Skip to main content
. 2018 Dec 10;19:471. doi: 10.1186/s12859-018-2488-4

Table 2.

Average accuracy and standard deviation (in parentheses) for the performed experiment

Weka classification method Description No feature selection CFS InfoGain Consistency
J48 Decision trees 75.50 75.90 76.13 58.70
(26.28) (25.84) (25.47) (25.57)
PART Rule based classifier 67.67 69.03 70.07 56.67
(22.74) (23.01) (23.10) (26.00)
Bayes Net Bayesian netwoks 91.47 93.40 91.47 82.50
(15.23) (15.60) (15.23) (24.63)
Naive Bayes Naïve Bayes classifier 54.23 79.40 75.43 62.20
(25.61) (23.16) (23.53) (27.58)
Multilayer Neural netwoks 52.53 64.63 65.90 58.07
Perceptron (26.93) (25.69) (24.70) (27.12)
IBk K-nearest neighbours 43.23 64.00 68.93 54.67
(25.24) (25.17) (28.01) (28.93)
Kstar Instance-based learner 40.70 68.33 62.83 60.30
using an entropic distance measure (25.62) (23.76) (23.48) (27.95)
SVM Support vector machine 65.33 63.67 60.97 46.17
(SVM) with C-SVM Type (22.63) (23.72) (23.48) (20.53)
SMO SVM with sequential 64.37 67.80 68.23 49.93
minimal optimization (28.26) (25.33) (26.02) (25.40)

Best accuracy appears in bold