Skip to main content
. 2018 Nov 21;3(11):15837–15849. doi: 10.1021/acsomega.8b01843

Table 2. Important Parameters Used To Establish the Models.

models descriptors methodsa parameters
model 1A MACCS fingerprint k-NN the number of the closet neighbors k = 3.
model 1B PubChem fingerprint k-NN the number of the closet neighbors k = 3
model 1C CORINA Symphony k-NN the number of the closet neighbors k = 10
model 2A MACCS fingerprint DT the maximum depth of the tree d = 0; the minimum number of samples s = 2; the number of features to consider when looking for the best split n = 13
model 2B PubChem fingerprint DT the maximum depth of the tree d = 0; the minimum number of samples s = 4; the number of features to consider when looking for the best split n = 30
model 2C CORINA Symphony DT the maximum depth of the tree d = 8; the minimum number of samples s = 2; the number of features to consider when looking for the best split n = 7
model 3A MACCS fingerprint RF the number of trees n = 100; the max depth of the tree d = 10; the number of features to consider when looking for the best split n = 13
model 3B PubChem fingerprint RF the number of trees n = 70; the max depth of the tree d = 10; the number of features to consider when looking for the best split n = 30
model 3C CORINA Symphony RF the number of trees n = 110; the max depth of the tree d = 6; the number of features to consider when looking for the best split n = 7
model 4A MACCS fingerprint SVM the optimum loss parameter C = 4.0; the kernel function parameter γ = 0.0625
model 4B PubChem fingerprint SVM the optimum loss parameter C = 4.0; the kernel function parameter γ = 0.0015625
model 4C CORINA Symphony SVM the optimum loss parameter C = 4.0; the kernel function parameter γ = 2.0
model 5A MACCS fingerprint DNN the number of hidden layer = 1; the number of neuron = 16
model 5B PubChem fingerprint DNN the number of hidden layer = 2; the number of neuron in first hidden layer = 16, the number of neuron in second hidden layer = 16
model 5C CORINA Symphony DNN the number of hidden layer = 1; the number of neuron = 64
a

NB: naive bayes; k-NN: k-nearest neighbors; DT: decision tree; RF: random forest; SVM: support vector machine; DNN: deep neural net.