous internal 
standard to the sample prior to imaging. This is sim-
ilar to what is used routinely in chromatography and 
allows the spectral data to be normalized on the fin-
gerprint of the internal standard. It ultimately enhances 
quality and enables comparability of the modeled data. 

The reliability of the internal standard could be veri-
fied experimentally (Supplemental Fig. S1): the level of 
variation in the signal emanating from the membrane 
was around 1% of the overall signal, thereby provid-
ing a highly consistent standard within each pixel of a  
given image. The spectral raw data represented in Figure  
1B (the spectral extract of a hyperspectral data cube) 
show the characteristic membrane fingerprint in indi-
vidual spectra but also comprise strong baseline shifts, 
which can be extracted readily using a baseline correc-
tion algorithm (Mie scattering extended multiplicative 
signal correction; see “Materials and Methods”). To 
achieve this, the spectral cube is subdivided into smaller  
pieces via K-means clustering to enhance spectral sim-
ilarity in the smaller data sets. A data set derived from 
the spectra generated from relevant pure analytes (i.e. 
the external standards) is then added to each piece 
(Supplemental Fig. S2). After subsequent modeling, the 
standards are compared with their unprocessed coun-
terparts, allowing the fit of the model to be reevaluated 
after each round of fitting. The procedure generates a 
coefficient matrix, which describes the composition of 
each sample spectrum from the modeled features (Fig. 
1, C and D). In order to quantitatively compare these 
features across different samples/measurements, the 
matrix coefficients have to be normalized against the 
internal standard. The overall duration of the FTIR 
analysis depends on sample complexity. For example, 
it takes 5 h for analysis of a wheat (Triticum spp.) stem 
sample and up to 11 h for a cereal caryopsis sample (ex-
cluding the time needed for lyophilization).

The ability to deliver spatially resolved information 
on metabolite levels is the key advantage of our meth-
od. As with any microscope, the spatial resolution (δ) 
is diffraction limited and, therefore, determined by the 
wavelength (λ) of the light in combination with physical 
properties (numerical aperture [NA]) of the lens. The 
distance between two points of a sample that can be 
separated is given by the formula δ(λ) = 0.61 × λ/NA. 
Our FTIR microscope was equipped with a 15× objec-
tive with a numerical aperture of 0.6. The resulting opti-
cal resolution within the detectable range of the detector 
(3,800–850 cm−1) increases according to the wavelength 
up to 12 µm at the far end of the detectable spectrum 
(Supplemental Fig. S3). The fingerprint features from 
1, 800 to 1,000 cm−1 are most important for our com-
putational approach and provide an optical resolution 
from 6 to 10 µm. Further increases in resolution are 
possible when applying different optics with a higher  
numerical aperture. For our instrument, two objectives 
are available, and the attainable spatial resolution is 
demonstrated in Supplemental Figure S3. It becomes 
clear that the resolution can be improved further to ∼2 µm  
when using the ATR (20×) objective. In that case, how-
ever, large-area mappings become more difficult.

Training and Validation of the Model

A validation of the model with respect to the  
component-specific data was performed using a three-step 
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Figure 1. Schematic overview of the method used to acquire and analyze FTIR spectra. The left-hand images illustrate the 
experimental setup, while the right-hand images show average spectra derived from a glass microscope slide and a membrane 
slide (A), sample raw spectra from 16-µm-thick tissue sections, illustrating variation in the baseline (B), modeled baseline arti-
facts after four rounds of baseline correction using a partial least squares regression model (C), and baseline-corrected spectra 
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procedure. Initially, an in silico data set was calculated 
for pure Suc, subsequently used to test the effective-
ness of the feature-extraction procedure (for a detailed 
description, see “Materials and Methods”) on a pixel- 
by-pixel resolution. The resulting component-specific 
images (Supplemental Fig. S4A) were reproduced with 
an R2 value greater than 0.9; there was hardly any in-
terference with the spectra generated from the other 
compounds present in the matrix. The experimental 
data and the calculated signal intensities were clearly 
linearly correlated (Supplemental Fig. S4, B–D). Next, 
a Suc dilution series was established to estimate the 
correlation between known concentrations and absor-
bance values per imaged area: this indicated a high 
level of confidence, as measured by the R2 parameter 
(greater than 0.98) and the root mean square error of 
prediction (RMSEP = 0.036 pg µm−2; Fig. 2C). Finally, 
tissue sections imaged previously by FTIR were laser 
dissected, and the resulting fractions were analyzed 
for their Suc content by ion chromatography coupled 
to pulsed amperometric detection (Supplemental Fig. 
S5). The modeled versus experimental data sets were  
significantly correlated (R2 > 0.98, RMSEP = 0.016 pg µm−2;  
Fig. 2D). The conclusion was that the trained model 
accurately displayed the component-specific informa-
tion and was able to reliably quantify the Suc concen-
tration. Based on the presented data, the linear range 
was experimentally documented up to 3.3 pg µm−2, 
and the limit of detection calculated as baseline plus 3 
times the RMSEP is 0.108 pg µm−2. This corresponds to 
a range from 19.7 to 608.9 mm Suc concentration (at a 
tissue section thickness of 16 µm). The theoretical sig-
nal saturation is reached at absorbance values close to 
2. Therefore, an absorbance up to 1.5 still can be con-
sidered as a safe upper limit of detection and would 
allow for Suc concentrations up to 1,062 mm in 16-µm-
thick tissue sections. Please note that the unit for Suc 
concentration given in the images (pg µm−2) can be 
translated into more conventional mass/volume data 
(see “Materials and Methods”).

