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Abstract

Motivation: Kinase-regulated phosphorylation is a ubiquitous type of post-translational modifica-

tion (PTM) in both eukaryotic and prokaryotic cells. Phosphorylation plays fundamental roles in

many signalling pathways and biological processes, such as protein degradation and protein-

protein interactions. Experimental studies have revealed that signalling defects caused by aberrant

phosphorylation are highly associated with a variety of human diseases, especially cancers. In light

of this, a number of computational methods aiming to accurately predict protein kinase family-

specific or kinase-specific phosphorylation sites have been established, thereby facilitating phos-

phoproteomic data analysis.

Results: In this work, we present Quokka, a novel bioinformatics tool that allows users to rapidly

and accurately identify human kinase family-regulated phosphorylation sites. Quokka was

developed by using a variety of sequence scoring functions combined with an optimized logistic

regression algorithm. We evaluated Quokka based on well-prepared up-to-date benchmark and in-

dependent test datasets, curated from the Phospho.ELM and UniProt databases, respectively. The

independent test demonstrates that Quokka improves the prediction performance compared with

state-of-the-art computational tools for phosphorylation prediction. In summary, our tool provides

users with high-quality predicted human phosphorylation sites for hypothesis generation and bio-

logical validation.

Availability and implementation: The Quokka webserver and datasets are freely available at http://

quokka.erc.monash.edu/.

Contact: roger.daly@monash.edu or jiangning.song@monash.edu or kcchou@gordonlifescience.org

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Protein phosphorylation is a major post-translational modification

(PTM), occurring when a phosphate group bonds with specific

amino acids (such as serine, threonine and tyrosine) (Johnson and

Barford, 1993). Numerous experimental studies have demonstrated

that phosphorylation is involved in regulation of a variety of funda-

mental cellular processes, such as protein-protein interaction (Nishi

et al., 2011), protein degradation (Swaney et al., 2013), signal trans-

duction (McCubrey et al., 2000) and signalling pathways (Duan and

Walther, 2015). On the other hand, aberrant phosphorylation, usu-

ally introduced by mutations, is frequently causative of human dis-

eases, including cancers (Fleuren et al., 2016; Karaca et al., 2015).

Therefore, it is crucial to accurately identify human phosphorylation

sites and to further characterise their biological functions.

Recent technical advances in mass spectrometry have significant-

ly facilitated high-throughput analysis of entire proteomes and iden-

tification of specific types of PTMs; however, determining specific

kinase(s) that are associated with PTM sites still remains a challeng-

ing task (Horn et al., 2014). Kinases acting on phosphorylation sites

are often unknown, making experimental validation of kinase-

specific phosphorylation events even more challenging. In addition,

a portion of phosphorylation sites cannot be identified as these mod-

ifications occur at very low levels in the cell (Boersema et al., 2009).

Therefore, development of computational methods that are capable

of predicting kinase family-specific or kinase-specific phosphoryl-

ation sites is urgently needed. Such methods can assist biologists by

providing high-quality predicted phosphorylation sites, guiding ex-

perimental design and complementing experimental efforts validat-

ing uncharacterized phosphorylation events.

To date, a number of computational methods have been estab-

lished for this purpose. These tools can be classified into two groups:

(i) Sequence-scoring function based methods, including PhoScan (Li

et al., 2007), GPS 2.0 (Xue et al., 2008) and GPS 3.0 (http://gps.bio

cuckoo.org/). PhoScan is a statistical scoring function-based method,

which uses the log-odds ratio to predict potential phosphorylation

sites. GPS 2.0 is another statistical scoring function-based method

that employs the Group-based Phosphorylation Scoring (GPS) ap-

proach to predict phosphorylation sites for a number of kinases

from different groups/families/subfamilies. GPS 3.0 (i.e. the latest

version of GPS; http://gps.biocuckoo.org/) is currently online avail-

able for academic use; (ii) Machine-learning based methods, includ-

ing NetPhos 3.1 (Blom et al., 2004), KinasePhos 2.0 (Wong et al.,

2007), Musite (Gao et al., 2010), PhosphoPICK (Patrick et al.,

2015) and PhosphoPredict (Song et al., 2017). NetPhos 3.1 is the

most up-to-date version of the well-established NetPhos program.

