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Abstract

In this paper, we develop a general Bayesian clinical trial design methodology, tailored for time-

to-event trials with a cured fraction in scenarios where a previously completed clinical trial is 

available to inform the design and analysis of the new trial. Our methodology provides a 

conceptually appealing and computationally feasible framework that allows one to construct a 

fixed, maximally informative prior a priori while simultaneously identifying the minimum sample 

size required for the new trial so that the design has high power and reasonable type I error control 

from a Bayesian perspective. This strategy is particularly well suited for scenarios where adaptive 

borrowing approaches are not practical due to the nature of the trial, complexity of the model, or 

the source of the prior information. Control of a Bayesian type I error rate offers a sensible balance 

between wanting to use high-quality information in the design and analysis of future trials while 

still controlling type I errors in an equitable way. Moreover, sample size determination based on 

our Bayesian view of power can lead to a more adequately sized trial by virtue of taking into 

account all the uncertainty in the treatment effect. We demonstrate our methodology by designing 

a cancer clinical trial in high-risk melanoma.
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1 ∣ INTRODUCTION

Survival models that accommodate a cured fraction in the studied population, known 

collectively as cure rate models, have become popular tools for analyzing data from 

oncology clinical trials. These models have been used for studying time-to-event data for 

various types of cancers, including breast cancer,1,2 leukemia,3 multiple myeloma,4 prostate 

cancer,5 and melanoma.6 When a survival curve plateaus in the right tail after an adequate 

follow-up period, cure rate models can be more advantageous than alternative models such 
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as the Cox proportional hazards model or the piecewise exponential model. In this paper, we 

develop a general Bayesian clinical trial design methodology, tailored to the promotion time 

cure rate model,7-9 that is designed for a scenario in which a previously completed clinical 

trial (ie, a historical trial) is available to inform the design and analysis of the new one. The 

primary purpose of the proposed methodology is to provide a framework that allows one to 

construct a fixed, maximally informative prior a priori while simultaneously identifying the 

minimum sample size required for a new trial such that the design has high power and 

reasonable type I error control from a Bayesian perspective.

The Food and Drug Administration requires that all proposed trial designs demonstrate 

reasonable type I error control. Traditionally, frequentist type I error control (or supremum 

type I error control) has been the focus. This is currently the case for the Center for Drug 

Evaluation and Research but no longer for the Center for Devices and Radiological Health 

where fully Bayesian designs are more common.10 For a design to exhibit Frequentist type I 

error control, the type I error rate cannot exceed some prespecified level at the value of the 

parameter defining the boundary between the null and alternative hypotheses. For unbiased 

statistical tests, this ensures that the type I error rate is controlled for every possible null 

value of the parameter. The requirement to have frequentist type I error control is not an 

issue for Bayesian designs based on objective priors (ie, designs using noninformative priors 

that are designed to yield good frequentist operating characteristics). However, when one has 

informative prior information, if they wish to control the supremum type I error rate strictly 

(and the prior is viewed as data that are conditioned on for analysis), all prior information 

must be discarded. This property is provable for simple cases, and the results we present in 

this paper further illustrate this fact. Thus, while the authors would strongly agree that type I 

error control is an important operating characteristic for trial designs that make use of 

information arising external to the trial, we would also argue that in the presence of credible 

information regarding a treatment effect, compromises with respect to the traditional 

approach to type I error control are warranted.

In contrast to the traditional approach to controlling type I errors, the traditional approach to 

powering a trial (ie, controlling type II errors) is much less conservative. A common 

procedure is to select a plausible (though often optimistic) effect and then determine the 

sample size required to have some specified level of power to detect the non-null treatment 

effect. Even if the chosen parameter values are relatively likely based on historical data (eg, 

maximum a posteriori [MAP] estimates), there is often significant uncertainty in these 

values that goes unaccounted for in the design. Not acknowledging the plausibility of a small 

treatment effect during design can result in a study that is dramatically underpowered. A 

design approach that can naturally take into account all the uncertainty in the treatment 

effect for the determination of power is desirable.

To address the aforementioned challenges, we propose a trial design methodology based on 

Bayesian versions of type I error rate and power. These Bayesian operating characteristics 

are defined as weighted averages of the type I error rate and power associated with fixed 

parameter values with weights determined by prespecified sampling prior distributions over 

the null and alternative parameter spaces. We develop a framework for using one's belief 

about the treatment effect (determined based on the historical data, expert opinion, or both) 
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to construct the needed sampling priors and compare designs based on several possible 

choices in the context of time-to-event trials with a cured fraction. Specifically, we develop 

“default” sampling priors that are constructed through conditioning the historical trial 

posterior distribution on either the null or alternative hypothesis, extensions to the default 

priors that allow removal of implausible effects by truncating the tails of the default priors, 

and sampling priors where the treatment effect distribution is elicited independently of the 

historical data. We note that the Center for Devices and Radiological Health will consider 

designs that control a Bayesian version of the type I error rate when the historical data are of 

high quality,11 although the design may still be required to control the supremum type I error 

rate at an acceptable level (eg, twice the nominal Bayesian type I error rate).

Our results demonstrate that when one permits control of a Bayesian type I error rate, a 

significant fraction of the prior information can be incorporated into the design and analysis 

of the new trial. However, borrowing the prior information is not free. When the historical 

data posterior distribution is highly informative, the size of the future trial must be large to 

justify borrowing a significant amount of the available information. This is the inherent 

compromise in the proposed methodology. Furthermore, when one designs a trial to have 

high Bayesian power, the sample size required will generally be larger than the sample size 

required for a similarly designed trial that is powered to detect the most likely treatment 

effect suggested by the historical data. Hence, our Bayesian design methodology is not 

simply a mechanism for reducing sample size in the new trial, but rather a procedure for 

using the information from the historical trial to inform all aspects of the new trial's design 

and analysis while assuring reasonable type I error control.

The trial design methodology we present in this paper is essentially a Bayesian sample size 

determination method. There is a large literature on Bayesian sample size determination. 

Much of it focuses on simple models including 1 and 2 sample normal or binomial models, 

linear regression models, and generalized linear models. Comparatively, little has been done 

with survival models for right-censored data. Notable exceptions are Ibrahim et al12 and 

Chen et al.13,14 Bayesian designs that control type I error in some sense have been recently 

considered in Ibrahim et al12 and Chen et al.13-15 The approach to type I error control 

considered by those authors is closely related to frequentist type I error control and the 

associated sampling priors can be viewed as limiting cases of the truncated priors that we 

develop in this paper. Bayesian analysis of univariate cure rate models has been considered 

in Chen et al,9,18,19 Ibrahim et al,16,17 and Tsodikov et al.20 For the proposed methodology, 

information from the historical trial is borrowed by way of the power prior.21 Although 

Bayesian analysis using cure rate models with the power prior has been previously 

investigated, the work to date has only focused on analysis with no attention being paid to 

clinical trial design. Frequentist trial design using cure rate models was considered in 

Bernardo and Ibrahim.22

The rest of this article is organized as follows: In Section 2, we develop a stratified 

promotion time cure rate model, discuss some properties, and derive the corresponding 

likelihood. In Section 3, we discuss the power prior and an asymptotic approximation to the 

marginal posterior distribution for the treatment effect that obviates the need for MCMC in 

design simulations. In Section 4, we formally define Bayesian versions of type I error and 
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power and discuss the simulation process for determining an appropriate set of controllable 

characteristics for the new trial. In Section 5, we present a detailed example design using 

data from a previously published clinical trial. We close the paper with some discussion in 

Section 6.