Visualization of Local Suc Accumulation in Vascular 
Bundles and Surrounding Tissues in the Leaf and Stem of 
Barley Plants

The next priority was to test the capacity of the pro-
cedure to visualize Suc distribution in barley (Horde-
um vulgare), which represents an important cereal crop 
model. Analysis of stem tissue samples clearly revealed 
that the phloem strands were associated with the highest  
Suc content (Fig. 2B); the levels were much lower in 
the cells associated with the xylem and were unde-
tectable within the xylem itself. There was a moderate  
concentration of Suc in both the chlorenchyma and 

sclerenchyma cells lying around the stem periphery, 
with a negative gradient established from the outside 
to the center of the stem. Notably, there was some vari-
ation in the concentration of Suc in the vascular bun-
dles at a given internode: the level was significantly 
lower in the outer as compared with the inner vascular 
ring (Supplemental Fig. S6, D and E). Such variation 
has been unknown before and could indicate some 
distinct functional properties of the respective phloem  
bundles. Possibly in relation to this, we observed that 
the diameter of inner vascular bundles was bigger than 
that of the outer bundles and surrounded by a thicker 
layer of sclerenchymal cells.

In the flag leaf, the highest levels of Suc also were 
associated with the phloem strands (Supplemental Fig. 
S6, B and C); the mean concentrations were slightly 
elevated compared with those estimated in the stem 
phloem at the same internode. The level of Suc was 
much lower in the leaf mesophyll cells and was slightly  
higher in cell layers lying closest to the epidermis.

Quantitative Imaging of Suc Distribution within the 
Developing Barley Grain

The Suc visualization procedure also was applied to 
the developing caryopsis of barley (Fig. 3). The resulting 
Suc maps featured a marked gradient across the caryop-
sis. High concentrations were associated with the ven-
tral part of the caryopsis (Fig. 3, A and B), where phloem 
unloading takes place (Melkus et al., 2011). In the peri-
carp, high concentrations were evident in the vascular 
bundle and surrounding tissue, but levels decreased 
2- to 5-fold toward the lateral and dorsal regions. High 
concentrations also were evident in the endosperm fac-
ing the vascular region of the pericarp, but the highest 
concentrations were found within the endosperm trans-
fer cells (ETC). A steep Suc gradient was formed from 
the ETC toward the central endosperm, with minimum 
levels at the periphery (graph in Fig. 3C). The Suc quan-
tification along the allocation pathway further indicates 
a slight drop in concentration from the vascular bundle 
toward the nucellar projection, while at the ETC, the 
level increased again (graph in Fig. 3C). Such a gradient 
could be indicative of transport processes occurring in 
the caryopsis during the main filling stage.

Due to the limitations of technology, we could not 
measure Suc gradients within the caryopsis during 
the prestorage stage (before endosperm cellulariza-
tion). During early development, the caryopsis pos-
sesses a large cavity filled with liquid endosperm that 
is easily lost during tissue preparation (Supplemental 
Fig. S7A). When such sections are imaged, measure-
ment artifacts appear in the Suc map. In our example,  
the absence of Suc signal in the endosperm cavity 

revealing the chemical fingerprint of the sample and the internal standard after six rounds of baseline feature extraction (D). 
EMSC, Extended multiplicative signal correction. Abbreviations in the equation are as follows: Absn,pixel, Normalized pixel 
absorbance; ci, coefficient of compound I; cAbs,MMI, coefficient of membrane; Absi, spectrum derived from purified compound 
I; E, noise.

Figure 1. (Continued.)
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(Supplemental Fig. S7B) could be misinterpreted as the 
absence of Suc in the endosperm. Suc cannot be imaged 
in large structureless regions. Thus, a careful and critical 
quality control of tissue sections always is required.

Comparison of Suc and Starch Gradients in the Same 
Tissue Sections

We next tested if FTIR spectral data also can be used 
to analyze starch distribution across the imaged sections. 
For this, we first identified the starch-specific FTIR  
signal, applied the detection scheme (as outlined in  

Fig. 1), applied a calibration routine, and ultimately mod-
eled starch distribution across the same section of the 
caryopsis used for Suc mapping. The entire data set is 
presented in Figure 4. It appeared that, at this develop-
mental stage, starch accumulation was confined mainly  
to the two wing regions of the endosperm. Starch im-
aging by FTIR was compared with an iodine-staining 
image of the same cross section. Both patterns show 
strong similarities (Fig. 4, A and C). We thus conclude 
that FTIR imaging data also can be used to get additional  
quantitative and spatially resolved information on 
starch distribution. The direct comparison of gradients 

Figure 2. Quantitative imaging of Suc in the barley stem. A, The barley spike and a cross section through the stem enveloped by 
the flag leaf’s sheath. B, Color map used to visualize Suc gradients across the stem. The FTIR image was scaled to coincide with 
the resolution of the visual image (shown as an inset), which demonstrates the cellular structure of a vascular bundle. Phi, Inner 
vasculature phloem; PHo, outer vasculature phloem; XL, inner vasculature xylem. Bar = 50 µm. C, Plot showing the correlation 
between the relative absorbance per pixel and the Suc concentration per unit of area measured using in situ Suc standards. The 
in silico-generated data (shown in gray) indicate single-pixel variances (pixel size of 2.75 × 2.75 µm). D, Correlation between 
Suc concentrations as estimated by FTIR imaging and as measured by ion chromatography. Tissue section thickness was 16 µm.
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for Suc and starch within the endosperm is shown in 
Figure 4D. While Suc generally declines from the ETC 
toward the peripheral endosperm, starch shows the 
opposite pattern. The decline in Suc and increase in 
starch were much more pronounced toward the side 
lobes of the endosperm. As starch is the major prod-
uct of Suc conversions in the endosperm, the compari-
son of Suc versus starch gradients across the caryopsis 
adds value to the functional interpretation of data sets.