Benefiting from the artificial neural network (ANN) algorithm,

NetPhos 3.1 can predict phosphorylation sites of 17 kinases in total.

KinasePhos 2.0 is another machine-learning based method, devel-

oped based on a support vector machine (SVM) trained with a com-

bination of sequence-derived features and solvent accessibility.

Musite is an SVM-based bioinformatics tool that can predict

both generic and kinase-specific phosphorylation sites (covering 13

kinase families) by integrating sequence similarities, protein disor-

dered score and amino acid frequencies as the input features.

PhosphoPICK utilizes cellular context and protein sequence infor-

mation for phosphorylation site prediction trained by information

extracted from three species: human (107 kinases), mouse (24 kin-

ases) and yeast (26 kinases). PhosphoPredict is a random forest-

based tool, which combines protein sequence-derived and functional

features to predict kinase-specific phosphorylation sites for 12

human kinases and kinase families.

There has been outstanding progress in the development of use-

ful methods for kinase family-specific or kinase-specific phosphoryl-

ation sites prediction; however, several issues still remain in most of

the current methods that need to be addressed: (i) The datasets used

for training are relatively out of date. For example, the methods

aforementioned, including PhoScan, NetPhos 3.1, GPS 2.0,

KinasePhos 2.0 and Musite, were all trained using the data extracted

from older versions of the Phospho.ELM database (i.e. versions 3.0,

6.0 and 8.2). Since then, a larger number of experimentally verified

novel kinase-specific phosphorylation sites have been identified and

therefore should be incorporated into the training datasets to en-

hance the predictive power of the constructed models; (ii) The statis-

tical techniques applied in the sequence-scoring function based

methods are usually straightforward and prompt; however, as the

performance of statistical scoring-based methods mainly depends on

consensus patterns derived from the training data, the performance

of these methods is usually less accurate than that of advanced ma-

chine learning-based methods (Miller and Blom, 2009; Song et al.,

2017) and (iii) Machine learning based methods usually require con-

siderable computation time and resources to calculate heterogeneous

and high-dimensional biological features for model training, al-

though they generally outperform the sequence-scoring function

based methods. Therefore, such machine learning-based methods

are not practically suitable for high-throughput post translational

modification (PTM) prediction. Based on these shortcomings, it

becomes necessary to develop a novel computational method that is

capable of predicting kinase family-specific phosphorylation sites

both rapidly and accurately, allowing high-throughput and cost-

effective kinase family-specific phosphorylation site prediction at

the proteomic scale. This have strongly motivated us to develop the

Quokka tool.

In this study, we introduce Quokka (Quantitative predictor of

kinase family-specific kinome and phosphorylation sites), to fill the

above gaps and improve the performance of kinase family-specific

phosphorylation sites prediction. Quokka includes a variety of se-

quence scoring functions for high-throughput phosphorylation pre-

diction. Importantly, we built a logistic regression (LR) model by

integrating the outcomes of sequence scoring functions for each kin-

ase family. Experimental studies on phosphorylation sites of 11 kin-

ase families using both benchmark and independent test datasets

illustrate that Quokka’s LR models performed best amongst all.

When compared with the prediction performance of currently avail-

able predictors mentioned above, Quokka achieved highest AUC

values for phosphorylation sites regulated by nine (out of 11) kinase

families. Therefore, we subsequently built LR models for all 65 kin-

ase families, which we also collected in this study to expand the pre-

dictive capacity of Quokka.