2 ∣ THE PROMOTION TIME CURE RATE MODEL

We consider a flexible promotion time cure rate model where the promotion time 

distribution is allowed to vary over levels of a stratification variable. The unstratified version 

was proposed originally by Yakovlev et al,7 and a thorough treatment from the Bayesian 

perspective was first given in Chen et al.9 The model is typically motivated through a latent 

competing risks framework. Using notation similar to Ibrahim et al,17 we let Ni denote the 

number of “metastasis-competent” tumor cells for subject i that remain after initial 

treatment. We assume that Ni follows a Poisson distribution with parameter 

θi = exp (γzi + xi
Tβ), where zi is a binary treatment indicator; xi = (xi1, …, xip is a p × 1 vector 

of baseline covariates that includes an intercept; γ is the treatment effect; and β = (β1, …, 

βp) is a p × 1 vector of regression coefficients corresponding to the covariates. Further, let Zij 

denote the random time for the jth metastasis-competent tumor cell to produce detectable 

disease in subject i. Hence, one can view Zij as the “promotion time” for the jth metastasis-

competent tumor cell. Conditional on Ni, the Zij are assumed to be independent and 

identically distributed according to the cumulative distribution function F (z ∣ ψsi = 1 – S (z∣ 
ψsi), where si is the stratum to which subject i belongs and ψs represents the promotion time 

model parameters for stratum s. The time to detectable cancer relapse for subject i is given 

by Yi = min {Zij, 0 ≤ j ≤ Ni}, where Zi0 = ∞. Suppressing the notation for covariates, the 

marginal probability of survival past time y for subject i is given as follows:

Sp (y ∣ θi, ψsi
) = P(Ni = 0 ∣ θi) + P(Y i > y ∣ Ni ≥ 1, θi, ψsi

)

= exp( − θi) + ∑
k = 1

∞
S(y ∣ ψsi

)kexp( − θi)
θi

k

k!

= exp ( − θiF(y ∣ ψsi
)) .

(1)

The quantity in (1) is a marginal probability in the sense that it is not conditional on the 

latent number of metastasis-competent tumor cells or even whether or not the subject is 

cured. We note that Sp (∞ ∣ θi, ψsi) = P(Ni = 0 ∣ θi) = exp(−θi) > 0 and hence Sp (y ∣ θi, ψsi) 

is not a proper survival function. The form in (1) shows that the time to relapse is influenced 

by the initial number of metastasis-competent tumor cells as well as their rate of 

progression. The subdensity corresponding to (1) is given by

f p (y ∣ θi, ψsi
) = θi f (y ∣ ψsi

) exp ( − θiF(y ∣ ψsi
))

with corresponding subhazard given by
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hp (y ∣ θi, ψsi
) = θi f (y ∣ ψsi

) . (2)

From (2), it is apparent that the promotion time formulation of the cure rate model leads to a 

proportional hazards structure for the subhazard. The probability of survival past time y 
conditional on subject i being uncured is given by

S∗ (y ∣ θi, ψsi
) = P(Y i > y ∣ Ni ≥ 1, θi, ψsi

)

=
Sp (y ∣ θi, ψsi

) − exp( − θi)
1 − exp( − θi)

,
(3)

and the corresponding hazard is

h∗ (y ∣ θi, ψsi
) = 1

P(Y i < ∞ ∣ Y i > y, θi, ψsi
)hp(y ∣ θi, ψsi

), (4)

Where

P(Yi < ∞ ∣ Yi > y, θi, ψsi
) =

Sp (y ∣ θi, ψsi
) − exp( − θi)

Sp (y ∣ θi, ψsi
) .

We note that S* (y ∣ θi, ψsi) is a proper survival function and, accordingly, h* (y ∣ θi, ψsi) is 

a proper hazard function. Unfortunately, (4) does not have a proportional hazards structure 

since P(Yi < ∞ ∣ Yi > y, θi, ψsi) depends on y. It is straight forward to show that h* (y ∣ θi, 

ψsi) is increasing in θi, which is desirable. This means that increasingly negative values of 

the regression parameters are associated with a greater cured fraction and lower hazard in 

the uncured population.

As pointed out in Chen et al,9 the promotion time cure rate model has a connection with the 

standard mixture cure rate model.23 It can be readily seen from (3) that

Sp (y ∣ θi, ψsi
) = exp( − θi) + (1 − exp( − θi))S

∗(y ∣ θi, ψsi
) .

Thus, the promotion time cure rate model can be written as a standard mixture cure rate 

model with cured fraction exp(−θi) and survival function S* (y ∣ θi, ψsi). For the induced 

standard mixture cure rate model, the cured fraction and the survival function both depend 

on θi, which is an uncommon specification for that model. One can also see that any 

standard mixture cure rate model can be written as a promotion time cure rate model.
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The promotion time cure rate model may be preferred over the standard mixture cure rate 

model for several reasons as noted in Chen et al.9 First, the model has the natural biological 

motivation described above. Second, the model has a proportional hazards structure leading 

to convenient interpretation of covariate effects on the subhazard. The standard mixture cure 

rate model does not have a proportional hazards structure when the cured fraction is 

modeled as a function of covariates using a logistic regression function. Third, the model 

can be efficiently sampled with a Gibbs sampler. Lastly, unlike the standard mixture cure 

rate model, the promotion time cure rate model yields a proper posterior distribution under a 

wide class of noninformative improper priors for the regression coefficients, including a 

uniform improper prior.

To complete the specification of the survival model in (1), we must specify a distribution for 

the promotion times. Common choices are the Weibull distribution (fully parametric) and 

piecewise exponential distribution (semiparametric). Analysis with each of these promotion 

time models is discussed in detail in Ibrahim et al17 for the case where a single promotion 

time model is shared by all subjects. For the design example in Section 4, we use a separate 

Weibull model for each level of the stratification variable. We note that our choice to allow 

stratification in the model for the promotion times is uncommon. However, the model 

selection results discussed in Section 4 suggest that this approach can lead to better fit 

compared with the more standard modeling framework.

Following Ibrahim et al,17 the “complete” data likelihood based on a Weibull model for the 

promotion times can be written as follows:

ℒ(ξ, N ∣ D) = ∏
i = 1

n
S(yi ∣ ψsi

)
Ni − vi(Ni f (yi ∣ ψsi

))
vie

−θiθi
Ni

Ni!
,

where ξ = {γ, β, ψs : s = 1, …, S} is the set of all parameters in the model; ψs = {λs, αs} is 

the set of Weibull promotion time model parameters for stratum s; and D = {(yi, νi, zi, xi, 

si) : i =1, …, n} is the observed data with νi representing whether an event occurred for 

subject i. In what follows, we will represent the collection of all promotion time model 

parameters by ψ to simplify exposition. Bayesian analysis of the promotion time cure rate 

model has been primarily performed using the complete data likelihood with the Ni being 

treated as missing data and therefore included in the Gibbs sampler with the parameters. 

This approach was proposed in Chen et al9 and described in full detail in Ibrahim et al.17 

The benefit of such an approach is that the full conditionals for all parameters are log-

concave (based on the priors discussed in Ibrahim et al17) and so the parameters can be 

easily sampled with rejection sampling or adaptive rejection sampling methods.24 The Ni 

have closed-form full conditionals for direct Poisson sampling. Alternatively, one can 

analytically sum out the latent Ni variables to obtain the “observed” data likelihood:

ℒ(ξ ∣ D) = ∏
i = 1

n
[θi f (yi ∣ ψsi

)]
viexp{ − θiF(yi ∣ ψsi

)} . (5)
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For MCMC analysis based on the observed data likelihood, the regression parameters still 

have log-concave full conditionals, and they can be sampled efficiently with the same 

techniques mentioned above. Unfortunately, the full conditionals for the parameters in the 

promotion time model will not necessarily have log-concave full conditionals, and so we 

recommend slice sampling 25 for those parameters. Even though slice sampling does not 

directly sample from the full conditionals, since the sampling procedure using the marginal 

likelihood does not condition on the Ni quantities, this approach is likely more efficient than 

the Gibbs sampler using the complete data likelihood. In our analyses, when MCMC was 

used, we fit the model using a slice sampler.