Application of High‑Resolution Suc Mapping to 
Arabidopsis Plants

Arabidopsis is still the most popular model plant 
and has been investigated thoroughly by all biological 

disciplines (Somerville and Koornneef, 2002). Not-
withstanding, tissue-specific analysis of Suc distri-
bution and metabolism is challenging and relies on 
either tissue microdissection or genetically encoded 
FRET sensors. In order to test the applicability of our 
Suc-imaging technology for Arabidopsis, we chose the 
genotype Columbia-0 (Col-0) and its double mutant 
atsweet11;12 with knockouts of the respective sugar 
transporters. The double mutant plant has been char-
acterized previously and shows a characteristic re-
duction of growth due to altered phloem loading and 
sugar turnover (Chen et al., 2012; Gebauer et al., 2017).

Here, we show how the mutation affects Suc distri-
bution in the hypocotyl/stem. We first identified two 
regions of interest: the inner cambial region (including 
the adjacent secondary growth region of the xylem) 
and the outer vascular region (all vascular bundles 
including surrounding tissues; Ragni and Greb, 2018). 
Representative Suc images through the hypocotyl of 
both genotypes are shown in Figure 5, B and C. Com-
parison of genotypes revealed that the cambial region 
of the double mutant accumulated Suc at statistically 
significantly higher levels compared with Col-0, while 
in the outer vascular region, embedding in the vascu-
lar bundles, the Suc level was lowered (Fig. 5E). The 
latter finding could possibly be interpreted as a con-
sequence of lower phloem loading in the source of the 
mutant plant. Moreover, for Col-0, we observed Suc 
as more abundant in the inner cambium than in outer 
vascular regions (Fig. 5B). The same trend, but much 
more pronounced, became obvious for the double mu-
tant plant (Fig. 5C). Such a pattern in Suc distribution 
was unknown before and might be related to a prolif-
eration pattern in the hypocotyl. Sankar et al. (2014) 
investigated the secondary growth and uncovered 
the overall dynamics of cell proliferation in different 
regions of the Arabidopsis hypocotyl during develop-
ment. Studies revealed that, during late developmen-
tal stages, phloem cell numbers are stagnating while 
cambial cell numbers still increase with respect to cell 
number. High Suc steady-state levels in the inner cam-
bial regions could be explained by a high sink demand 
of the proliferating xylem tissue. A relevant aspect for 
the interpretation of imaging data is the consideration 
of protein localization and/or the spatial expression 
pattern of SWEET genes. These were described to 
some extent for the leaf/petiole (Chen et al., 2012) but 
remained unknown for the hypocotyl/roots.

While further investigations are needed to unravel 
the exact role of Suc (and sugar transporter activity) in 
the metabolic and developmental control of hypocot-
yl growth, the method is ready to use for comparative 
studies in various Arabidopsis models.

DISCUSSION

Plants transport assimilates largely in the form of 
Suc. In addition to its primary role as an energy source, 
Suc also is used as a signal in various adaptive and 

Figure 3. Imaging of Suc in the barley caryopsis. A, Cross section of a 
caryopsis sampled at 10 DPA. The red arrows indicate the path of the Suc 
supply from the vascular bundle to the endosperm. B and C, Color-coded 
Suc map (B) and light micrograph illustrating the structure of the caryop-
sis in the region of the main Suc translocation pathway (C). The graph at 
bottom of C comprises box plots showing the Suc concentration along the 
pathway (target circle, median; box, interquartile range [IQR]; lines, 1.5 
× IQR). VB, Vascular bundle; NP, nucellar projection; ETC, endosperm 
transfer cell; SE, starchy endosperm; PE, pericarp. Tissue section thickness 
was 16 µm. Bars = 500 µm.
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stress responses (Scialdone et al., 2013; Figueroa and 
Lunn, 2016). Many novel approaches to improve crop 
performance are targeting sugar metabolism and/or 
transport (Guan and Koch, 2015; Nuccio et al., 2015; 
Sonnewald and Fernie, 2018). Thus, an ability to quan-
tify Suc over time and space would serve to advance 
our understanding of crop physiology and yield for-
mation. This article describes a platform based on FTIR 
spectroscopy, allowing the quantitative visualization 
of the distribution of Suc within heterogenous tissues 
of both crops and model plants.

Advantages of FTIR Suc Mapping with Respect to Other 
Imaging Modalities

Our FTIR Suc mapping enables spatially and chem-
ically resolved imaging of Suc, a feature not reached 
so far by mass spectrometry imaging. The latter has 
advantages in detecting multiple compounds, in par-
ticular lipid species (Woodfield et al., 2017), but has 
inherent limitations regarding Suc imaging due to un-
stable/unspecific small molecule ionization and ma-
trix effects. Most recent method developments (Paek 
et al., 2018) seem more appropriate, but so far the 
method has not been successful in providing quanti-
tative Suc maps. FTIR-based mapping can detect Suc 
in a label-free manner, like MRI, but it is applicable for 
the detection of Suc at a concentration down to 20 mm 

and with a spatial resolution of ∼12 µm, both values 
that are not reached at the current state of MRI. FTIR-
based imaging is applicable to any plant and, thus, 
more adequate and practical in the crop context, while 
FRET imaging relies on prior genetic transformation. 
Finally, the new FTIR-based method provides substan-
tially improved sample throughput, versatility, and 
convenience as compared with quantitative biolumi-
nescence and single-photon imaging (which is the only 
technique providing comparable spatial and chemical 
resolution). Parallel sample processing and advanced 
mathematical algorithms/computer power are expect-
ed to further enhance throughput.