2 Materials and methods

2.1 Overall framework
We applied the Chou’s 5-step rule (Chou, 2011) to construct and

evaluate Quokka, as shown in Figure 1. These steps include data

collection and pre-processing, sequence scoring, model construction

and optimization, performance comparison and webserver construc-

tion. In the first step, the benchmark and independent tests datasets

were collected from Phospho.ELM (version 9.0) (Dinkel et al.,

2011) and UniProt database (release June 07, 2017) (Pundir et al.,

2017) separately. In the second step, a variety of sequence scoring

functions and their combinations were utilized to calculate scores

for each protein, which were then used as the input features of the
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LR model. An optimization algorithm was performed in the third

step, based on the benchmark datasets to train the optimal LR for

each kinase family. These optimized LR models were subsequently

used for five-fold cross-validation test. In the fourth step, the opti-

mized LR models were validated using the independent test datasets

and the performance comparison with other existing methods was

conducted. Using the optimized LR models, we further performed

human proteome-wide prediction of phosphorylation sites. The

Quokka server, based on the optimized LR models, was constructed

in the final step, to facilitate public high-throughput prediction of

phosphorylation sites.

2.2 Dataset collection and protein kinase classification
We extracted experimentally verified human kinase-specific phos-

phorylation sites from Phospho.ELM (Version 9.0) (Dinkel et al.,

2011) and UniProt (release June 07, 2017) (Pundir et al., 2017),

which are two well-curated public databases for protein

post-translational modifications. The two resulting datasets were

utilized as the benchmark and independent test datasets, respective-

ly. To further expand the coverage of our curated datasets

for human kinase-specific phosphorylation, we investigated the

PhosphoSitePlus database and identified some novel kinase-specific

phosphorylation sites using CD-HIT, which we added into the

benchmark and independent test datasets. The statistics of aug-

mented benchmark and independent test datasets are shown in

Supplementary Table S1, respectively. All substrate proteins with

experimentally validated phosphorylation sites were subsequently

hierarchically clustered, according to the corresponding kinase

group and family, adopting the same kinase nomenclature that links

commonly used kinase names to a unified naming scheme (Eid et al.,

2017). We did not further sub-categorize kinase families down

into kinase subfamilies and kinases, due to the relatively lower num-

bers of experimentally validated substrates within each subfamily

and kinase.

To build accurate models and objectively assess the prediction

performance, we removed sequence redundancy from all collected

proteins using CD-HIT (Fu et al., 2012) with a stringent sequence

identity threshold of 30% for each kinase family. This ensured that

any two protein sequences in the benchmark dataset and independ-

ent test dataset had a sequence identity of less than 30%. Finally, we

collected a total of 43 serine/threonine and 22 tyrosine kinase fami-

lies (each kinase family contained at least 5 phosphorylation sites)

for training the Quokka models. Among this, nine serine/threonine

kinase families and two tyrosine kinase families (each kinase family

contained at least 20 phosphorylation sites) were selected for per-

formance evaluation.

2.3 Sequence scoring functions
Quokka provides five sequence scoring functions, four combina-

tions of individual scoring functions and an optimized logistic

regression model for kinase family-specific phosphorylation predic-

tion. The scoring functions used by Quokka are described as

follows.

2.3.1 Nearest neighbour similarity (NNS)

NNS describes the similarity between two motifs A(m, n) and B(m,

n) and is defined as:

Similarity A;Bð Þ ¼
X

i¼1; mþnþ1

Score A i½ �;B i½ �ð Þ (1)

where m and n denote the numbers of amino acids flanking both up-

stream and downstream of the centred phosphorylation site, respect-

ively, while Score A i½ �; B i½ �ð Þ denotes the substitution score between

amino acids A i½ � and B i½ � in the BLOSUM62 matrix (Henikoff and

Henikoff, 1992). Therefore, (mþnþ1) denotes the total length of

the sequence segment of a potential phosphorylation site, which was

set to 15 (i.e. m¼n¼7) in our study.

2.3.2 Amino acid frequency (AAF)

The AAF score of a sequence segment with the centered phosphoryl-

ation site is calculated as:

ScoreFrequency ¼
X

i¼P �7ð Þ; Pðþ7Þ
NFi (2)

where NFi is the normalized relative amino acid frequency, and P

denotes the amino acid position surrounding the potential phos-

phorylation site (i.e. P ¼[�7, 7]). NFi is defined as:

NFi ¼
fi

fi;max
(3)

Here fi ¼ ni=N represents the frequency value of the amino acid at

position i, while fi;max denotes the frequency value of the most com-

mon amino acid at the same position.