3 ∣ THE POWER PRIOR AND THE POSTERIOR DISTRIBUTION

The form of the power prior21,26 using the observed data likelihood formulation in (5) is as 

follows:

π0 (ξ ∣ D0, a0) ∝ [ℒ(ξ ∣ D0)]
a0π0(ξ), (6)

where 0 ≤ a0 ≤ 1 is a fixed scalar parameter; D0 = {(yj, νj, zj, xj, sj) : j = 1, …, n0} is the 

historical data; ℒ(ξ ∣ D0) is the likelihood for the historical data; and π0(ξ) is an initial 

noninformative prior. When a0 = 0, the historical data are essentially discarded and the 

power prior reduces to the initial prior. In contrast, when a0 = 1, the power prior corresponds 

to the posterior distribution from an analysis of the historical data using the initial prior. For 

intermediate values of a0, the weight given to the historical data is diminished to some 

degree leading to a prior that is more informative than the initial prior but less informative 

than using the historical trial posterior as the prior for the new trial. The power prior 

provides a natural mechanism for transforming historical data into a subjective prior. One 

only needs to specify the initial prior π0(ξ) and elicit a value for a0 for the prior to be fully 

specified. In our approach, the value of a0 is determined a priori so that the design yields 

desirable Bayesian power while controlling the Bayesian type I error rate.

Aside from its simple construction, a second appealing characteristic of the power prior with 

fixed a0 is that analysis using it with a noninformative initial prior is closely related to 

weighted maximum likelihood analysis where historical trial subjects are given a weight of 

a0 and new trial subjects are given a weight of one. To see this connection, note that the 

logarithm of the posterior (ignoring the normalizing constant) is given by

log π(ξ ∣ D, D0, a0) = log ℒ(ξ ∣ D) + a0 log[ℒ(ξ ∣ D0)] + log π0(ξ)

= ∑
i = 1

n
wi vi log θi + log f (yi ∣ λsi

, αsi
) − θiF(yi ∣ λsi

, αsi
)

+ ∑
j = 1

n0
w0, j v j log θ j + log f (y j ∣ λs j

, αs j
) − θ jF(y j ∣ λs j

, αs j
)

+logπ0(ξ),
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which is approximately equal to the weighted log-likelihood based on the combined trials 

with wi = 1 for new trial subject i and w0,j = a0 for historical trial subject j. The only 

difference between the logarithm of the posterior distribution and the weighted log-

likelihood is the term log π0(ξ), which has little influence since π0(ξ) is noninformative by 

construction.

When the sample sizes for the new and historical trials are reasonably large, the Bayesian 

central limit theorem assures us that

π(γ ∣ D, D0, a0) ∝ Normal γ ∣ γ , σγ
2 , (7)

where γ  is the weighted maximum likelihood estimator (MLE) from a joint analysis of both 

trials with weights described above and σγ
2 is the relevant diagonal element of the inverse of 

the observed information matrix for the weighted log-likelihood evaluated at the weighted 

MLE. One can then obtain weighted MLEs and perform approximate Bayesian inference by 

appealing to the asymptotic normal approximation in (7). This approach is appealing since, 

for many data models, off-the-shelf software is available for weighted maximum likelihood 

analysis. A slightly better approximation can be obtained by replacing the weighted MLEs 

with MAP estimates and using a normal approximation (ie, Laplace approximation) to the 

full posterior. The only drawback of this approach is that some custom programming will 

likely be required to obtain the MAP estimates through a Newton-Raphson–type procedure. 

In our experience, either technique is sufficient to allow accurate estimation of the Bayesian 

type I error rate and power when the initial prior is sufficiently noninformative. Note that the 

approximations just described result in an approximate multivariate normal posterior 

distribution for ξ. One must simply extract the appropriate mean and variance component to 

approximate the marginal posterior distribution for γ. It is important to note that the 

marginal posterior distribution for some of the nuisance parameters (eg, components of ψ) 

may not be approximately normal. This is not problematic since all that is needed during 

design is for the approximation in (7) to be accurate. In rare cases where it is of interest to 

evaluate inference on parameters other than γ when designing the new trial, a simulation-

based design approach that uses MCMC to fit the model may be necessary.

Using the normal approximation in (7), the posterior probabilities needed for our analyses 

are trivial to compute. Consider the null and alternative hypotheses H0 : γ ≥ 0 and H1 : γ < 

0, respectively. One can approximate the posterior probability P (γ < 0 ∣ D, D0, a0) as 

follows:

P(γ < 0 ∣ D, D0, a0) ≈ P Z1 ≤ − γ
σγ

D0, a0 ≈ P Z2 ≥ γ
γ D, D0, a0 ≈ 1 − Φ γ

σγ
, (8)

where Zi and Z2 are standard normal variables. For the case where γ  and σγ
2 are weighted 

MLEs, the right-hand side of (8) is precisely 1 minus the 1-sided P value from a weighted 

maximum likelihood analysis of the combined trials.
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4 ∣ A SIMULATION-BASED APPROACH TO BAYESIAN DESIGN OF A 

SUPERIORITY TRIAL

The null and alternative hypotheses for a superiority trial in the context of the cure rate 

model may be written as H0 : γ ≥ 0 and H1 : γ < 0, respectively. We will accept H1 if P (γ < 

0 ∣ D, D0, a0) is at least as large as some critical value ϕ. During design, one examines 

various possible values for the number of subjects to be enrolled in the new trial (n), the 

duration of the new trial (T), a0, and ϕ in search of a set of values that provide sufficient 

Bayesian power while controlling the Bayesian type I error rate at no more than α(s). We 

refer to the set of values {n, T, a0, ϕ} as the key controllable trial characteristics.

In general, T should be at least as large as the duration of time it is expected to take for the 

survival curves to plateau. Thus, it is natural to fix T for design purposes based on the time 

when the survival curves approximately level off in the historical trial. This is the approach 

we suggest in practice and the approach taken in our example in Section 5. We further 

restrict the search space for the key controllable trial characteristics by fixing ϕ = 1 – α(s). 

This choice of ϕ is justified by the fact that the posterior probability P (γ < 0 ∣ D, D0, a0 = 0) 

(based on an analysis of the new trial data without incorporating historical data) will be 

asymptotically uniformly distributed when γ = 0 and the model is correct. In other words, 

the posterior probability of the alternative hypothesis has the same asymptotic behavior as a 

frequentist P value when there is a single test of a true null hypothesis. Accordingly, 

rejecting the null hypothesis when P (γ < 0 ∣ D, D0, a0 = 0) ≥ ϕ = 1 – α(s) will provide 

frequentist type I error control at level α(s) (asymptotically). A heuristic justification of these 

ideas follows directly from the relationship in (8) but more rigorous exposition on the 

connection between the so-called posterior probabilities of the half-space and frequentist P 
values can be found in Dudley and Haughton.27 In this light, one can view our design 

procedure as starting out with a size α(s) frequentist hypothesis test (based on taking a0 = 0) 

and then modifying the test by borrowing increasing amounts of information from the 

historical trial until it functions as a size α(s) hypothesis test with respect to the Bayesian 

type I error rate.

4.1 ∣ Formal definition of the Bayesian type I error rate and power

To formally define the Bayesian type I error rate and Bayesian power, we first introduce the 

concepts of sampling and fitting priors that were formalized in Wang and Gelfand 28 and 

extended in Chen et al15 to investigate Bayesian type I error and power. Let π0
(s)(ξ) and π1

(s)(ξ)

be the null and alternative sampling priors and let π(f) (ξ) be the fitting prior. A sampling 

prior specifies a probability distribution for the model parameters conditional on a particular 

hypothesis being true. In the context of the cure rate model, the null sampling prior will give 

zero weight to values of ξ having a negative γ component and the alternative sampling prior 

will give zero weight to values of ξ having a nonnegative γ component. The sampling priors 

are referred to as such because they are used to sample parameter values in the simulation-

based estimation procedure for the Bayesian type I error rate and power. This procedure is 

detailed in section 4.6. The fitting prior π(f) (ξ) is simply the prior used to analyze the data. 

