Table 7. Predicted Accuracy of the External Validation Set Using the Models Built in This Work.
models | descriptors | methodsa | accuracy (%) | SE | SP |
---|---|---|---|---|---|
model 1A | MACCS fingerprint | k-NN | 63.62 | 0.69 | 0.64 |
model 1B | PubChem fingerprint | k-NN | 75.70 | 0.63 | 0.76 |
model 1C | CORINA Symphony | k-NN | 94.05 | 0.58 | 0.94 |
model 2A | MACCS fingerprint | DT | 77.60 | 0.62 | 0.78 |
model 2B | PubChem fingerprint | DT | 84.56 | 0.45 | 0.85 |
model 2C | CORINA Symphony | DT | 84.30 | 0.59 | 0.84 |
model 3A | MACCS fingerprint | RF | 95.83 | 0.71 | 0.96 |
model 3B | PubChem fingerprint | RF | 94.60 | 0.59 | 0.95 |
model 3C | CORINA Symphony | RF | 98.37 | 0.43 | 0.98 |
model 4A | MACCS fingerprint | SVM | 93.32 | 0.59 | 0.94 |
model 4B | PubChem fingerprint | SVM | 90.60 | 0.44 | 0.91 |
model 4C | CORINA Symphony | SVM | 98.14 | 0.46 | 0.98 |
model 5A | MACCS fingerprint | DNN | 80.79 | 0.71 | 0.81 |
model 5B | PubChem fingerprint | DNN | 80.67 | 0.52 | 0.81 |
model 5C | CORINA Symphony | DNN | 97.97 | 0.57 | 0.98 |
k-NN: k-nearest neighbors; DT: decision tree; RF: random forest; SVM: support vector machine; DNN: deep neural net.