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ABSTRACT Multi-trait and multi-environment data are common in animal and plant breeding programs.
However, what is lacking are more powerful statistical models that can exploit the correlation between traits to
improve prediction accuracy in the context of genomic selection (GS). Multi-trait models are more complex than
univariate models and usually require more computational resources, but they are preferred because they can
exploit the correlation between traits, which many times helps improve prediction accuracy. For this reason, in
this paper we explore the power of multi-trait deep learning (MTDL) models in terms of prediction accuracy. The
prediction performance of MTDLmodels was compared to the performance of the Bayesian multi-trait and multi-
environment (BMTME) model proposed by Montesinos-López et al. (2016), which is a multi-trait version of the
genomic best linear unbiased prediction (GBLUP) univariate model. Both models were evaluated with predictors
with and without the genotype·environment interaction term. The prediction performance of both models was
evaluated in terms of Pearson’s correlation using cross-validation. We found that the best predictions in two of
the three data sets were found under the BMTME model, but in general the predictions of both models, BTMTE
and MTDL, were similar. Among models without the genotype·environment interaction, the MTDL model was
the best, while among models with genotype·environment interaction, the BMTME model was superior. These
results indicate that the MTDLmodel is very competitive for performing predictions in the context of GS, with the
important practical advantage that it requires less computational resources than the BMTME model.
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The key principle of genomic selection (GS) is to build an accurate
prediction model based on a training population consisting of individ-
uals with both genotypic and phenotypic data. Existing GS prediction

models can be grouped into twomain categories based on thenumberof
traits analyzed: univariate-trait (UT) models and multi-trait (MT)
models. Most of the time, UT models are trained to predict the value
of a single continuous (or categorical) phenotype in a testing data set.
When there are many traits (or variables), breeders need to use more
complex analyses in order to obtain all the necessary information from
the data (Everitt and Dunn 1992). For this reason, these situations are
handled by a generalization of univariate models, which involves pre-
dicting multiple traits; the generalized models are known as MT
models.

MT models are concerned with the simultaneous prediction of
multiple traits based on the same set of explanatory input variables.
It is assumed that MT data sets are generated by a single system, most
likely indicating that the captured outputs have some structure. MT
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models are designed to more efficiently capturing the complex rela-
tionships between traits, and most of the time they produce more
accurateparameter estimatesandbetterpredictions than theUTmodels.
MT models exploit not only the correlation between lines, but also the
correlation between traits, which improves its efficiency. UTmodels, on
the other hand, eliminate any possibility of learning from the possible
relationships between traits because a single, independent model is
trained for each trait separately. Another advantage ofMT techniques is
model interpretability (Xiong et al., 2014). A MT model is much more
interpretable than a series of single-trait models because it not only
exploits the relationship between lines, but also among the traits them-
selves. In addition, a MT deep learning model has the advantage that it
does not increase the computational time exponentially when going
from the univariate to the multivariate version, which makes MT deep
learning very attractive.

MTmodels have recently become increasingly popular in GS due to
their great capacity to predict multiple traits simultaneously and also
because they help increase prediction accuracy when the traits are
correlated. MT models are also popular in other fields like ecological
modeling, energy forecasting, data mining (Wang et al., 2015), com-
puter vision (Yan et al., 2015), water quality monitoring, forest mon-
itoring, load/price forecasting and medical image analysis (Zhen et al.,
2015), due to their great effectiveness in solving challenging problems
in a broad range of applications. Also, as one of the reviewers suggested,
there is a great need for multivariate models in emerging fields like
high-throughput phenotyping, where various traits are produced and
not exploited to their full capacity due to the lack of adequate multi-
variate techniques that can exploit the genetic association among phe-
notypic traits. For dealing with multivariate data for high-throughput
phenotyping and longitudinal interdependencies, we suggest reading
the work of Sun et al. (2017), and for studying the relationship among
traits with multivariate mixed models, we suggest reading Xavier et al.
(2017).

In the context of GS, Jia and Jannink (2012) and Jiang et al. (2015)
showed that the larger the genetic correlation between traits, the better
the prediction accuracy of MT analysis compared to UT analysis. Calus
and Veerkamp (2011) reported modest improvement in the prediction
accuracy of MT analysis with regard to UT analysis. Montesinos-López
et al. (2016) found modest improvement in the prediction accuracy of
MT analysis for correlated traits in comparison to data with null cor-
relation between traits. Along these lines, He et al. (2016) found that
MT analysis improves prediction accuracy for correlated traits as com-
pared toUT analysis. Schulthess et al. (2017) also found that in terms of
prediction accuracy,MT analysis performs better thanUT analysis, and
pointed out that MT models are better when the degree of relatedness
between genotypes is weaker. Also, there is evidence that MT analysis
improves accuracy when classifying and identifying superior genetic
constitutions (Montesinos-López et al., 2018) and helps scientists un-
derstand the type of allele interaction involved in heredity and the
relationships between the traits under study (Bertan et al., 2009). In
addition, it increases the precision of genetic correlation parameter
estimates between traits, which helps breeders perform indirect selec-
tion. In general, MT analysis is a powerful tool for clarifying the re-
lationship and the effect of each studied variable and for building more
efficient prediction models (Castro et al., 2013; Huang et al., 2015).

It is documented that MT models have some advantages over UT
models, including: (a) higher prediction accuracy for individual traits
because there is more information (direct or indirect) and better data
connectedness (Colleau et al., 2009), especially when traits with varying
heritabilities are analyzed jointly; this is true if genetic correlations are
significant or substantial with low error correlations; (b) simplified

index selection because optimal weight factors for the total merit index
are the economic weights (Colleau et al., 2009); and (c) procedures for
obtaining genetic and residual covariances and incorporating these in
expected breeding value (EBV) estimates for across-location, across-
country or across-region evaluations (Schaeffer 2001).