In our case, π(f) (ξ) is the power prior given in (6).
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For a fixed value of ξ, define the null hypothesis rejection rate as

r(ξ ∣ D0, a0) = E [1 {P(γ < 0 ∣ D, D0, a0) ≥ ϕ} ∣ ξ, D0, a0],

where 1 {P (γ < 0 ∣ D, D0, a0) ≥ ϕ} is an indicator that we accept H1 based on the posterior 

probability P (γ < 0 ∣ D, D0, a0) determined by the observed data D. For null values of ξ, the 

quantity r (ξ ∣ D0, a0) is the type I error rate, and for alternative values of ξ, it is the power. 

For “chosen” null and alternative sampling priors, the Bayesian type I error rate α(s) and 

Bayesian power 1 – β(s) are defined as

α(s) = E
π0

(s)(ξ)
[r(ξ ∣ D0, a0)] (9)

and

1 − β(s) = E
π1

(s)(ξ)
[r(ξ ∣ D0, a0)] . (10)

The expectation in (9) is with respect to the null sampling prior distribution for ξ and the 

expectation in (10) is with respect to the alternative sampling prior distribution for ξ. We 

note that Chen et al15 define the Bayesian type I error rate and power in terms of the null and 

alternative prior predictive distribution of the data, ∫ p(D ∣ ξ)π0
(s) (ξ) dξ and ∫ p(D ∣ ξ)π1

(s)(ξ) dξ, 

respectively. Our presentation here simply changes the order of integration to highlight the 

fact that the Bayesian type I error rate and Bayesian power are weighted averages of the 

quantities based on fixed values of ξ. Our recipe for simulation-based estimation of the 

Bayesian type I error rate and Bayesian power follows closely the presentation in Chen et al.
15

4.2 ∣ Sampling prior elicitation

The Bayesian type I error rate and power become well defined upon specification of null and 

alternative sampling priors. Of course, there is no one “correct” choice for the sampling 

priors. The guiding principle for selection of these priors is that they should provide weights 

for null and alternative parameter values that are sensible to all stakeholders of the new trial. 

In sections 4.3 to 4.5, we introduce several possible choices for the sampling priors, and we 

compare properties of designs based on them in Section 5. Specifically, we develop 

“default” sampling priors that are constructed through conditioning the historical trial 

posterior distribution on either the null or alternative hypothesis, extensions to the default 

priors that remove implausible effects by truncating the tails of the default prior distributions 

(ie, “truncated” sampling priors), and sampling priors where the treatment effect distribution 

is elicited independently of the historical data (ie, “partially elicited” sampling priors).

Before delving into specifics regarding each type of sampling prior, it is important to 

understand how one might choose from among them for a given design problem. Figure 1 
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provides a flow diagram designed to guide practitioners in this effort. The first question that 

must be answered is whether it is plausible that the investigational therapy could be inferior 

to the control. In some cases, inferiority will be plausible, but in other cases, it may not be. If 

inferiority is simply not plausible, then perhaps the most appropriate null sampling prior 

would place all mass on null values of ξ associated with no treatment effect (ie, γ = 0). This 

null sampling prior can be viewed as a limiting-case truncated null (LN) sampling prior 

defined in section 4.4. If inferiority of the investigational therapy is plausible, then one can 

entertain a null sampling prior that spreads mass over the plausible subspace of null the 

parameter space. A natural way to construct such a null sampling prior is to simply 

condition the historical trial posterior distribution on the null hypothesis (eg, condition on γ 
≥ 0). This method of construction results in a fully data-driven sampling prior. It is a 

reasonable strategy to the extent that one finds the tail of the null sampling prior distribution 

for the treatment effect plausible. Obviously, this determination cannot be made in general. 

If the tail is not plausible, it may be necessary to truncate it at the worst plausible treatment 

effect. As an alternative to constructing a data-driven null sampling prior, it may be possible 

to elicit the null sampling prior from expert opinion. This type of approach provides 

maximum flexibility for controlling the relative weight of null parameter values but requires 

an external source of knowledge that is separate from the historical data.

The process of choosing an acceptable alternative sampling prior will likely be less 

contentious than that of choosing a null sampling prior. The default alternative (DA) 

sampling prior seeks to let the historical data fully determine the relative weighting of 

alternative parameter values for power analysis. We presume that in most applications, the 

historical trial data will suggest that there is treatment efficacy, but the evidence will not be 

overwhelming (hence the desire to conduct another trial). In these cases, the DA prior will 

put significant mass on small treatment effects. If resources permit, sample size calculation 

based on power analysis using the DA sampling prior would make the most sense for design 

problems where any treatment effect would be clinically meaningful. A truncated alternative 

(TA) sampling prior would be preferred in cases where a minimal clinically meaningful 

treatment effect is known or when the default prior has a tail that is too optimistic regarding 

treatment efficacy. As with the null sampling prior case, one can always elicit an alternative 

sampling prior for the treatment effect parameter independently of the historical data.

4.3 ∣ Default sampling priors

The default sampling priors arise naturally when the entirety of one’s knowledge about ξ 
comes by way of the historical data. After collecting that data, one’s belief about the 

parameters is determined by π (ξ ∣ D0) = π0 (ξ ∣ D0, a0 = 1) (ie, the power prior with no 

discounting). In light of this, reasonable choices for the null and alternative sampling priors 

are π0
(s)(ξ) = π(ξ ∣ D0, γ ≥ 0) (the historical posterior given that H0 is true) and 

π1
(s)(ξ) = π(ξ ∣ D0, γ < 0) (the historical posterior given that H1 is true). Figure 2 illustrates the 

marginal posterior distribution for γ based on our analysis of the historical trial data used in 

the example application in Section 5 along with the corresponding default null (DN) and 

alternative marginal sampling priors for γ.
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Conditioning on the null or alternative hypothesis induces changes in the joint distribution 

for ξ with the predominant change being to the distribution for the intercept parameter β1 in 

the model for the cured fraction. Figure 3 presents a kernel density estimate of the bivariate 

null and alternative sampling prior densities for the treatment effect parameter γ and the 

intercept parameter β1 in the model for the cured fraction based on our analysis of the 

historical trial data used in the example application in Section 5. It is clear that if one 

assumes there is a null effect (ie, γ ≥ 0), that implies larger negative values for β1 (ie, a 

higher cured fraction in the control arm). By defining the sampling priors as we have, we 

preserve the stochastic relationships between the treatment and nuisance parameters that are 

implied by the historical data under the assumption that a particular hypothesis is true. A 

standard alternative approach is to specify a point-mass (PM) alternative sampling prior with 

all parameters set to their posterior means. For the null sampling prior, the value of γ is 

simply set to zero with other parameters remaining unchanged. This approach is only 

sensible when γ is independent of the remaining parameters in ξ given D0. As Figure 3 

shows, this is not the case.

4.4 ∣ Truncating the default sampling priors

The default sampling priors previously described are sensible and automatic. However, there 

will be instances where it is desirable to modify the default priors. For example, researchers 

may deem it impossible for the investigational therapy to “decrease” the cured fraction by 

more than a certain amount relative to the control. In addition, researchers may want to 

compute power over a restricted alternative space that rules out implausibly large or 

clinically insignificant effect sizes. In this section, we introduce intuitive modifications to 

the default sampling priors that still preserve the stochastic relationships between the 

treatment and nuisance parameters that are implied by the historical data.