2.3.3 WebLogo-based sequence conservation (WLS)

WebLogo (Crooks et al., 2004) is a widely-applied sequence logo

generation tool based on the calculation of the sequence conserva-

tion score (W). Here, we used the conservation score generated by

WebLogo to rank all the potential phosphorylation sites. The con-

servation score of a sequence segment can be calculated as:

ScorewebLogo ¼
X

i¼P �7ð Þ;Pðþ7Þ
Wi (4)

2.3.4 BLOSUM62 substitution Index (BSI)

The BLOSUM62 substitution matrix has been employed to predict

phosphorylation sites in previous studies [such as GPS2.0 (Xue

et al., 2008) and Musite (Gao et al., 2010)]. Given a testing sequence

segment Test, its BSI score can be calculated as:

Fig. 1. Schematic framework of Quokka
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ScoreBLOSUM62 ¼
PPð�7Þ

Pðþ7Þ BðTestÞPPð�7Þ
Pðþ7Þ BðKnownÞ

: (5)

PPð�7Þ
Pðþ7Þ BðTestÞ sums up the substitution score of the sequence seg-

ment Test against all known phosphorylation sequence segments for

a given kinase family;
PPð�7Þ

Pðþ7Þ BðKnownÞ sums up the substitution

score of all know phosphorylation segments. Note that the value of

ScoreBLOSUM62 ranges from 0 to 1, and a higher value indicates that

the sequence segment Test has a higher similarity to known phos-

phorylation sites. Finally, the highest ScoreBLOSUM62 is selected as

the BSI score.

2.3.5 K-nearest neighbours (KNN)

KNN (Altman, 1992; Chen et al., 2018) was previously used for

scoring phosphorylation sites by Gao et al. (Gao et al., 2010). KNN

aims to find the k nearest neighbours of a potential phosphorylation

site by calculating the distance between the testing site and those

known phosphorylation sites in the datasets. The distance between

two sequence segments A(m, n) and B(m, n) is defined as:

Dist A;Bð Þ ¼ 1�
Pmþnþ1

i¼1 Sim A i½ �;B i½ �ð Þ
mþ nþ 1

; (6)

where m and n denote the numbers of amino acids flanking both

upstream and downstream of the centred phosphorylation site, re-

spectively. Moreover, if the length of sequence fragment in the up-

stream or downstream is shorter than m or n, ‘*’ (representing gaps

in the BLOSUM62 matrix) will be used and added to the corre-

sponding position upstream or downstream. In the equation (6), the

SimðÞ function calculates the similarity between two amino acids,

defined as:

Sim a; bð Þ ¼ Matrix a; bð Þ �minfMatrixg
maxfMatrixg �minfMatrixg ; (7)

where a and b denote amino acids from the sequence segments A

and B, respectively. In Equation (7), the Matrix function denotes the

BLOSUM62 substitution matrix; while max and min present the

largest and smallest value of the element in the Matrix, respectively.

The KNN function describes the average distance of a given se-

quence segment with a potential phosphorylation site to the seg-

ments of all the positive/negative phosphorylation sites. The

calculated distance values are subsequently sorted and the k nearest

neighbours selected. Finally, the KNN score (the percentage of posi-

tive neighbours among the k nearest neighbours) is calculated. In

this study, k was as 0.5% of the total number of positive and nega-

tive sites in the training dataset for calculating the KNN score in

Quokka, and the value of k varied depending on the particular kin-

ase family.

2.3.6 Combinations of individual scoring functions

In addition to the five scoring functions mentioned above, Quokka

also provides four combinations of individual scoring functions for

kinase-specific phosphorylation sites prediction. These include

AAF�NNS, WLS�BSI, NNS�WLS and AAF�WLS.