Genomicpredictionplays a significant role in the selectionof the best
candidate lines for which there is only measured genomic information.
Achieving accurate phenotypic predictionusing genetic information is a
major goal in GS and plant breeding programs. Accurate prediction
modelswill have great impact on selecting the best lines andon breeding
program strategies. Various approaches for modeling MT data have
been proposed in the context of GS. Themost popular approach forMT
predictionmodeling inplantbreeding is theuseofmixedmodelsunder a
frequentist and Bayesian approach. Selection bymixedmodels focusing
on multivariate analyses is a powerful tool for selecting cultivars under
the Bayesian approach of mixed models. One of these models is the
Bayesian multi-trait and multi-environment (BMTME) model pro-
posed by Montesinos-López et al. (2016), which is a MT version of
the genomic best linear unbiased prediction (GBLUP) univariate
model. Under a frequentist approach, the restricted maximum likeli-
hood (Software ASREML; Gilmour et al., 1995) is one of the most
popular models in the context of mixed models.

Deep neural networks referring to artificial neural networks with
more than twohidden layers, have been explored for prediction inmany
domains. Deep learning (DL) is often presented in the media as a field
that appeared from nowhere during the last decade. However, the key
concepts ofDLhave been developing formore than 60 years, sinceDL is
a specific subfield of machine learning that deals with neural networks
withmore than two layers. The applications ofDL covermany areas, for
example, Qi et al. (2012) developed a unified multi-task, local-struc-
ture predictor of proteins using DL networks as a classifier. Fox et al.
(2018) used DL models to accurately predict blood glucose trajec-
tories. Spencer et al. (2015) developed an iterative DL network for
protein secondary structure prediction. Tavanaei et al. (2017) used a
DLmodel for predicting tumor suppressor genes and oncogenes. DL
models have also made accurate predictions of single-cell DNA
methylation states (Angermueller et al., 2017). Alipanahi et al.
(2015) used DL with a convolutional network architecture to predict
specificities of DNA- and RNA-binding proteins. Menden et al.
(2013) applied DL models to predict the viability of a cancer cell
line exposed to a drug.

In a recent study, Montesinos-López et al. (2018) explored DL
models with densely connected network architecture on nine extensive
genomic data sets, including genomic·environment interaction, and
compared the results to those of the GBLUP model. Results showed
that the DL models appeared to be competitive, since they had higher
prediction accuracy than the GBLUP in 6 out of the 9 data sets in
scenarios that ignored the genotype·environment interaction term.
However, the authors applied univariate modeling and did not attempt
to add other traits to the prediction accuracy.

Based on the previous considerations and the need to adapt DL
methodology to the application ofGS inplant breeding, in this articlewe
propose a MT deep learning (MTDL) model for genomic-enabled
prediction of multiple response variables simultaneously. To evaluate
its performance, we compare the MTDL model against the BMTME
model, which is a Bayesian model for predicting multi-trait and multi-
environment data in the context of GS (Montesinos-López et al., 2016,
2018). Prediction performance was evaluated on three real data sets
using 10 random cross-validations and measuring the prediction accu-
racy based onPearson’s correlation between the observed and predicted
values.
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MATERIALS AND METHODS

Implemented models

Bayesian multiple-trait multiple-environment (BMTME) model:
Thismodelwas implemented byMontesinos-López et al. (2016) and for
a complete understanding of the description of the BMTME model,
first we provide the notations used for the matrix-variate normal
distribution that plays a key role in building the BMTME model.
Matrix-variate normal distribution is a generalization of the mul-
tivariate normal distribution to matrices. The (n·p) random matrix,
M; is distributed as matrix-variate normal distribution denoted as
M � NMn·pðH;V;ΣÞ, if and only if, the (np·1) random vector
vecðMÞ is distributed as multivariate normal as NnpðvecðHÞ;Σ5VÞ;
therefore, NMn·p denotes the (n· p) dimensional matrix-variate nor-
mal distribution, H is a (n·p) location matrix, Σ is a (p · p) first co-
variance matrix, and V is a (n · n) second covariance matrix
(Srivastava and Khatri 1979). vecð:Þ and5 are the standard vectoriza-
tion operator and Kronecker product, respectively. Unlike in a multi-
variate normal model where the data are concatenated into a single
vector of length np, in a matrix-variate normal model, the data ðMÞ are
in an n·pmatrix where each column is a trait (Montesinos-López et al.,
2016). Therefore, the proposed BMTME model is defined as follows:

Y ¼ Xbþ Z1b1 þ Z2b2 þ E (1)

where Y is of order n· L, with L the number of traits and n ¼ J · I,
where J denotes the number of lines and I the number of environ-
ments, X is of order n · I, b is of order I · L, since b ¼ fbilg for
i ¼ 1; ::; I and l ¼ 1; ::; L; Z1 is of order n · J , b1 is of order J · L and
contains the genotype·trait interaction term since b1 ¼ fgtjlg where
gtjl is the effect of genotype·trait interaction term for j ¼ 1; ::; J and
for l ¼ 1; ::; L. Z2 is of order n· IJ , b2 is of order IJ · L and contains
the genotype·environment·trait interaction, since b2 ¼ fgEtjilg
where gEtjil is the effect of genotype·environment·trait interac-
tion for j ¼ 1; ::; J , for i ¼ 1; ::; I and for l ¼ 1; ::; L. Vector b1 is
distributed under a matrix-variate normal distribution as
NMJ·Lð0;Gg ;ΣtÞ; where Gg is of order J · J and represents the Ge-
nomic Relationship Matrix (GRM) and is calculated using the
VanRaden (2008) method asGg ¼ WWT

p , where p denotes the number
of markers and W the matrix of markers of order J · p; and Σt is the
unstructured genetic (co)variance matrix of traits of order L · L,
b2 � NMJI·Lð0;ΣE5Gg ;ΣtÞ, where ΣE is an unstructured (co)-
variance matrix of order I · I and E is the matrix of residuals of order
n · L with E � NMn·Lð0; In;ReÞ, where Re is the unstructured resid-
ual (co)variance matrix of traits of order L · L, and Gg is the genomic
relationship matrix described above (Montesinos-López et al., 2018).