The truncated null (TN) sampling prior is defined as π0
(s)(ξ) = π(ξ ∣ D0, 0 ≤ γ ≤ γ0, u). As γ0,u 

→ 0, less and less information can be borrowed from the historical data if the Bayesian type 

I error rate is to be controlled at level α(s). When γ0,u = 0 (ie, the limiting case), Bayesian 

type I error control is similar to frequentist type I error control in that no information can be 

borrowed if the Bayesian type I error rate is to be controlled at level α(s). The fundamental 

difference between frequentist and Bayesian type I error control is that the latter implicitly 

assumes the nuisance parameters in the cure rate model for the new trial are consistent with 

the posterior distribution from the historical trial after conditioning on the appropriate null 

event (ie, ≤ γ ≤ γ0,u). In other words, Bayesian type I error control is defined based on a 

specific null sampling prior distribution for the nuisance parameters, whereas frequentist 

type I error control is based on a constraint that must be satisfied for any value of the 

nuisance parameters.

The TA sampling prior is defined as π1
(s)(ξ) = π(ξ ∣ D0, γ1, l ≤ γ < γ1, u). If “any” positive 

treatment effect would be clinically meaningful and resources permit, we recommend 

leaving γ1,u = 0 for power analysis. Otherwise, γ1,u can be set to the smallest clinically 

meaningful treatment effect. Secondary power analyses can be performed using more 
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optimistic choices. If desired, one may choose a value for γ1,l to reflect skepticism regarding 

a large positive treatment effect.

4.5 ∣ Partially elicited sampling priors

The TN sampling priors provide a mechanism for ruling out implausible treatment effects in 

the definition of the Bayesian type I error rate or power. However, this strategy only provides 

one avenue for customization of the sampling priors. Unfortunately, it does not provide a 

mechanism by which one can adjust the relative weighting of plausible treatment effects. In 

contrast, direct elicitation of a sampling prior distribution for the treatment effect parameter 

provides complete control. Focusing on elicitation of a null sampling prior for the treatment 

effect, one straightforward approach is to specify a worst-case treatment effect γ0,u and 

choose a parametric distribution π0
(s)(γ) with support restricted to [0, γ0,u] with rate of decay 

in the tail such that π0
(s) γ0, u ≈ 0. This type of strategy was used to construct the elicited null 

(EN) sampling prior depicted in Figure 4, which is presented alongside a pair of default and 

TN sampling priors for comparison purposes. The EN sampling prior has exponential decay 

(λ = 35), shifting substantially more weight to smaller values of γ compared with either the 

default or TN sampling priors. Elicited alternative sampling priors for the treatment effect 

could be constructed using an analogous procedure.

In the case of partially elicited sampling priors for ξ, the key idea is that one will elicit a 

marginal distribution for the treatment effect parameter γ independently of the historical 

data. It is still important to construct a sampling prior distribution for the nuisance 

parameters that is realistic given the assumptions regarding the treatment effect. This 

historical data should be used for this purpose. An EN sampling prior for ξ is defined as 

π0
(s)(ξ) = π0

(s)(γ) × π(β, ψ ∣ D0, γ), where π0
(s)(γ) is a sampling prior distribution over the null 

space for γ and π (β, ψ ∣ D0, γ) is the historical posterior distribution for the nuisance 

parameters β and ψ conditional on γ. An elicited alternative sampling prior could be 

analogously defined.

Drawing samples from the default and truncated sampling priors only requires basic 

rejection sampling. One simply needs to use MCMC to fit the cure rate model to the 

historical data using the initial prior and reject samples that are inconsistent with the 

supported parameter space associated with the sampling prior under consideration. Sampling 

from partially elicited sampling priors requires a 2-step procedure. First, one must draw 

samples from the elicited (marginal) sampling prior distribution for the treatment effect. In 

the case of the EN sampling prior described above, this is accomplished by direct sampling 

from an exponential distribution with rate parameter λ = 35 and rejecting any samples that 

are larger than 0.15. For each sampled value of γ, a corresponding value for β and ψ is 

obtained by using MCMC to draw a single sample from π (β, ψ ∣ D0, γ) (ie, by fitting the 

cure rate model to the historical data treating γ as fixed in the likelihood and initial prior).
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4.6 ∣ Simulation-based estimation of the Bayesian type I error rate and power

In this section, we describe the simulation process that is used to estimate the Bayesian type 

I error rate and power. Let B be the number of simulation studies to be performed. To 

estimate the Bayesian type I error rate, we proceed as follows:

1. Sample ξ(b) from the null sampling prior π0
(s)(ξ) (ξ).

2. Given ξ(b), simulate the new trial data D(b). This can be done using the following 

steps (for each subject):

i. Simulate xi, zi, and si based on the chosen distribution for the 

covariates, randomization fraction, and distribution for the stratification 

variable.

ii. Calculate θi = exp (γzi + xi
Tβ) and simulate Ni ~ Poisson (θi).

iii. Simulate Zij ~ F (z ∣ ξsi independently for j = 1, …, Ni, and calculate zi 

= min (Zij : j = 0, …, Ni) with Zi0 = T.

iv. Simulate the time to censorship, denoted as ci, according to the chosen 

distribution. If only administrative censoring is entertained, then set ci = 

T.

v. iv. If Zi < ci, then set yi = zi and νi = 1; otherwise, set yi = ci and νi = 0.

3. Update the fitting prior π(f) (ξ) based on the likelihood for the simulated data 

ℒ(ξ ∣ D(b)) to obtain the posterior distribution π(ξ∣D(b),D0, a0), and calculate the 

posterior probability of the alternative hypothesis P(γ < ∣ D(b), D0, a0).

4. Compute the null hypothesis rejection indicator for simulated trial b:

r(b) = 1 {P(γ < 0 ∣ D(b), D0, a0) ≥ ϕ} .

5. Approximate the Bayesian type I error rate with the empirical null hypothesis 

rejection rate:

α(s) ≈ 1
B ∑

b = 1

B
r(b) .

Steps 1 to 4 are first repeated for b = 1, …, B to obtain the outcome for each simulated trial, 

and then step 5 combines the results to estimate the Bayesian type I error rate. The process 

for estimating Bayesian power is identical. One simply needs to use the alternative sampling 

prior in place of the null sampling prior in the algorithm above.
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5 ∣ BAYESIAN DESIGN OF A SUPERIORITY TRIAL IN HIGH-RISK 

MELANOMA

The E1690 trial was conducted to assess the use of Interferon Alfa-2b (IFN) as an adjuvant 

therapy following surgery for deep primary or regionally metastatic melanoma. A detailed 

report on the trial was given in Kirkwood et al.6 Briefly, E1690 was a prospective, 

randomized, 3-arm clinical trial designed to evaluate the efficacy of high-dose IFN for 1 year 

and low-dose IFN for 2 years relative to observation (OBS) in high-risk melanoma patients 

using relapse-free survival (RFS) and overall survival endpoints. We restrict our attention to 

the high-dose IFN regimen and consider the design of a subsequent trial to further evaluate 

the efficacy of IFN using an RFS endpoint.

Patients enrolled in the E1690 trial had histologically proven American Joint Committee on 

Cancer stage IIB or stage III primary or recurrent regional nodal involvement from 

cutaneous melanoma without evidence of systemic metastatic disease (disease stages 1, 

T4cN0; 2, T1-4pN1cN0; 3, T1-4cN1; and 4, T1-4N1 recurrent). The randomization and 

primary analysis were stratified by disease stage and the number of positive nodes at 

lymphadenectomy. The primary analysis was based on a stratified log-rank test, and the 2-

sided P value was .054. There were 215 subjects and 114 relapses observed in the high-dose 

IFN group and 211 subjects and 126 relapses observed in the OBS group. Among the set of 

subjects who did not experience relapse, the median observation time was over 4 years. 

Figure 5 presents the Kaplan-Meier estimator for the survival curves for the high-dose IFN 

and OBS groups. Note the clear plateau appearing at approximately 4 years. This suggests a 

cure rate model is appropriate for these data. Overall, the data from E1690 suggest a 

treatment benefit with respect to RFS, but the evidence is not overwhelming by traditional 

statistical criteria.