The major achievement of our approach is to per-
mit a component-specific and standardized analysis 
of Suc distribution in a complex biological sample. Its 
chemical and spatial resolution are sufficient to quan-
tify Suc in individual tissue types within a plant or-
gan, such as seeds, leaf, stem, or hypocotyl (Figs. 2–4). 
The procedure relies on available instrumentation and 
materials and so can be established in any laboratory. 
The method could become a routine monitoring tool 
to track phloem Suc levels as a proxy for the loading/
unloading capacities of (transgenic) crop plants. The 
method is of particular relevance to studies of carbon 
allocation in the context of crop improvement (Ruan, 
2014; Jung et al., 2015). Notably, the approach can be 
broadened to cover a range of other metabolites, as 

Figure 4. Imaging of starch distribution in 
the barley caryopsis. A, Iodine staining il-
lustrates the site of starch deposition. B, 
Calibration curve established using defined 
starch concentrations. C, FTIR image show-
ing the distribution of starch. D, Endosperm 
gradient for Suc and starch in a barley 
caryopsis at 12 d after flowering starting at 
the endosperm transfer cell (ETC) layer to-
ward the side lobes of the endosperm (blue 
arrow in A). The shaded area represents 
50% of the variation within the respective 
data sets. PE, Pericarp; SE, starchy endo-
sperm. Tissue section thickness was 16 µm. 
Bars = 500 µm.
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exemplified by its use for starch imaging. Its capacity 
to characterize the likely heterogeneity in the metabo-
lism of a complex organ opens novel avenues for ana-
lyzing the inner life of plants.

Specific Features, Requirements, and Limitations for 
FTIR‑Based Suc Mapping

The Suc-imaging approach presented here outper-
forms the already existing approaches with respect to 
the ability for quantification, tissue-specific resolution, 
and accuracy. This was achieved by the implementa-
tion of internal standardization procedures and the 
combined use of various mathematical algorithms for 
signal decomposition and normalization (Fig. 1). The 
introduction of a ubiquitous and spatially homoge-
nous internal standard prior to imaging is vital in this 
regard (and already common practice in chromatogra-
phy/mass spectrometry), since alterations in the imag-
ing setup (e.g. light intensity, filter usage, temperature 
shifts, etc.) or algorithmic computation will affect the 
spectral features of the internal standard in the same 
way the sample features would be affected. The in-
ternal standard approach enabled us to compensate 
for resulting alterations to spectral band intensities, 
increasing the quantitative reproducibility of results 
across samples, times, and platforms. To our knowl-
edge, the homogenous distribution of a standard in 
the sample is not achievable by sample infiltration or 
any other means in microscopic analysis that is quan-
tifiable on a pixel-by-pixel basis and is that restrictive 
in altering the sample composition. The quantification 
of analytes in the demonstrated cases is diffraction 

limited depending on the optical system used, which 
results in an optical resolution of ∼10 µm in the 1,000 
wavenumber region. Structures close to that size can-
not be resolved without interfering signals from sur-
rounding areas, even though the digital resolution of 
the detector (∼3 µm) may give a different impression. 
Artifacts also may arise due to the preparation of sam-
ple slides in the case of large structureless regions that 
would be filled with solutions in vivo (Supplemental 
Fig. S7). Cryosections also can suffer from tissue tear 
where soft tissues are adjacent to hard tissues during 
cryocutting, as can be seen in Figure 5, B and C, in the 
dark blue ring between secondary xylem and cambi-
um in the middle and outer regions of ground tissue 
and phloem. Lyophilization may enhance this effect 
due to possible tissue shrinkage during the process.

Compared with either MRI or FRET, our Suc-mapping 
technology has the disadvantage of being invasive. 
FTIR-based mapping is performed on cryosections, 
and its application should be performed with caution. 
First, mapping relies on microscopic and spectroscopic 
analysis. Thus, important requirements for accurate 
performance are the high quality of tissue cryosections 
and the calibration procedure as well as generating an 
appropriate spectral model in order to avoid overfit-
ting and underfitting to exclude optical and numerical 
artifacts. Optical artifacts need to be computed along 
with actual chemical information in the spectral data 
set. This also means that any model parameter can be  
imaged in parallel on the same sample, whereas marker- 
based approaches like FRET or staining techniques often 
have a capacity of only one analyte per sample slide. The 
spectral region selected for modeling determines the 

Figure 5. Imaging of Suc in Arabidopsis hy-
pocotyls. A, Schematic image of Arabidop-
sis. B, Suc map of a Col-0 hypocotyl cross 
section. C, Suc map of the atsweet11;12 
double mutant. D, Three-dimensional 
model of an Arabidopsis hypocotyl with 
designated shaded areas for cambium and 
secondary xylem (xc; red) and phloem 
containing ground tissue (pp; gray). E, Box 
plot of Suc distribution in the respective 
regions of Col-0 and atsweet11;12 hypo-
cotyls (dot point, median; box, interquartile 
range [IQR]; lines, 1.5 × IQR; stars indicate 
statistical significance at P < 0.05 by the 
Mann-Whitney U test). Tissue section thick-
ness was 16 µm. Bars = 500 µm.
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selectivity on which compounds may be modeled as 
part of a component group or individual compound. 
This trend is observed generally for larger molecules, 
which often only can be accounted for in groups (e.g. 
lipids and proteins) because of broader and less indi-
vidual spectral bands, whereas small molecules are 
easier to model due to more unique spectral charac-
teristics. Microspectroscopy, in general, can estimate 
locally heterogenously distributed compounds eas-
ier than homogenously distributed ones in complex 
mixed spectra (e.g. biological tissue). Small hot spots of 
a heterogenously distributed compound would show 
strong spectral similarity to the pure component spec-
tra, and noise introduced by other compounds will 
contribute even less in the case of strong relative dif-
ferences in allocation patterns on a microscopic spatial 
scale.