The BMTMEmodel resulting from equation (1) was implemented by
Montesinos-López et al. (2016). Next, we use the modified version of the
Gibbs sampler of the original BMTME model proposed by Montesinos-
López et al. (2016) that was implemented in Montesinos-López et al.
(2018). It is important to point out that model (1) takes into account the
genotype·environment terms in the (Z2b2Þ term and for comparison
purposes, we also ran the model in equation (1) without the (Z2b2Þ term
to study the effect on prediction performance with and without the
genotype·environment term.

Outlined below is the Gibbs sampler implemented by Montesinos-
López et al. (2018) for estimating the parameters of interest in the
BMTME model. While the order is somewhat arbitrary, we suggest
the following:

Step 1. Simulate b according to the normal distribution given in
Appendix A (A.1) of Montesinos-López et al. (2018).

Step 2. Simulate b1 according to the normal distribution given in
Appendix A (A.2) of Montesinos-López et al. (2018).

Step 3. Simulate b2 according to the normal distribution given in
Appendix A (A.3) of Montesinos-López et al. (2018).

Step 4. Simulate Σt according to the inverse Wishart (IW) distribu-
tion given in Appendix A (A.4) of Montesinos-López et al.
(2018).

Step 5. Simulate ΣE according to the IW distribution given in Ap-
pendix A (A.5) of Montesinos-López et al. (2018).

Step 6. Simulate Re according to the IW distribution given in Ap-
pendix A (A.6) of Montesinos-López et al. (2018).

Step 7. Return to step 1 or terminate when chain length is adequate
to meet convergence diagnostics.

The main differences between this Gibbs sampler and that given by
Montesinos-López et al. (2016) are: (i) the modified Gibbs sampler was
built using the matrix-variate normal distribution instead of a multivar-
iate normal distribution; (ii) this modified Gibbs sampler assumes a
general or unstructured variance-covariance matrix for environments,
that needs L · ðLþ1Þ

2 parameters because every term is different, while
the original BMTME model assumes a diagonal variance-covariance
matrix for environments that only needs L parameters since all off di-
agonal elements are zero; and (iii) the original BMTMEmodel used non-
informative priors based on the Half-t distribution of each standard
deviation term and uniform priors on each correlation of the covariance
matrices of traits (genetic and residual). The priors implemented for the
Gibbs sampler described above are given in Appendix A of this article.

Multi-trait deep learning (MTDL) model: Popular neural network
architectures are: (a) densely connected networks, (b) convolutional
networks, and (c) recurrent networks. Details of each type of network,
its assumptions and input characteristics can be found in Gulli and Sujit
(2017), Angermueller et al. (2017) and Chollet andAllaire, (2017). In this
study we implemented a type (a) network, which does not assume a
specific structure in the input features. In general, the basic structure of
a densely connected network consists of an input layer, L output layers
(for multi-trait modeling) and multiple hidden layers between the input
and output layers. This type of neural network is also known as a feedfor-
ward neural network. The implementation of this neural network is
challenging because it requires the following hyperparameters: number
of units (U), number of layers, number of epochs (E), type of regulariza-
tion method and type of activation function. Based on the literature
review, we decided to use the rectified linear activation unit (ReLU) as
activation function and the dropout type of regularization method for
training the models (Gulli and Sujit 2017; Angermueller et al., 2017; and
Chollet and Allaire 2017). The range of the remaining hyperparameters
was determined by a few initial studies of a single fold (80% for training
and 20% for testing), randomly selected from each data set; with these
initial values, we implemented a full factorial design with 6 levels for the
number of units and epochs and 3 levels for the number of layers. For
more details onmodel selection inDLmodels, we suggest the companion
paper of Montesinos-López et al. (2018), where the authors evaluate the
prediction performance of univariate DL models for multi-environment
data. In Appendix B we provide the R code for implementing MTDL
models, while the R package BMTME that is still under development is
available at the following link: https://github.com/frahik/BMTME.

Experimental data sets
Three real data sets were analyzed, one data set comprising maize lines
and two data sets comprising elite wheat lines. The three data sets
included several environments.
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Maize data set 1: This data set was used by Crossa et al. (2013) and
Montesinos-López et al. (2016) and is made up of a total of 309 maize
lines. Three traits were evaluated: grain yield (GY), anthesis-silking
interval (ASI), and plant height (PH); each of these traits was measured
in three environments (Env1, Env2, and Env3) on the same 309 lines.
Phenotypes of each trait were pre-analyzed and adjusted for the exper-
imental field design. The genotyping was done with Genotype by Se-
quencing (GBS) technology with a total of 681,257 single nucleotide
polymorphisms (SNPs); after filtering for missing values and minor
allele frequency, we used 158,281 SNPs. Markers that had 80% of the
maize lines with missing values were removed, and markers with
a minor allele frequency lower than or equal to 0.05 were deleted.

