Skip to main content
. 2018 Nov 21;3(11):15837–15849. doi: 10.1021/acsomega.8b01843

Table 7. Predicted Accuracy of the External Validation Set Using the Models Built in This Work.

models descriptors methodsa accuracy (%) SE SP
model 1A MACCS fingerprint k-NN 63.62 0.69 0.64
model 1B PubChem fingerprint k-NN 75.70 0.63 0.76
model 1C CORINA Symphony k-NN 94.05 0.58 0.94
model 2A MACCS fingerprint DT 77.60 0.62 0.78
model 2B PubChem fingerprint DT 84.56 0.45 0.85
model 2C CORINA Symphony DT 84.30 0.59 0.84
model 3A MACCS fingerprint RF 95.83 0.71 0.96
model 3B PubChem fingerprint RF 94.60 0.59 0.95
model 3C CORINA Symphony RF 98.37 0.43 0.98
model 4A MACCS fingerprint SVM 93.32 0.59 0.94
model 4B PubChem fingerprint SVM 90.60 0.44 0.91
model 4C CORINA Symphony SVM 98.14 0.46 0.98
model 5A MACCS fingerprint DNN 80.79 0.71 0.81
model 5B PubChem fingerprint DNN 80.67 0.52 0.81
model 5C CORINA Symphony DNN 97.97 0.57 0.98
a

k-NN: k-nearest neighbors; DT: decision tree; RF: random forest; SVM: support vector machine; DNN: deep neural net.