In the E1690 data, disease stage and the number of positive nodes at lymphadenectomy were 

highly predictive of RFS, and so we consider these characteristics for inclusion in the design 

model to help ensure exchangeability of subjects across the 2 trials. To formally choose the 

design model, we compared a variety of promotion time cure rate models that adjusted for 

these covariates in the model for the cured fraction and/or stratified by them in the model for 

the promotion times. Table 1 lists the 6 best fitting models according to the deviance 

information criterion.29 In addition to the 6 models shown in Table 1, a variety of other 

models were considered including models that adjusted for disease stage in the model for the 

cured fraction and models that stratified by treatment and/or the number of positive nodes at 

lymphadenectomy in the promotion time model. We selected the model having the best fit 

according to deviance information criterion for design. The design model had separate 

Weibull promotion time distributions for disease stages 1 to 2 and for disease stages 3 to 4. 

The model for the cured fraction included an intercept, a treatment indicator, an indicator for 

having 2 to 3 positive nodes, and an indicator for having ≥4 positive nodes. Table 2 presents 

the posterior mean, the posterior standard deviation, and 95% highest posterior density 

interval for all parameters based on an analysis of the E1690 data using independent normal 

priors on the regression parameters (mean zero and variance 105) and independent gamma 

priors on the promotion time model parameters (shape parameter and inverse scale 
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parameter equal to 10−5). Summaries for the default sampling priors are also included for 

comparison. We note the highest posterior density interval for the treatment effect puts a 

nonnegligible amount of mass in both the null region and the alternative region although the 

evidence clearly favors treatment efficacy (about 97.5% of the mass is in the alternative 

region).

Our primary purpose in this section is to compare and contrast designs based on different 

choices of sampling priors. To illustrate how the choice of null sampling prior impacts the 

amount of information that can be borrowed from the historical trial, we considered 4 

possibilities: the DN sampling prior, the TN sampling prior that imposes the constraint that 

γ ≤ 0.15, a partially EN sampling prior that imposes the constraint that γ ≤ 0.15 but has 

more rapid tail decay, and the LN sampling prior that places all mass at γ = 0. For the DN, 

TN, and EN sampling priors, the marginal sampling prior distribution for the treatment 

effect is shown in Figure 4. The constraint that γ ≤ 0.15 corresponds to an assumption that 

the investigational therapy is unlikely to decrease the cured fraction in melanoma patients 

with ≤ 1 positive node at lymphadenectomy by more than 5% relative to the control regimen.

To illustrate how the choice of alternative sampling prior impacts power, we considered 3 

possibilities: a PM alternative sampling prior with parameters set to the DA sampling prior 

means in Table 2, the TA sampling prior that imposes the constraint that −0.41 ≤ γ ≤ −0.14, 

and the DA sampling prior. For the TA sampling prior, the constraint that −0.41 ≤ γ 
corresponds to an assumption that the investigational therapy is unlikely to increase the 

cured fraction in melanoma patients having ≤1 positive node at lymphadenectomy by more 

than 15% relative to the control regimen. The constraint that γ ≤ −0.14 might be applied if 

an increase of less than 5% in the cured fraction for the same patients would not be clinically 

meaningful given other considerations (eg, toxicity).

For design simulations, we assumed uniform enrollment over a period of 3 years and a trial 

duration of T = 6.5 years measured from the time of enrollment of the first subject. The only 

censoring was administrative at the time of trial completion. To maintain a plausible 

relationship between cancer stage and number of positive nodes at lymphadenectomy, we 

simulated these characteristics by sampling linked pairs with replacement from the E1690 

dataset. We also used 1:1 randomization. We considered designs that controlled the Bayesian 

type I error rate at 2.5% (α(s) = 0.025).

The first step in the design process is to find the largest value of a0 that results in Bayesian 

type I error control for each sample size being considered. To do this, we performed 

simulations studies using n ranging from 560 to 860 with a step size of 10 with each n being 

matched with an array of a0 values covering the interval [0-1]. For each combination of n 
and a0, we estimated the Bayesian type I error rate based on 100 000 simulated trials. Next, 

to interpolate and smooth type I error rates for values of n and a0, we performed multiple 

linear regression of the estimated type I error rates onto both n and a0 (considering degree-3 

polynomials in both n and a0 with interactions). For the 4 null sampling priors we 

considered, the smallest R2 value was >0.999, indicating a near perfect fit in all cases. 

Figure 6 presents the estimated Bayesian type I error rate as a function of a0 for each null 

sampling prior for the sample sizes n = 560 and n = 860.
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It is clear from Figure 6 that no information can be borrowed from the historical trial when 

the Bayesian type I error rate is defined using the LN sampling prior. As was noted in 

section 4.4, Bayesian type I error control using the LN sampling prior is closely related to 

frequentist type I error control. In contrast, we see that when the Bayesian type I error rate is 

defined using the DN sampling prior, one is able to borrow a meaningful amount of 

information from the historical trial without surpassing the 2.5% type I error rate threshold 

(a0 = 0.32 for n = 560, a0 = 0.42 for n = 860). Referring back to Figure 4, we note that the 

TN and DN sampling priors were quite similar with respect to the distribution for the 

treatment effect parameter. Given that fact, it is not surprising that the amount of borrowing 

they permit is also quite similar. This suggests that the TN sampling prior need only be 

considered when one wishes to truncate the DN sampling prior tails in such a way as to 

reallocate a substantial portion of the mass.

The proposed methodology is not designed to control the supremum I error rate at any 

specific level. However, we acknowledge that reasonable control of the supremum type I 

error rate (ie, when γ = 0) is a desirable property. Regulatory bodies will likely be interested 

in this even if other stakeholders are not. The worst-case performance of a design (with 

respect to type I errors) can be evaluated by identifying n and a0 pairs based on a Bayesian 

type I error rate defined using a chosen null sampling prior (eg, the DN sampling prior) and 

then evaluating the Bayesian type I error rate for those same pairs using the LN sampling 

prior, which places all mass on γ = 0. Figure 7 presents the estimated supremum Bayesian 

type I error rate when the amount of borrowing is determined using the DN and EN 

sampling priors as well as the case where no borrowing (NB) is performed (ie, a0 = 0). In 

our opinion, the supremum Bayesian type I error rate is quite reasonable for both the DN 

and EN sampling priors for this historical trial dataset. If so inclined, one could approach 

this design problem by directly limiting the supremum Bayesian type I error rate at some 

elevated level (eg, 5%). This latter strategy is precisely the approach one would take if they 

were unwilling to entertain inferiority of the investigational therapy (see Figure 1).

Having identified how much information can be borrowed from the historical trial for each 

sampling size under consideration based on the Bayesian type I error rate restriction, the 

second step in the design process is to identify the minimum sample size required to ensure 

adequate Bayesian power based on the chosen alternative sampling prior. Table 3 presents 

estimated Bayesian power for sample sizes ranging from 560 to 860 for several 

combinations of null and alternative sampling priors. Power analysis where the amount of 

borrowing was determined using the TN sampling prior is omitted because of similarity with 

power analysis where the amount of borrowing was determined using the DN sampling 

prior. For comparison sake, we also performed power analysis for a design with NB. The 

results in Table 3 are based on a similar interpolation and smoothing strategy as described 

above.