Wheat data set 2: This wheat data set is composed of 250 wheat lines
that were extracted from a large set of 39 yield trials grown during the
2013-2014 crop season in Ciudad Obregon, Sonora, Mexico (Rutkoski
et al., 2016). The measured traits were plant height (PH) recorded in
centimeters and days to heading (DTH) recorded as the number of days
from germination until 50% of spikes had emerged in each plot, in the
first replicate of each trial. Both traits were measured in three environ-
ments and on the same 250 lines. Phenotypes were also adjusted by
experimental design. Genomic information was obtained by genotype
by sequencing (GBS) and we used a total of 12,083 markers that
remained after quality control. Single nucleotide polymorphism calls
were extracted and markers were filtered so that percent missing data
did not exceed 80%. Individuals with 80% missing marker data were
removed, and markers were recorded as -1, 0, and 1, indicating homo-
zygous for the minor allele, heterozygous, and homozygous for the
major allele, respectively. Next, markers with 0.01minor allele frequency
were removed, and missing data were imputed with the marker mean.

Wheat Iranian data set 3: This data set consists of 2374 wheat lines
evaluated in a drought environment (D) and a heat environment (H) at
theCIMMYTexperimentstationnearCiudadObregon,Sonora,Mexico
(27 � 20 9N, 109 � 54 9W, 38 meters above sea level) during the 2010-
2011 cycle and was used in Crossa et al. (2016). Two traits were mea-
sured: days to maturity (DTM) and days to heading (DTH). Both traits
were measured in the two environments and on the same 2374 lines.
The number ofmarkers used was 39,758 that remained after the quality
control process from a total of 40,000 markers originally used.

Experiments evaluated
In this empirical evaluation,we compared the prediction accuracy of the
twoproposedmodels: theMTDLmethod and theBMTMEmodel. Both
methods were implemented in the R statistical software (R Core Team
2018). The MTDL model was fitted with the Keras package (Gulli and
Sujit 2017; Chollet and Allaire 2017) with a densely connected network
architecture. In bothMTDL and BMTME, we used two different sets of
independent variables: the first set was composed of information on
environments and genomes (that takes into account genomic informa-
tion) ignoring genotype·environment interaction, while the second set
included the genotype·environment term in addition to the main ef-
fects of environments and genomes. Under the MTDL model, we
implemented a grid search for choosing the hyperparameters; this
was done using a full factorial design with the following three factors:
(a) number of units (U), (b) number of epochs (E), and (c) number of
layers. These three factors are hyperparameters under the MTDL
model. We studied the following values for the U and E hyperpara-
meters: 50, 60, 70, 80, 90 and 100, and for the number of layers we used
1, 2 and 3. These values were chosen after the previous experiments

were conducted. Thus 6·6·3 = 108 experiments were run for each data
set with densely connected MTDL models.

It is important to point out that the 108 MTDL experiments used
dropout regularization,which is oneof themost effectiveandcommonly
used regularization techniques in neural networks; it was developed by
Srivastava et al. (2014) at the University of Toronto. Dropout regula-
rization is applied to a layer and consists of randomly dropping out
(setting to zero) a number of the hidden layer’s during training. In our
case, the dropout rate was 0.3 (30%); this meant that the percentage of
features that were set to zero was 30% in each hidden layer (Gulli and
Sujit 2017; Chollet and Allaire 2017).

Evaluation of prediction performance With cross-validation: The
prediction accuracy of both MTDL and BMTME models was evaluated
with10randomcross-validations(CV): thewholedatasetwasdividedintoa
training (TRN) and a testing (TST) set; 80% of the whole data set was
assigned to TRN, and the remaining 20% was assigned to TST set. In our
randomCV,oneobservationcanappear inmore thanonepartitionbecause
weusedsamplingwithreplacement.However, thesameobservationisnever
included simultaneously in the training and testing sets of a random
partition. In the design, some lines can be evaluated in some, but not all,
target environments, whichmimics a prediction problem faced by breeders
in incomplete field trials. For this reason, our cross-validation strategy is
exactly the same as that denotedby theCV2proposed and implemented by
Jarquín et al. (2017), where a certain portion of tested lines (genotypes) in a
certain portion of tested environments are predicted since some tested lines
that were evaluated in some tested environments are assumed missed in
others. Since N ¼ J · I denotes the total number of records per each
available trait, then to select lines in the TST data set, we fixed the per-
centage of data to be used for TST (PTesting = 20%). Then 0.20·N (lines)
were chosen at random, and subsequently one environment per line was
randomly picked from I environments. The cells not selected through this
algorithm were allocated to the TRN data set, while the selected cells (ijÞ
were assigned to the TST data set. Lines were sampled with replacement if
J, 0:20 ·N , and without replacement otherwise (López-Cruz et al.,
2015). Themetric used to measure the prediction accuracy of bothmodels
was the Pearson’s correlation and it was calculated from each trait-envi-
ronment combination for each testing set of each random partition; thus
the average of all partitions was reported as a measure of prediction per-
formance. This explained cross validation method is called the outer CV
and was applied for both models. However, in the DL model we also
applied an inner CV strategy for tunning the hyperparameters using the
grid of hyperparameter values defined above (108 experiments). The in-
ner CV strategy consists in spliting each training set of the outer CV, here
20%of data were assigned for testing-inner and 80% for training-inner.The
training-inner data set was used to train the DL model using the grid of
hyperparameters values. This inner CV strategy was facilitated by using the
internal capabilities of Keras by means of the validation_split argument on
the fit() function. The predictve power is assessed in the second part of the
data set (testing-inner). With this, a set of best-fitting hyperparameters
(best combination of units, epoch and layers) from the inner CV loop is
obtained. Finally, these set of hyperparameters were used to predict the
performance in the independent testing data set (testing-outer). Since dif-
ferent traits in different environments have different heritabilities, we report
the accuracy in terms of Pearson’s correlation divided by the square root of
the heritability corresponding to each trait-environment combination.

Data availability
Thephenotypic and genotypic data used in this study canbedownloaded
from the following link: http://hdl.handle.net/11529/10548134.
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RESULTS
Our results are given in four sections. In the three first sections we
report the performance of each real data set analyzed, and in the last
section we compare the prediction performance of both models
for all data sets. In each of the first three sections, first we present a
figure with prediction performance in terms of Pearson’s correlation
under both models BMTME and MTDL with (I) and without (WI)
the genotype·environment interaction term.