2.4 Model training and evaluation
2.4.1 Logistic regression (LR)

The LR algorithm is designed to estimate the distribution P(YjX)

from the training data, where Y is a discrete value and X¼<X1, . . .,

Xd> represents any feature vector containing discrete or continuous

variables. In this study, given the prediction of a phosphorylation

site is a binary classification task, we only considered Y2{0, 1},

where Y¼1 and Y¼0 indicate a positive (phosphorylation site) and

negative sample (non-phosphorylation site), respectively. The LR

model can be defined as:

p Y ¼ 1Xð Þ ¼ g hTX
� �

¼ 1

1þ e�hTX
; (8)

where g zð Þ ¼ 1
1þe�z denotes the logistic function and

hTX ¼ h0 þ
Pd

i¼1 hi Xi. Both values of g hTX
� �

and p(YjX) range

from 0 to 1. Therefore, p(Y¼0jX) can be estimated using the fol-

lowing equation, given that the sum of the probabilities must be

equal to 1:

p Y ¼ 0Xð Þ ¼ 1� g hTX
� �

¼ e�hTX

1þ e�hTX
: (9)

In this study, the LR models were implemented using the R pack-

age and trained using the individual scoring functions and their

combinations as the inputs. We also used an optimization algo-

rithm to optimize the LR models for each kinase families.

Algorithm 1 describes the detailed procedure of our optimization

approach for the LR model. In the first step, an initial LR model

initialLR is trained by using the training dataset T. In the second

step, summary(initialLR) obtains the detailed model measures

information of the initialLR. The information contains the

P-values of each feature based on hypothesis test for the model.

These P-values indicate whether the corresponding feature makes

a significant contribution to the model. For example, if the P-value

of a feature is equal or lower than 0.05, it makes a significant contri-

bution to the model, and vice versa. In step 3 a copy of the training

feature set T, T�, is created for the next optimization procedure.

Algorithm 1 Optimization procedure of the Logistic

Regression models

Input:

Training feature set, T;

Output:

Optimal Logistic Regression model, optimisedLR.

1: initialLR ¼ trainLR(T);

2: initialSummary ¼ summary(initialLR);

3: T�¼ T;

4: initialAUC ¼ getAUC(initialLR);

5: for each i2[1, n] do

6: Pvalues[i] ¼ getCoefficientsPvalues(initialSummary, i);

7: if Pvalues[i] >0.05

8: T�¼ removeFeature(i, T�);

9: end if;

10: end for;

11: reducedLR ¼ trainLR(T�);

12: reducedAUC ¼ getAUC(reducedLR);

13: chiSquareValue ¼ chisqTest(initialLR, reducedLR);

14: if (reducedAUC � initialAUC) && (chiSquareValue > 0.05)

15: optimisedLR ¼ reducedLR;

16: end if;

17: else

18: optimisedLR ¼ initialLR;

19: end else;

20: return optimisedLR;
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In step 4, getAUC(initialLR) extracted the AUC score, initailAUC, of

the initial model. Steps 5–10 in Algorithm 1 describe our optimiza-

tion strategy. For each feature i of feature set T�, if the P-value of

feature i is insignificant (i.e. >0.05), this feature will be removed

from T�(step 7). Here in step 5, n denotes the dimension of the T

and in the step 6, the P-value of feature i is extracted by the

function getCoefficientsPvalues(initialSummary, i). This procedure

will be halted till all the features in F has been evaluated.

Afterwards, a new LR model (i.e. reducedLR) will be trained using

optimized feature set F� in step 11. Then, the AUC score,

reducedAUC, of the reducedLR is obtained (step 12) and com-

pared with the initialLR model (steps 13–15). A chi-square test

was applied for testing whether the reducedLR model fits as well

as the initialLR model. If the chi-square test result is bigger than

0.05 (not statistically significant), it means the reducedLR

model fits as well as the initialLR model and vice versa. Therefore,

the reducedLR model will be returned as the optimisedLR model if

the chi-square test result is insignificant and the AUC score of

the new model (reducedLR) is higher than the initial model

(initialLR); otherwise, the initial LR model initialLR will be

returned.