A comparison of the power analyses associated with NB suffices to illustrate the 

conservative nature of the DA (or TA) sampling prior compared with the PM alternative 

sampling prior. The NB design that uses the PM alternative prior for power analysis is 

essentially equivalent to a traditional frequentist design that uses an optimistic effect size to 

compute power. For that design, we see that 70% Bayesian power is obtained with a sample 
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size of 580. In contrast, 70% Bayesian power requires sample size of 620 for the TA 

sampling prior and a sample size of 770 for the DA sampling prior. Thus, performing a 

power analysis that acknowledges the full amount of uncertainty in the treatment effect (ie, 

using the DA sampling prior) or at least more uncertainty (ie, using the TA sampling prior) 

results in an appreciably larger sample size. Focusing on the power analysis based on the TA 

sampling prior, one can compare the implications of increasingly liberal Bayesian type I 

error control. When the type I error rate restriction is based on the EN sampling prior, a 

sample size of 720 (a0 = 0.24) is required to have 80% Bayesian power to detect a non-null 

treatment effect. When the type I error rate restriction is based on the DN sampling prior, the 

required sample size falls to 650 (a0 = 0.35).

6 ∣ DISCUSSION

In this paper, we have developed a framework for clinical trial design in the presence of 

historical data. The proposed methodology allows one to a priori determine a fixed, 

maximally informative prior while simultaneously identifying the minimum sample size 

required for a new trial subject to Bayesian type I error and power requirements. To develop 

a clinical trial design methodology that seeks to borrows information from a historical trial 

(or any other external source of information), one must decide on 2 key features of the 

design: (1) the operating characteristics to which the design must adhere in the presence of 

borrowing and (2) the mechanism through which the prior information will be borrowed. 

There is not 1 correct choice in either case. There are simply choices and their justifications. 

For our development, we settled on Bayesian type I error control and Bayesian power as the 

primary operating characteristics of interest because these constructs allow for the seamless 

incorporation of one's belief about the parameters through specification of null and 

alternative sampling priors. In particular, the authors find controlling the Bayesian type I 

error rate based on the DN sampling prior (for example) to be more appealing than simply 

allowing the supremum Bayesian type I error rate to be elevated by a specified amount, as 

the latter strategy makes essentially no use of the prior information in determining what null 

effects are plausible. In addition, Bayesian power is a natural companion criteria that is 

ideally suited for design problems in which historical data inform the treatment effect.

When exploring different mechanisms for borrowing the prior information, it became 

apparent to the authors that the pool of existing methodology (be it Bayesian or frequentist) 

is not well suited to address the challenges of the design problem we have considered. 

Existing approaches can be broadly categorized into 2 classes of methods: (1) meta-analytic 

methods that attempt to let the statistical model determine or at least influence the amount of 

information borrowed from the historical trial and (2) methods that use interim looks at the 

data and a statistic that measures prior-data conflict to determine whether the prior 

information should be used.

For the first class of methods, commonly applied statistical tools include hierarchical/

random effects models and hierarchical priors. When the prior information consists of a 

single historical trial (or even just a few trials), these approaches are strongly influenced by 

the choice of hyperpriors (which must be informative). To ensure that designs based on these 

approaches have reasonable operating characteristics (whatever they may be), the 
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hyperpriors must be tuned using large-scale simulation studies that are more 

computationally demanding than the approach we have proposed, especially for hierarchical 

priors. Unless the model being entertained is quite simple, the aforementioned challenges 

make these methods impractical for this design problem. The second class of methods are 

not well suited for time-to-event trials where inference is based on the cured fraction. This is 

because these trials are traditionally fixed length and require a relatively long follow-up 

period in order to accurately characterize the cured fraction. Thus, shortening the length of 

the trial by virtue of borrowing prior information is simply not feasible. Of course, fewer 

subjects could be enrolled initially in anticipation of borrowing a certain amount of prior 

information. However, in instances where less information is actually borrowed, enrolling 

and following up on more subjects would be necessary to maintain adequate power. This, of 

course, would greatly increase the length of the trial compared with a traditional trial, 

making this approach equally unappealing. Moreover, for both classes of methods, the 

authors are unaware of any general software that can be used to design clinical trials in the 

presence of historical data for advanced statistical models such as cure rate regression 

models. Rather than attempting to tune a complicated procedure that adjusts the amount of 

information borrowed from the historical trial one way or another in real-time, we find it 

operationally and conceptually much easier to simply discount the prior information a priori 

to the point at which one can live with the consequences of using it even if it is inconsistent 

with the truth. This type of strategy can be applied for virtually any design problem, 

included time-to-event trials with a cured fraction. The logistical complexity of 

implementing the trial, once designed, is no greater than that of running a traditional 

nonadaptive clinical trial.

Exploring designs that borrow information on a treatment effect parameter using a Bayesian 

type I error rate based on the DN sampling prior is still an active topic of research for the 

authors. While the E1690 trial provides an interesting example of a highly informative 

historical trial dataset, we are actively exploring the use of this methodology for datasets 

with a mild to moderate level of informativeness. Our results thus far suggest that this design 

strategy tends to strongly penalize highly informative datasets such that the resulting design 

is similar to cases where the historical data are less informative. A illustration of this 

property is provided in Appendix S1.

In this paper, we have made use of null sampling prior distributions for the entire parameter 

vector ξ but acknowledge that the key parameter of interest is the treatment effect γ. Having 

a plausible null sampling prior distribution for the nuisance parameters is helpful for 

estimating characteristics of the design that are of secondary importance (eg, the expected 

number of events or the expected time until a certain number of events have been accrued). 

The approach that we have taken makes the implicit assumption that, if in fact the null 

hypothesis is true, the nuisance parameters for the new trial model are no more inconsistent 

with the historical data than what is implied by conditioning on 0 ≤ γ ≤ γ0,u for the chosen 

value of γ0,u. Like any assumption, it may not hold. If the nuisance parameters in the new 

trial model are even more inconsistent with the historical data than what is implied by the 

conditioning event, borrowing information through the nuisance parameters may lead to 

inflation of type I error rates beyond what Bayesian type I error control is intended to 
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permit. One straightforward protection that avoids any pitfalls related to null sampling prior 

misspecification is to only borrow information through the treatment effect parameter. That 

is to say, one can allow the nuisance parameters {β, ψ} to differ between the new trial and 

historical trial likelihoods, electing to use what is called a partial-borrowing power prior.12 

This protection can be implemented with little reservation provided one is willing to 

sacrifice the ability to synthesize information on the nuisance parameters across trials. 

However, in the case where one desires to borrow information on all parameters, and when 

both the historical and new trials have approximately balanced sample size across treatment 

groups, the impact of null/alternative sampling prior misspecification for the nuisance 

parameters on type I error control/power is minimal (though such misspecification will 

obviously result in biased estimates of the nuisance parameters). We illustrate this robustness 

property with a simulation study focusing on the type I error rate under null sampling prior 

misspecification in Appendix S2.

The design framework we have proposed uses the historical data to define the sampling 

priors and in the fitting prior. This should not be misconstrued as a double use of the data. In 

actuality, there is only one use of the historical data and that is to define the sampling priors. 

Our use of the historical data in the fitting prior is superficial. It is simply one reasonable 

method for generating a size α(s) hypothesis test with respect to the Bayesian type I error 

rate. One could just as easily fix a0 = 0 in the power prior and modify the posterior 

probability critical value ϕ (making it smaller) until an appropriately sized test is obtained. 

In fact, these 2 approaches result in equivalent hypothesis tests in terms of type I error 

control and power. For example, the designs from Section 4 based on the DN and DA 

sampling priors with n = 560, 660, 760, and 860 (a0 = 0.325, 0.357, 0.391, and 0.422, 

respectively) can be obtained using a0 = 0 by taking ϕ = 0.95, 0.948, 0.945, and 0.943, 

respectively. Our approach uses a standard evidence threshold (ie, ϕ = 1 – α(s)) and 

effectively requires that the total amount of evidence in the combined dataset must exceed 

the standard threshold. The approach that modifies the critical value effectively requires a 

reduced level of evidence in the new trial alone. We chose to incorporate the historical data 

into a power prior because, by doing so, we are able to quantify the fraction of the prior 

information that is used in the design which is appealing.