Maize data set 1
Next we describe the prediction performance of the BMTME model
without genotype·environment interaction (WI). The prediction
accuracy of this model ranged from 0.222 to 0.451. Figure 1 gives the
predictions under the MTDL model without the interaction term.
Here Pearson’s correlation ranged from 0.305 to 0.540 (Figure 1).
Next we present the prediction performance of the models including
genotype·environment interaction (I). First, under the BMTME
model the predictions ranged from 0.321 to 0.619 in terms of Pear-
son’s correlation. The prediction performance of MTDL is shown in
Figure 1; with the interaction term ranged from 0.266 to 0.501 in
terms of Pearson’s correlation. The standard errors (SE) of the av-
erage Pearson correlation of this data set and of the following data
sets are given in Table C1 of Appendix C.

Wheat data set 2
Next we describe the prediction performance of the BMTME model
without genotype·environment interaction (WI). In terms of Pearson’s
correlation, the range of predictions under this model was from -0.140
to 1.00 (Figure 2). Under the MTDL model without the interaction
term, the predictions ranged from 0.613 to 1.00 and are given in Figure
2. When genotype·environment interaction (I) was considered under
the BMTME model, the range of Pearson’s correlation was from 0.202
to 1.00 (Table C1).With theMTDLmodel the predictions ranged from
0.601 to 1.00 (Figure 2).

Wheat Iranian data set 3
The prediction performance of the BMTME model without
genotype·environment interaction (WI) is presented first. The pre-
dictions of this model in terms of Pearson’s correlation ranged from
0.331 to 0.763 (Figure 3). Figure 3 gives also the predictions under the
MTDL model without the interaction term for each environment-trait
combination; the range of predictions with Pearson’s correlation was
from 0.574 to 0.784. Next the predictions with genotype·environment
interaction (I) are provided. First, under the BMTMEmodel, the range
of predictions in terms of Pearson’s correlation was from 0.998 to 1.00.
The prediction performance of MTDL is shown in Figure 3, with the
interaction term they ranged from 0.738 to 1.00.

Comparing the BMTME model to the MTDL model
Toobtainameta-pictureofthepredictionperformanceoftheMTDLmodel
against the BMTME model, we compared the average predictions across
environments-traits of the MTDL model vs. those of the BMTME model
for each data set. Figure 4 shows that when the genotype·environment
interaction term was ignored in the three data sets under study, the
best predictions were observed under the MTDL model, but when the
genotype·environment interaction term was taken into account, the best
predictions were obtained with the BMTME model. Finally, upon com-
paring the predictions for each data set with the fourmodels resulting from
the two models (BMTME and MTDL) and the two types of covariates
used in the predictor (with and without the interaction term), we found
that in maize data set 1, the best prediction of these four models

corresponded to the BMTME model with the interaction term; this
model was 4.61% better than the second best model, i.e., MTDL
without the interaction term. For wheat data set 2, the best prediction
corresponded to the MTDL model without the genotype·environ-
ment interaction term; this model was 7.31% better than the second
best model (BMTME with the interaction term). For the third data
set, wheat Iranian data set 3, the best prediction corresponded to the
BMTME model with the genotype·environment interaction term;
this model was 16.32% better in terms of prediction accuracy than
the second best model, MTDL with the interaction term.

DISCUSSION
ThekeyobjectiveofGS is tobuildanaccuratepredictionmodel basedon
training populations consisting of individuals with both genotypic and
phenotypic data. For this reason, many univariate prediction models
have been built and evaluated in the GS context. However, breeders
usually select, at the same time, multiple traits that are often genetically
correlated, with correlations that range from weak to strong. For this
reason, in this paper we exploredMTDLmodels for selecting candidate
genotypes in GS that allow the simultaneous prediction of many traits
measured in each experimental unit. We found evidence that MTDL
models are very competitive in terms of prediction accuracy compared
with BMTME models, since the prediction performance of MTDL
models was competitive to that of the BMTME models. In general
terms, the best predictions were produced by the BMTME model with
the genotype·environment interaction term.

Computation efficiency of MTDL vs. BMTME
Additionally, we found that the MTDL model is more computational
efficiency than the BMTME model since for the maize and wheat data

Figure 1 Maize data. Mean Pearson’s correlation for each envi-
ronments-trait combination for the MTDL and GBLUP models.
The top horizontal sub-panel corresponds to the model with
genotype ·environment interaction (I), and the bottom horizontal
sub-panel corresponds to the same model without genotype·environ-
ment interaction (WI).
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set, on average the MTDL was 11.71 and 3.39 times faster, respectively,
than the BMTME model. For the maize data set the BMTME model
required 42.222 hr for its implementation, whereas the MTDL only
required 3.604 hr. For the wheat set BMTME required around 13.86 hr,
while theMTMEmodel only need 4.079 hr. However, it is important to
point out that this difference can bedue to the fact that theMTDLmodel
automatically parallelized the jobs and its efficiency depends on the
number of available cores. Furthermore, when comparing the BMTME
modelwith theunivariateBayesianGBLUPmodel theBMTMEmodel is
considerable more demanding in terms of implementation time; how-
ever, we have not performed a formal comparison in this respect.

Models Without genotype3environment interaction
For the three data sets, when genotype·environment interaction was
ignored in both models, the best predictions were observed with the
MTDLmodels compared to the BMTMEmodel. This can be explained
in part by the fact that DL models use hidden layers that automatically
capture complex interaction terms without the need to pre-specify a
priori covariates that include the interaction terms. This means that,
unlike the BMTME model (and most statistical mixed models), DL
models can capture not only two- or three-way interaction terms, but
also interactions of larger order without the need to specify in the
predictor the covariates corresponding to these interactions. However,
the interpretability of DLmodels is not as transparent nor as easy as the
interpretability of some genomic models such as the GBLUP and
BMTME.