With the presented equipment, the visualization 
of signal compartmentation is limited to an optical 
resolution of 12 µm; therefore, differences between 
cell compartments close to that margin remain unre-
solved. In order to achieve higher spatial resolution, 
other FTIR objectives (Supplemental Fig. S3) or more 
specialized approaches are required, like atomic force 
microscopy infrared-coupled (Dazzi et al., 2012) or 
synchrotron-based FTIR imaging facilities like the Dia-
mond B22 beamline (Diamond Light Source).

Relevance of FTIR‑Based Imaging for the Analysis of Suc 
Levels in Vascular Tissues of Plants

The introduction of new technology necessarily rais-
es the question of whether the outcome accords with 
what has been measured by established methods. FTIR 
data allow the characterization of Suc levels in phloem 
(and surrounding) tissues, but why does the method 
provide lower concentrations as compared with pub-
lished data on the phloem sap Suc concentration 
(Jensen et al., 2013)?

The phloem consists of several different cell types, 
of which the sieve element cells have received the 
most attention due to their solute-conducting function 
(Truernit, 2014). Sieve element cells are long, narrow 
cells that usually form a functional unit with compan-
ion cells in the architecture of the vascular bundle and 
are genetically and metabolically dependent on the as-
sociated companion cells (Oparka and Turgeon, 1999). 
While the details of phloem structure are beyond the 
spatial resolution of FTIR techniques (the diameter of 
phloem cells could be less than 12 µm), our Suc map-
ping informs about the concentration of Suc in phloem 
tissues and not in the individual phloem cells/vessels, 
as usually occurs by aphid/microsampling (Jensen 
et al., 2013). The aphid/microsampling approach es-
timates the concentration of Suc in sap released from 
individual phloem cells/vessels over time, whereas 
FTIR provides a snapshot of Suc distribution within 
the entire tissue at the moment of freezing. FTIR in-
tegrates the Suc signal across solid matter (cell walls 
and organelles), liquid matter (sap), and intercellular 

spaces (filled with fluids or air). Therefore, the lower 
concentration values provided by FTIR just reflect the 
difference of analyzed matter (i.e. sap versus tissue).

FTIR is designed to characterize the metabolic state 
at the tissue level, whereas both aphid-based sampling 
and microsampling are for investigations of individual 
cells. The characterization of vascular systems at dif-
ferent levels of structural organization (e.g. by combin-
ing different techniques) will open new perspectives 
for investigating the functionality of vascular systems 
(van Bel et al., 2002; Mullendore et al., 2010; Knoblauch 
and Oparka, 2012) and for understanding plant life in 
general.

Experiments with sap-sucking insects can be per-
formed only under distinct growth conditions, and sap 
extracts often need to be collected over several hours 
and/or multiple aphid stylets (to acquire sufficient an-
alytical amounts). The FTIR procedure provides sub-
stantial versatility, since it is not restricted to a specific 
host species or experimental (growth) condition and 
since it depicts the actual (sugar) status at the specific 
time point of sampling. The method allows access to 
parts of the plant that are not accessible by insects to 
be sampled (e.g. developing grains) and can analyze 
a number of tissues simultaneously (Fig. 2) as well as 
compare Suc levels across different phloem strands in 
the stem, leaves, or other organs (Supplemental Fig. 
S6). Based on the high spatial resolution of the FTIR 
method, whole-plant Suc mapping (comprising all 
organs/tissues like developing embryo, germinating 
seeds, or root) is now feasible. A related option is to 
systematically map all vascular bundles across the leaf 
or stem for the comparison of sugar levels inside the 
phloem. As documented here, we found distinct Suc 
levels in inner versus outer vascular rings of a barley 
stem, which was unexpected given the concept that 
cereal plants are rather nonsectorial (Watson and 
Casper, 1984). Thus, novel FTIR-based sugar map-
ping is a useful instrument for testing long-standing 
knowledge and generating new ideas on the inner life 
of plants.

Suc Mapping Promotes the Study of Postphloem 
Allocation Processes

The novel FTIR method is a reliable tool to trace Suc  
allocation along the postphloem pathway (Figs. 3 and 5). 
In the barley caryopsis, Suc intake occurs via the main 
vascular bundle located in the ventral pericarp, as 
was shown by in vivo 13C/1H-NMR imaging (Melkus 
et al., 2011; Radchuk and Borisjuk, 2014; Rolletschek  
et al., 2015). Thereby, concentration gradients are formed 
along the allocation pathway, which are nicely re-
flected in our Suc maps. The concentration of Suc in 
postphloem regions of the pericarp drops slightly 
and increases again in the ETC region. Such gradients 
could be indicative for passive unloading at the vein 
but active loading against the concentration gradient 
at the ETC via a set of sugar transporters (Lopato et al.,  
2014; Thiel, 2014). From the ETC, most of the Suc 
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moves passively into the storage tissue, resulting in the 
formation of a steep negative gradient from the ETC 
toward the peripheral endosperm. Altogether, the Suc 
profiles accorded well with what has been revealed 
by a variety of molecular and biochemical studies. We 
conclude that the FTIR platform (1) visualizes the dis-
tribution of Suc at the cell-type level of resolution and 
(2) generates Suc maps that can reflect the postphloem 
allocation process.