All design computations were performed using the posterior approximation described in 

Section 3 on the Longleaf computing cluster at the University of North Carolina at Chapel 

Hill. The accuracy of the asymptotic posterior approximation is demonstrated via simulation 

in Appendix S3. Analyses were performed using SAS/STAT® software and R30 using 

underlying C++ code through Rcpp.31 Specifically, R was used to fit the cure rate model 

using MCMC to obtain samples from the null and alternative sampling priors and SAS was 

used for all other aspects of the design simulations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Flow diagram for null sampling prior selection [Colour figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 2. 
π (γ ∣ D0) and corresponding default marginal sampling priors
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FIGURE 3. 
Bivariate kernel density estimate for default alternative and null sampling priors. The 

horizontal axis corresponds to the treatment effect parameter γ, and the vertical axis 

corresponds to the intercept parameter β1 in the model for the cured fraction. The vertical 

axes are presented on the same scale to facilitate qualitative comparison of β1 values
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FIGURE 4. 
Default, truncated, and elicited null sampling priors for the treatment effect γ
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FIGURE 5. 
Kaplan-Meier curves for the E1690 high-dose interferon Alfa-2b (IFN) and observation 

(OBS) groups
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FIGURE 6. 
Estimated Bayesian type I error rate curves and point estimates for sample sizes n = 580 and 

n = 800. Each point estimate was based on 100 000 simulated trials. Curves were estimated 

separately for each null sampling prior using least-squares regression based on cubic 

polynomials in both a0 and n with interactions (R2 > 0.999). DN, default null; EN, elicited 

null; LN, limiting-case truncated null; TN, truncated null
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FIGURE 7. 
Wost-case performance of designs with a0 determined using the default null (DN) and 

elicited null (EN) sampling priors compared with a design with no borrowing (ie, a0 = 0). 

For scatter plot points corresponding to n = 560 and n = 860, the identified values of a0 

(above) and the estimated supremum Bayesian type I error rate (below) are annotated for 

reference
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TABLE 1

DIC for 6 best candidate design models

Stratification variables Cured fraction model covariates Weibull DIC Exponential DIC

Stages 1-2 and 3-4 Treatment, 2-3 nodes, ≥4 nodes 1011.317 1011.557

Stages 1, 2, 3, and 4 Treatment, 2-3 nodes, ≥4 nodes 1014.234 1015.368

Stages 1-2 and 3-4 Treatment, ≥2 nodes 1017.845 1017.530

Abbreviation: DIC, deviance information criterion.
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TABLE 2

Summaries for historical trial posterior and default sampling priors

Posterior Default Alternative Default Null

Parm Mean (SD) HPD Mean (SD) HPD Mean (SD) HPD

γ −0.26 (0.13) (−0.51, 0.00) −0.26 (0.12) (−0.49,−0.02) 0.05 (0.04) (0.00, 0.14)

β1 −0.09 (0.12) (−0.33, 0.14) −0.09 (0.12) (−0.33, 0.14) −0.25 (0.11) (−0.46,−0.04)

β2 0.23 (0.17) (−0.11, 0.57) 0.23 (0.17) (−0.10, 0.57) 0.21 (0.17) (−0.13, 0.54)

γ3 0.77 (0.16) (0.46, 1.08) 0.77 (0.16) (0.46, 1.08) 0.77 (0.16) (0.46, 1.08)

λ1 1.20 (0.13) (0.94, 1.47) 1.20 (0.13) (0.94, 1.47) 1.21 (0.13) (0.96, 1.48)

α1 1.06 (0.07) (0.92, 1.21) 1.06 (0.07) (0.92, 1.21) 1.06 (0.07) (0.92, 1.20)

λ2 0.48 (0.09) (0.30, 0.65) 0.48 (0.09) (0.30, 0.65) 0.49 (0.09) (0.32, 0.66)

α2 0.67 (0.08) (0.52, 0.82) 0.67 (0.08) (0.52, 0.82) 0.67 (0.08) (0.51, 0.82)

Abbreviations: HPD, highest posterior density; SD, standard deviation.
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TABLE 3

Bayesian power estimates for select sample sizes

NB EN DN

n DA TA PM a0 DA TA PM a0 DA TA PM

560 0.62 0.66 0.68 0.21 0.67 0.72 0.75 0.32 0.69 0.75 0.79

570 0.62 0.67 0.69 0.21 0.67 0.73 0.76 0.33 0.70 0.76 0.79

580 0.62 0.67 0.70 0.21 0.68 0.73 0.76 0.33 0.70 0.76 0.80

590 0.63 0.68 0.70 0.21 0.68 0.74 0.77 0.33 0.71 0.77 0.81

600 0.63 0.69 0.71 0.22 0.68 0.74 0.78 0.34 0.71 0.77 0.81

610 0.64 0.69 0.72 0.22 0.69 0.75 0.78 0.34 0.72 0.78 0.82

620 0.64 0.70 0.72 0.22 0.69 0.75 0.79 0.34 0.72 0.78 0.82

630 0.65 0.70 0.73 0.22 0.70 0.76 0.80 0.35 0.72 0.79 0.83

640 0.65 0.71 0.74 0.22 0.70 0.76 0.80 0.35 0.73 0.79 0.84

650 0.65 0.71 0.74 0.23 0.70 0.77 0.81 0.35 0.73 0.80 0.84

660 0.66 0.72 0.75 0.23 0.71 0.77 0.81 0.36 0.73 0.80 0.85

670 0.66 0.72 0.76 0.23 0.71 0.78 0.82 0.36 0.74 0.81 0.85

680 0.66 0.73 0.76 0.23 0.71 0.78 0.83 0.36 0.74 0.81 0.86

690 0.67 0.73 0.77 0.24 0.72 0.79 0.83 0.37 0.74 0.82 0.86

700 0.67 0.74 0.77 0.24 0.72 0.79 0.84 0.37 0.75 0.82 0.87

710 0.68 0.74 0.78 0.24 0.72 0.79 0.84 0.37 0.75 0.82 0.87

720 0.68 0.74 0.79 0.24 0.73 0.80 0.85 0.38 0.75 0.83 0.87

730 0.68 0.75 0.79 0.24 0.73 0.80 0.85 0.38 0.76 0.83 0.88

740 0.69 0.75 0.80 0.25 0.73 0.81 0.86 0.38 0.76 0.83 0.88

750 0.69 0.76 0.80 0.25 0.74 0.81 0.86 0.39 0.76 0.84 0.89

760 0.69 0.76 0.81 0.25 0.74 0.81 0.86 0.39 0.77 0.84 0.89

770 0.70 0.77 0.81 0.25 0.74 0.82 0.87 0.39 0.77 0.85 0.90

780 0.70 0.77 0.82 0.25 0.75 0.82 0.87 0.40 0.77 0.85 0.90

790 0.70 0.77 0.82 0.26 0.75 0.83 0.88 0.40 0.77 0.85 0.90

800 0.71 0.78 0.83 0.26 0.75 0.83 0.88 0.40 0.78 0.85 0.91

810 0.71 0.78 0.83 0.26 0.76 0.83 0.88 0.41 0.78 0.86 0.91

820 0.71 0.78 0.84 0.26 0.76 0.84 0.89 0.41 0.78 0.86 0.91

830 0.71 0.79 0.84 0.27 0.76 0.84 0.89 0.41 0.78 0.86 0.92

840 0.72 0.79 0.84 0.27 0.76 0.84 0.89 0.42 0.79 0.87 0.92

850 0.72 0.79 0.85 0.27 0.77 0.84 0.90 0.42 0.79 0.87 0.92

860 0.72 0.80 0.85 0.27 0.77 0.85 0.90 0.42 0.79 0.87 0.92

Abbreviations: DA, default alternative; DN, default null; EN, elicited null; NB, no borrowing; PM, point mass; TA, truncated alternative.
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