Models With genotype3environment interaction
We found that in the three data sets when taking into account
genotype·environment interaction in bothmodels, the BMTMEmodel
was better than the MTDLmodel in terms of prediction accuracy. This
means that althoughwe found evidence that theMTDLmodel was very

competitive in terms of prediction accuracy, the BMTME model was
superior. Our results indicate that conventional prediction models
based on mixed models (the BMTME model, in our case) are very
powerful tools, with the advantage that they offer a transparent building
process and interpretability, and avoid the time consuming and tedious
task of tuning the hyperparameters that DL models need. However, we
need to point out that our results are valid only for the hyperparameters
used in this research.

General comments
The performance of the MTDL model depends on the set of hyper-
parameters used; these hyperparameters are data dependent, whichwas
corroborated in the three data sets used in this research. These different
combinations of hyperparameters for each data set corroborate the
difficulties found when choosing an appropriate set of hyperparameters
in the implementation ofMTDLmodels andof coursewe are aware that
exploring other sets of hyperparameters the prediction of the MTDL
model can be improved.

It is important to point out that the models (MTDL and BMTME)
used in this research are only appropriate formultiple continuous traits;
of course, each trait can be on a different scale. However, to successfully
implement bothmodels, we recommend rescaling the response variable
foreachtrainingdata set and, after getting the correspondingpredictions
for each testing set, transforming each variable back to its original scale.
There are many ways to rescale the variables, but we used the standard-
ization method (subtracting the mean and dividing by the standard
deviation). However, other types of rescaling methods can be imple-
mented and many times produce similar results in terms of prediction
accuracy. The rescaling process ismore important inDLmodels than in
the BMTMEmodel, since the BMTME works well even when the traits
are in different scales.

One possible explanation for why multi-trait models often perform
better than univariatemodels is that they effectively increase the sample

Figure 2 Wheat data. Means Pearson’s correlation for each environment-
trait combination for the MTDL and GBLUP models. The top horizontal
sub-panel corresponds to the model with genotype·environment interac-
tion (I), and the bottom horizontal sub-panel corresponds to the same
model without genotype·environment interaction (WI).

Figure 3 Iranian data. Mean Pearson’s correlation for each environments-
trait combination for the MTDL and GBLUP models. The top horizontal
sub-panel corresponds to the model with genotype·environment interac-
tion (I), and the bottom horizontal sub-panel corresponds to the same
model without genotype·environment interaction (WI).
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size that is used to train the models. As different traits have different
noise patterns, amodel that learns two ormore traits simultaneously is
able to learn amore general representation. Learning just trait A bears
the risk of overfitting to trait A, while learning A and B jointly enables
the model to obtain a better representation by averaging the noise
patterns.

SomeexplanationsofwhyMTDLmodels are less efficient in termsof
prediction accuracy than BMTMEmodels are: (a) it is documented that
DLingeneral requiresa largeamountofdata for trainingtobe successful,
(b) MTDL models do not have a strong known theoretical foundation,
(c) determining the architecture and the hyperparameters for DL is a
challengingprocessandthewaytoproceedso far is justby trial anderror,
withnotheory toguide the researcher, (d) lackof interpretationof results
is indeedaproblem, and(e) the systemisprone tooverfitting the training
data. However, DL models also have some advantages: (a) they are easy
to adapt to classification or numeric prediction problems, (b) they are
capable of modeling more complex patterns than nearly any algorithm
with less intense computer requirements, (c) theymake fewassumptions
about the data’s underlying relationships, and (d) they are easy to adapt
from univariate trait analysis to multi-trait analysis even with mixed
phenotypes (binary, ordinal and continuous).

Finally, we would like to point out that our results are valid under a
densely connected network architecture with the grid of hyperparameters
used inthe108experimentsconducted.For this reason,webelieve thatwith
other types of network architecture and hyperparameters, it would be
possible to achieve a better performance in terms of prediction accuracy of
the MTDL models. For these reasons, we encourage conducting other
studies to evaluateMTDLmodels in the context of genomic selectionwhile
exploring other network architectures and sets of hyperparameters.

CONCLUSIONS
In this paperwe propose usingMTDLmodels for prediction in genomic
selection.We found that the best predictions correspond to theBMTME
model, but the predictions of the MTDL model were very competitive
with those of the BMTMEmodel, since in one of the three data sets, the
prediction accuracy of the MTDL model was better than that of the
BMTMEmodel.We also found that theMTDLmodel performedbetter
when the covariates corresponding to genotype·environment interac-
tion were ignored. The implementation of the MTDL model also re-
quired less computational resources than the BMTMEmodel. For these
reasons, we have empirical evidence in favor of the MTDL model and
suggest including these models in the toolkit of breeding scientists for

predicting multiple traits simultaneously in GS. Although training the
MTDL models is challenging due to the number of hyperparameters
involved, we found that implementing MTDL models is feasible and
practical in the GS context. However, more research is needed to in-
crease the reliability of our findings.
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APPENDIX A

Setting the hyperparameters for the prior distributions of the BMTME model
The hyperparameters for the BMTMEmodel were set similar to those used in the BGLR software (Pérez and de los Campos, 2014). These rules

provide proper but weakly informative prior distributions so that we partitioned the total variance-covariance of the phenotypes into two
components: (1) the error and (2) the linear predictor. First we provide the variance-covariance of the phenotypes

VarðvecðYÞÞ ¼ Σbt5XXT þ Σt5Z1GgZ
T
1 þ Σt5Z2ðΣE5GgÞZT

2 þ Re5In (B1)