Beside Suc, FTIR also can analyze the distribution of 
other metabolites like starch (Fig. 4). Our quantitative 
data identified a characteristic pattern of starch distri-
bution, which was described earlier and is explained 
largely by distinct local conditions favoring starch 
biosynthesis under hypoxic conditions inside the en-
dosperm (Rolletschek et al., 2004). The characteristic 
histological pattern (based on iodine staining) now has 
become quantitatively proven.

MATERIALS AND METHODS

Plant Material and Sampling

Barley (Hordeum vulgare ‘HOR 13170’) was grown in a greenhouse at 20°C 
during the day and 17°C at night. The light period lasted from 6 am for 16 h 
until 10 pm. The plants were grown in a substrate mixture of compost earth, 
white peat, and sand in 2-L (14.8-cm diameter) pots. Samples of various plant 
organs were harvested and immediately frozen in liquid nitrogen to be stored 
at −20°C. Leaf and stem samples were harvested at anthesis at the beginning 
of the light period (30 min of light). Leaves were cut below the ligule, and stem 
samples were harvested 2 cm above the third node. Developing seeds were 
sampled from the central spike at position 2 within the spikelet at 8 to 10 d 
after flowering, 8 h into the light period. Isolated seeds were husked before 
cryoconservation. Arabidopsis (Arabidopsis thaliana) plants were a generous 
gift of the Department of Integrative Plant Biology at the Institute of Plant 
Genetics of the Polish Academy of Sciences in Poznan. The accession Col-0 
was used as a genetic background. The atsweet11;12 double mutant is a cross of 
SALK_073269 and SALK_031696 lines as described earlier (Chen et al., 2012). 
Arabidopsis plants were grown in a phytochamber at 22°C during the day 
and 20°C at night, with a light period of 9 h per day and 120 µmol m−2 s−1 
irradiance. Hypocotyl segments were harvested 41 d after germination and 
immediately frozen in liquid nitrogen.

Cryosectioning and Mounting of Tissues Sections for 
Mapping

Cryosections were prepared from frozen plant materials. Samples were 
embedded in Tissue-Tek cryomolds using Tissue-Tek O.C.T. (Sakura Finetek) 
or 2% (w/v) carboxyl methylcellulose solution at −20°C. Embedded tissue 
blocks were trimmed, cross sectioned (10–20 µm thick) with a cryotome (Thermo 
Fisher Scientific CryoStar NX7; Microm International), and transferred onto 
MMI membrane slides (RNase free; product no. 50102; Molecular Machines &  
Industries). These slides also were used for internal standardization as de-
scribed below. Tissue sections were lyophilized and stored in darkness at room 
temperature until analysis.

Image Acquisition

Images of tissue samples were generated using a Hyperion 3000 FTIR mi-
croscope (Bruker Optics) coupled to a Tensor 27 FTIR spectrometer (Bruker 
Optics) using the internal mid-infrared source. The system is equipped with a 
focal plane array (FPA) detector (64 × 64 pixels), which was used in transmis-
sion mode. The imaging system was purged with dry air continuously. FTIR 
images were recorded in the spectral range of 3,900 to 800 cm−1 at a spatial  

resolution of 5.5 µm for larger images (OPUS; binning 2 × 2 pixels) and 
2.25 µm for smaller samples and a spectral resolution of 6 cm−1 using 15× 
infrared magnification objectives (Bruker Optics) with a numerical aperture of 
0.6 with an optical resolution of 11.2 µm at 900 cm−1. Each spectrum comprised 
64 coadded scans. A reference of a single FPA window of the empty light path 
was acquired prior to image acquisition and subtracted automatically from the 
recorded image by OPUS software (Bruker Optics).

Data Processing

Data processing was done on a Windows 7 (64-bit) desktop computer with 
Intel Core i7-6700K CPU (4.00 GHz) and 16 GB RAM. OPUS files were import-
ed into Matlab (R2016; The MathWorks) as ENVI files using the multibandread 
function or by the irootlab toolbox (Trevisan et al., 2013). Image data were 
reduced to desired areas of interest and cropped to a spectral range (wave 
number) of 2,200 to 850 cm−1. Further data processing was done in two major 
steps of baseline feature extraction and metabolite feature extraction. Each of 
these steps followed the routine described in Figure 1, while the model for 
metabolite feature extraction excluded already extracted baseline features.

Iterative Processing Step 1: K‑Means Clustering

The reduced data set was pooled into n data clusters according to K-means 
clustering, as described by Nguyen et al. (2016). The described clustering 
approach was performed to aliquot imaging data into smaller data sets for 
computation and subsequently decreasing variance within each subset. Here, 
clustering was computed using Euclidean distances for two to 20 clusters 
per iteration. The optimal classification was determined by their Pakhira- 
Bandyopadhyay-Maulik validity indices. Each aliquot could be divided again 
by K-means clustering to reduce data set sizes further if necessary.

Iterative Processing Step 2: Feature Extraction

After aliquotation of the data by K-means clustering, each aliquot was com-
puted separately and only combined again at the end of each iteration step. 
The model used was different depending on whether the iterative step is part 
of the baseline feature extraction or the metabolite feature extraction.