Therefore, the variance-covariance of row i for i ¼ 1; 2; . . . ; n of Y is equal to

VarðyiÞ ¼ Σbtx
T
i xi þ Σtz

T
1iGgz1i þ Σtz

T
2iðΣE5GgÞz2i þ Re (B2)

Therefore, the average of the n rows of equation (B2), called total variance, is equal to

Var
�
�yi
� ¼ Σbt

Xn
i¼1

xTi xi=nþ Σtð
Xn
i¼1

zT1iGgz1iÞ=nþ Σtð
Xn
i¼1

zT2iðΣE5GgÞz2iÞ=nþ Re

Var
�
�yi
� ¼ ΣbtMSbt þ ΣtMSb1 þ ΣtMSb2 þ Re

Var
�
�yi
� ¼ Vy ¼ Vbt þ Vb1 þ Vb2 þ Re (B3)

where: MSbt ¼
Pn
i¼1

xTi xi=n, MSb1 ¼ ðPn
i¼1

zT1iGgz1iÞ=n, MSb2 ¼ ðPn
i¼1

zT2iðΣE5GgÞz2iÞ=n, and
Vbt ¼ ΣbtMSbt (B4)

Vb1 ¼ ΣtMSb1 (B5)

Vb2 ¼ ΣtMSb2 (B6)

Setting the hyperparameters for Σbt : Since EðΣbt

���dfbt;Sbt)= Sbt
dfbt 2 L2 1 and modeðΣbt

���dfbt ;SbtÞ ¼ Sbt
dfbtþLþ1, for dfbt . Lþ 1. Therefore, from

equation (B4),

Σbt ¼ Vbt
�
MSbt (B7)

Thus, if we replace the left-hand side of equation (B7) with the mode of Σbt , then

Sbt
dfbt þ Lþ 1

¼ Vbt

MSbt
(B8)

From (B8) and solving we get Sbt ¼ Vbt · ðdfbtþLþ1Þ
MSbt

. Then by setting R2
1 as the proportion of the total variance-covariance (Vy) that is explained a

priori by the traits, Vbt ¼ R2
1Vy , we have that

Sbt ¼
R2
1Vy · ðdfbt þ Lþ 1Þ

MSbt
(B9)

Once we set dfbt , we can set Sbt as in (B9) and we only need to compute the phenotypic variance-covariance matrix (Vy),MSbt and set R21 as the
proportion of variance-covariance that is explained a priori by the traits. We set as default R2

1 ¼ 0:25.

Setting the hyperparameters for Σt : Also, since EðΣt

��dft1;St1Þ¼ St1
dft1 2 L2 1 and modeðΣt

��dft1;St1Þ ¼ St1
dft1þLþ1, for dft1 . Lþ 1, and using equation

(B5) and (B6), in a similar way as before

Σt ¼ Vb1

MSb1
þ Vb2

MSb2
(B10)

Thus, if we replace the left-hand side of equation (B10) with the mode of Σt , then
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St
dft þ Lþ 1

¼ Vb1

MSb1
þ Vb2

MSb2
(B11)

From (B11) and solving for St ¼ Vb1 · ðdftþLþ1Þ
MSb1

þ Vb2 · ðdftþLþ1Þ
MSb2

, then

St ¼
R2
2Vy · ðdft þ Lþ 1Þ

MSb1
þ R2

3Vy · ðdft þ Lþ 1Þ
MSb2

(B12)

for whichwe only need to compute the phenotypic variance-covariancematrix (Vy),MSb1;MSb2 and setR2
2 andR

2
3 as the proportion of variance-

covariance that a priori is explained by the traits in the genotype·trait and genotype·environment·trait interaction terms. We set as default
R2
2 ¼ R23 ¼ 0:25. In the balanced case,MSb2 ¼ trðZ2ðΣE5GÞZT

2 Þ ¼ trðZT
2 Z2ðΣE5GÞÞ ¼ trðΣE5GÞ ¼ trðGÞtrðΣEÞ, so to complete the setting

value of MSb2, we take trðΣEÞ ¼ 1
trðGÞ

1
3L

PL
l¼1

Vyl , where Vyl is the phenotypic variance of trait l.

Setting the hyperparameters for ΣE: Also, since EðΣE

��dfE;SEÞ¼ SE
dfE 2 I2 1 and modeðΣE

��dfE;SEÞ ¼ SE
dfEþIþ1, for dfE . I þ 1. Let Vy� be the

variance-covariance matrix of the matrix of phenotypic responses, Y�, that resulted from accommodating the information of the matrix of
phenotypic responses (Y) of order n · L, with n ¼ IJ, as a matrix of order n� · I, with n� ¼ JL, that is, the columns of Y� correspond to
environments instead of traits as in Y . Then, in similar fashion, we can define

ΣE ¼ Vb2�=MSb2� (B13)

Thus, if we replace the left-hand side of equation (B13) with the mode of ΣE , then

SE
dfE þ Lþ 1

¼ Vb2�
MSb2�

(B14)

from (B14) and solving for SE ¼ Vb2� · ðdfEþLþ1Þ
MSb2

, then

SE ¼ R2
3Vy� · ðdfE þ I þ 1Þ

MSb2�
(B15)

with MSb2� ¼ tr

�
St

dft þ Lþ 15G

�

Setting the hyperparameters for Re: Also, since EðRe

��dfe;Se)= Se
dfe 2 L2 1 and modeðRe

��dfe;SeÞ ¼ Se
dfeþLþ1, for dfe . Lþ 1. Therefore, in similar

fashion to the above hyperparameters, we set

Se ¼ ð12R2
1 2R2

2 2R2
3ÞVy · ðdfe þ Lþ 1Þ (B16)