For baseline feature extraction, the approach was adopted from the 
Mie-scatter extended multiplicative signal correction as described by various 
authors (Kohler et al., 2008; Bassan et al., 2010, 2012; Baker et al., 2014; Salzer 
and Siesler, 2014). Mie-scattering components were derived from the first five  
principal components of a Mie theory model based on refractive index vari-
ations between 1.1 and 1.5 at the surface of spheres with radii from 0.2 to  
20 µm. The first four principal components of residual background signals 
(e.g. water vapor and CO2 bands extracted from air and empty membrane 
reference images; Supplemental Fig. S1A) were added along with a principal 
component matrix of a pure spectra library of proteins, lipids, carbohydrates, 
amino acids, and secondary metabolites common in plant tissue and the pure 
MMI membrane spectrum. After modeling, baseline and Mie-scattering fea-
tures were subtracted from the sample spectra before the next iteration started. 
In general, four to six iterations were sufficient for the baseline coefficients to 
converge, at which point sample spectra were defined as baseline free. The 
final scores of the metabolite principal component matrix already could be 
used for statistical analysis.

Quantitative modeling of Suc, starch, and the MMI membrane was per-
formed by further iterations. Prior to data modeling, the aliquoted data sets 
were extended by a set of pure spectral standards (external standards) for 
the parameters that were investigated (as shown in Supplemental Fig. S2). 
This was done to track numerical errors introduced into the data, both by 
finite precision limitations and truncation errors as a result approximations 
as a means to simplify mathematical equations. These errors would be rep-
resented similarly within the sample data and the external standard set that 
was processed alongside the real data. After undergoing partial least squares 
regression, the calculated coefficients for the remodeled external standards 
were compared with their original values by Pearson correlation in order 
to create performance validation parameters of how well the modeled stan-
dards were explained by the sample data. If the data were satisfactory, the 
calculated absorbance coefficients were normalized in relation to the internal 
standard values. This allowed the comparison of different data sets; therefore, 
concentration distributions could be calculated from calibration data sets. In 
the presented images, each metabolite was modeled by partial least squares 
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regression against a background component matrix derived from the principal 
components of 42 different pure spectra from proteins, amino acids, carbohy-
drates, lipids, and other secondary metabolites common in plant tissue. This 
was sufficient to explain the variation in imaging data of the presented plant 
tissue samples. The calculated concentrations (cA; Eq. 1) are calculated in pg 
µm−2. In order to transfer these values to more conventional molar concen-
trations, areal concentrations are converted to a volumetric scale (tissue fresh 
volume) by division through cryosection thickness (Δz) and the molar mass of 
the compound in question (Mi; Suc, 342.2965 g mol−1), as seen in Equation 2. To 
give an example, the maximum value (0.244 pg Suc µm−2) in Figure 2B corre-
sponds to 44.6 pmol Suc µm−3 tissue (given a section thickness of 16 µm). If the 
imaged volume contains only liquid (but no solid structures like cell walls), 
this value would equal to millimolar Suc concentration.
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Tests for Validation of the Reproducibility of the Internal 
Standard

In order to proof the reproducibility of the membrane standard, several 
experiments were performed to test the consistency of the membrane signal 
of empty slides over the field of view in one measurement, the signal of the 
same membrane over several measurements, the signal from different batches 
over several measurements, and the signal with regard to different membrane 
types (RNase free or not). Spatial signal variations of the membrane on a small 
scale (2 × 2 FPA areas) and a large scale (1 × 120 FPA diagonal across the slide) 
remained below 1% of the average membrane signal and were measured as 
quantile absolute differences. This represents a very consistent standard with-
in each pixel of an image. Different repeated measurements of one membrane 
and different measurements of different membrane batches increased signal 
variations to 2% to 3% of the average membrane signal (Supplemental Fig. 
S1B), indicating that small system variations occur between measurements 
that can be normalized for sample features by normalization against the internal 
standard. A medium effect size was found only with regard to the RNase-free 
status of the membrane batch, which resulted in quantile absolute difference 
values up to 5% of the average membrane signal.

In Silico Modeling

In order to test the model accuracy, several in silico data sets were created 
to test feature extraction on a close to single-metabolite level. The test had to be 
done in silico in order to ensure the exact definition of reference data, which is 
either highly difficult to achieve or lacking comparable analytical methods to 
produce the reference data on real complex samples with the same resolution. 
The in silico data were designed to test the feature extraction of starch and 
Suc from a matrix composed of 40 individual compounds commonly found 
in biological plant tissue. The compound-specific images were selected from a  
pool of uncorrelated images (R2 < 0.3). These uncorrelated images were created  
by random selections of a 300 × 300-pixel window of a larger Mandelbrot 
simulation image. The selected images were defined by generating random 
coordinates for the center along with a randomized rotation angle of the 300 × 
300-pixel window (Supplemental Fig. S4, D and G). Afterward, Pearson coef-
ficients for the pairwise image correlation were determined, and only images 
with R2 < 0.3 were kept. From 40 of these images, a spectral cube was created 
as a reference for each compound and, in consequence, were merged to create 
a mixed spectral cube, from which the test component images were remodeled 
by partial least squares regression.

The data in Supplemental Figure S4 show the performance of the model 
in reproducing the hidden compound-specific images for the respective me-
tabolites.