APPENDIX B

R code for implementing MTDL models
setwd(“C:/TELEMATICA 2017/Deep Learning Multi-trait”)
rm(list = ls())
######Libraries required#################################
library(tensorflow)
library(keras)
#############Loading data################################
load(“Data_Maize_set_1.RData”)
ls()
####Genomic relationship matrix (GRM)) and phenotipic data######
G=G_maize_1to3
Pheno=Pheno_maize_1to3
head(Pheno)
###########Cholesky decomposition of the GRM######
LG=t(chol(G))
########Creating the desing matrices #################
Z1=model.matrix(�0+as.factor(Pheno$Line))
ZE=model.matrix(�0+as.factor(Pheno$Env))
Z1G=Z1%�%LG
Z2GE=model.matrix(�0+as.factor(Pheno$Line):as.factor(Pheno$Env))
G=data.matrix(G)
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G2=kronecker(diag(3),G)
LG2=t(chol(G2))
Z2GE=Z2GE%�%LG2
###Defining the number of epoch and units#####################
units_M=50
epochs_M=50
##########Data for trait GY#################################
y = Pheno[,3:5]
X = cbind(ZE,Z1G,Z2GE)
head(y)
#############Training and testing sets###################
n=dim(X)[1]
nt=dim(y)[2]
Post_trn=sample(1:n,round(n�0.8))
X_tr = X[Post_trn,]
X_ts = X[-Post_trn,]
y_tr = scale(y[Post_trn,])
Mean_trn=apply(y[Post_trn,],2,mean)
SD_trn=apply(y[Post_trn,],2,sd)
y_ts=matrix(NA,ncol=nt,nrow=dim(X_ts)[1])
for (t in 1:nt){
y_ts[,t] =(y[-Post_trn,t]- Mean_trn[t])/SD_trn[t] }
# add covariates (independent variables)
input ,- layer_input(shape=dim(X_tr)[2],name=“covars”)
# add hidden layers
base_model ,- input %.%
layer_dense(units =units_M, activation=’relu’) %.%
layer_dropout(rate = 0.3) %.%
layer_dense(units = units_M, activation = “relu”) %.%
layer_dropout(rate = 0.3) %.%
layer_dense(units = units_M, activation = “relu”) %.%
layer_dropout(rate = 0.3)
# add output 1
yhat1 ,- base_model %.%
layer_dense(units = 1, name=“yhat1”)
# add output 2
yhat2 ,- base_model %.%
layer_dense(units = 1, name=“yhat2”)
# add output 3
yhat3 ,- base_model %.%
layer_dense(units = 1, name=“yhat3”)
# build multi-output model
model ,- keras_model(input,list(yhat1,yhat2,yhat3)) %.%
compile(optimizer = “rmsprop”,
loss=”mse”,
metrics=”mae”,
loss_weights=c(0.3333,0.3333,0.3333))
# fit model
model_fit ,- model %.%
fit(x=X_tr,
y=list(y_tr[,1],y_tr[,2],y_tr[,3]),
epochs=epochs_M,
batch_size = 50,
verbose=0)
# predict values for test set
Yhat ,- predict(model, X_ts) %.%
data.frame() %.%
setNames(colnames(y_tr))
predB=Yhat
y_p=predB
for (s in 1:nt){
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y_p[,s]=y_p[,s]�SD_trn[s]+ Mean_trn[s]
y_ts[,s]=y_ts[,s]�SD_trn[s]+ Mean_trn[s]
}
#################Observed and predicted values############
Y_all_tst = data.frame(cbind(y_ts, y_p))
Y_all_tst
########Prediciton accuracy with Pearson Correlation######
Cor_Mat=cor(Y_all_tst)
Cor_Traits=diag(Cor_Mat[(nt+1):(2�nt),1:nt])
Cor_Traits
########Plots of observed and predicted values############
plot(Y_all_tst[,1],Y_all_tst[,4])
plot(Y_all_tst[,2],Y_all_tst[,5])
plot(Y_all_tst[,3],Y_all_tst[,6])

APPENDIX C

n Table C1. Standard errors (SE) of both models, BMTME and MTDL for each data set. WI denotes the scenarios that ignore the
genotype3environment interaction term, while I denotes the scenarios with the genotype3environment interaction term. Env_Trait
denotes the environment-trait combination

Maize Wheat Iranian Wheat

Type Env_Trait BMTME MTDL BMTME MTDL BMTME MTDL

WI Env1_Trait_1 0.042 0.046 0.022 0.031 0.014 0.025
WI Env1_Trait_2 0.047 0.030 0.052 0.061 0.018 0.033
WI Env1_Trait_3 0.051 0.048 — — — —

WI Env2_Trait_1 0.045 0.048 0.013 0.020 0.018 0.029
WI Env2_Trait_2 0.032 0.055 0.032 0.041 0.028 0.030
WI Env2_Trait_3 0.036 0.052 — — — —

WI Env3_Trait_1 0.030 0.058 0.018 0.027 — —

WI Env3_Trait_2 0.046 0.053 0.027 0.039 — —

WI Env3_Trait_3 0.054 0.044 — — — —

I Env1_Trait_1 0.027 0.046 0.021 0.041 0.008 0.025
I Env1_Trait_2 0.029 0.029 0.059 0.054 0.006 0.030
I Env1_Trait_3 0.026 0.036 — — — —

I Env2_Trait_1 0.032 0.042 0.019 0.023 0.013 0.030
I Env2_Trait_2 0.035 0.062 0.025 0.041 0.007 0.030
I Env2_Trait_3 0.038 0.042 — — — —

I Env3_Trait_1 0.026 0.049 0.018 0.038 — —

I Env3_Trait_2 0.041 0.051 0.020 0.045 — —

I Env3_Trait_3 0.040 0.034 — — — —
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