Quantification of Suc Using External Standardization

The linear correlation of signal and concentration was tested by lyophiliz-
ing frozen drops of Suc in water with a defined volume across a known area. A 
total of 100 mg of Suc was dissolved in 2 mL of water. Aliquots of different con-
centrations were prepared as a dilution series (0.001–20 g L−1). The recrystal-

lized Suc was imaged after lyophilization (Supplemental Fig. S8). The spectral 
data were modeled with Suc (raw image, Supplemental Fig. S8A), the MMI 
membrane (raw image, Supplemental Fig. S8B), and water as parameters. The 
normalized Suc signal (Supplemental Fig. S8C) was averaged across the im-
aged area and plotted against the average areal concentration from the tested 
frozen drop, resulting in the linear fit presented in Figure 2C.

In order to validate Suc images after FTIR imaging, we laser dissected nine 
pairs of cryosections of two biological replicates of barley stems at anthesis 
and caryopsis at 10 d after flowering (Supplemental Fig. S5) into representable 
contrasting tissue areas. In this way, we could directly quantitatively compare 
FTIR with ion chromatography results.

Quantification of Starch Using External Standardization

Due to the low solubility of starch, the proof of linearity of the signal and 
concentration was demonstrated with a dilution of starch in KBr. The two 
powders were mixed by thorough grinding in order to achieve a homogenous 
concentration within a specific volume. Starch and Suc were prepared in KBr 
as mixed powder with ratios of 20%, 40%, 60%, 80%, and 100% (w/w). Two 
aliquots per concentration were measured as ATR spectra for each analyte and 
transformed to absorbance spectra by OPUS software. The transformed spec-
tra for Suc were utilized to estimate an average sample volume for the ATR 
spectrometer. Total amounts for starch were calculated from the sample ratios 
and referenced against spectral coefficients as a starch calibration (Fig. 4B). 
Starch staining was done using iodine (Borisjuk et al., 2013).

Laser Microdissection in Cryosections

A CellCut laser microdissection (LMD) system equipped with an Olympus 
IX81 light microscope and CellTools 4.4 software (Molecular Machines & In-
dustries) was used to microdissect tissues from 16- to 20-μm-thick cryosections 
of caryopses and internodes. Microdissection was performed under a 40× ob-
jective using 10 to 25 μm s−1 cut velocity and 1,500 to 2,000 mW laser power, 
each time adjusted to tissue type. The microdissected tissues were collected in 
transparent 0.5 mL IsolationCaps (50204; Molecular Machines & Industries).

Sugar Analysis of Microdissected Samples

Subsequently, 0.3 mL of 80% methanol was added, vortexed for 10 s, and 
shaken vigorously for 20 min at room temperature. To remove any particles 
from the fluid, Vivaclear centrifugal filters with 0.8-μm pore size (SatoriusSte-
dim Biotech) were used (centrifugation at 2,000g for 2 min). The filtrated 
sample extract was used directly for sugar analysis using ion-exchange chro-
matography coupled to pulsed amperometric detection (ICS-3000; Thermo 
Fisher). Separation was carried out on a PA1 column (2 × 250 mm) and a PA1 
guard column (2 × 50 mm) at 25°C by applying an isocratic run with 400 mm 
NaOH at a constant flow rate of 0.7 mL min−1 over 5 min. Authentic standards 
were used for sugar identification and external calibration. All chemicals were 
obtained from Sigma-Aldrich.

Statistical Image Analysis

Comparisons between digitally dissected tissue regions, as in Figures 5 
and others, are based on the nonparametric analysis of signal distributions 
within these areas, due to nonnormal signal distribution characteristics of het-
erogenous tissue images. Box plots and corresponding interquartile ranges are 
based on pixel values of designated areas of at least three biological replicates 
(3 images × n pixels). Extracted features from these regions were compared by 
quantile absolute distance (QAD), and signal distributions for compared areas 
were deemed significantly different by nonparametric statistical analysis for p 
< 0.05 (Mann-Whitney test) and divergence effect size greater than 0.2. QAD 
compares the difference of quantiles of two distributions over the entire range 
of probabilities and is calculated from the mean difference of the quantile func-
tions A−1 and B−1 of two populations as describes in Equation 3.

  QAD  (  A, B )    =    ∫  
0
  

1
    |   A   −1   (  p )    −    B   −1   (  p )    |   dp  (3)

QAD values are always positive and will only become 0 if A and B are 
identical. Divergence effect size (D) is a probability distance between two cu-
mulative distribution functions A and B regardless of their context, according 
to Equation 4.
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   D(A |  |B) = 2 ×  ∫  
0
  

1
    |  B  {   A   −1   (  p )    }    − p |   dp   (4)

Since D(A||B) ≠ D(B||A), a symmetric measure of this parameter can be 
achieved by Equation 5.

   D  (  A, B )    =    1 _ 2  D(A |  |B) +    1 _ 2  D(B |   |  A)   (5)

This effect size is a bounded parameter that can take values between 0 
(identical) and 1 (no commonalities).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Evaluation of the membrane as an internal stan-
dard.

Supplemental Figure S2. Algorithm employed to incorporate external 
standards into the sample data set.

Supplemental Figure S3. Optical resolution of IR microscopy objectives.

Supplemental Figure S4. Detection of Suc and starch in a complex in silico 
spectral matrix.

Supplemental Figure S5. Validation of the Suc-imaging procedure using 
laser dissection and ion chromatography.

Supplemental Figure S6. Imaging of Suc in the barley flag leaf and stem.

Supplemental Figure S7. Example of method limitation in samples with 
large structureless regions.

Supplemental Figure S8. In situ calibration used for Suc imaging.
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