2.4.2 Performance evaluation

Throughout the literature, a set of four metrics directly taken from

mathematics books are often used to quantitatively evaluate the pre-

diction quality of a statistical predictor. They are (Chen et al.,

2007): Sn (sensitivity), Sp (specificity), ACC (overall accuracy) and

MCC (Mathew’s Correlation Coefficient) (Matthews, 1975). These

metrics are not intuitive and hence biologists often find them diffi-

cult to understand. However, based on the Chou’s symbols, origin-

ally introduced to study protein signal peptides (Chou, 2001a,b), a

set of four very intuitive metrics were defined as given below (Chen

et al., 2013; Xu et al., 2013):

Sn ¼ 1�Nþ�
Nþ

0 � Sn � 1

Sp ¼ 1�
N�þ
N�

0 � Sp � 1

Acc ¼ K ¼ 1�
Nþ� þN�þ
Nþ þN�

0 � Acc � 1

MCC ¼
1� Nþ�

Nþ
þ

N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þ �Nþ�

Nþ

� �
1þ

Nþ� �N�þ
N�

� �s �1 � MCC � 1

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(10)

where Nþ represents the total number of positive samples

investigated, while Nþ� is the number of positive samples incorrect-

ly predicted to be negative; N� is the total number of negative

samples investigated, while N�þ is the number of the negative

samples incorrectly predicted to be positive. With the set of formu-

lations in Eq. 10, the meanings of Sn, Sp, Acc and MCC have be-

come much clearer and easier to understand, as discussed in a

series of recent studies in various biological areas (Ehsan et al.,

2018; Feng et al., 2017, 2018; Lin et al., 2014; Liu et al.,

2017a,b,c, 2018).

Moreover, we also plotted the Receiver-Operating Characteristic

(ROC) curves and calculated the Area Under the Curve (AUC) val-

ues, as the primary measures to evaluate the predictive performance

of Quokka and all the compared methods.

3 Results and discussion

3.1 Amino acid specification and preference of

phosphorylation in 11 kinase families
Based on the benchmark and independent test datasets, we analyzed

the site specificity of 11 kinase-specific phosphorylation sites.

Figure 2 and Supplementary Figure S1 show the sequence logos of

the occurrences of amino acid residues located in both the upstream

and downstream regions surrounding known phosphorylation sites

for 11 kinase families (Only kinase families with more than 20 ex-

perimentally validated phosphorylation sites in the benchmark data-

sets were included in this analysis; see Supplementary Table S1 for

more details). Not surprisingly, Figure 2 and Supplementary Figure

S1 suggest that phosphorylation sites regulated by different kinases

show different preferences in terms of the occurrences of flanking

amino acids.

As expected, threonine (T) and serine (S) are the only two residue

types occurring at the central position of sequence segments of

phosphorylation sites of the serine/threonine kinases. Likewise, for

phosphorylation sites of tyrosine kinases, the central position is

predominated by tyrosine (Y). Nevertheless, other residue types at

different positions also showed different amino acid preferences.

For instance, a hallmark of the AGC/AKT kinase family is the

requirement for a S or T residue at the central position with two ar-

ginine (R) in the upstream (-5 and -3 positions), as shown in

Supplementary Figure S1A, i.e. the RXR phosphorylation site motif

(Rust and Thompson, 2011).

3.2 Performance comparison among different scoring

functions, combinations and the optimized LR model
We evaluated and compared the prediction performance of different

individual scoring functions, combinations of individual scoring

functions and the second-layer logistic regression models used by

Quokka based on the kinase-specific phosphorylation site datasets

for 11 kinase families. Each kinase family had at least 20

Fig. 2. Sequence logos showing the occurrences of amino acid residue types

surrounding the kinase-specific phosphorylation sites for the six kinase fami-

lies investigated in this study: (A) AGC/PKA; (B) AGC/PKC; (C) CMGC/CDK; (D)

CMGC/CK2; (E) CMGC/MAPK and (F) TK/Src. FG, Foreground dataset; BG,

Background dataset
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kinase-specific phosphorylation sites in both benchmark and inde-

pendent test datasets (refer to Supplementary Table S1 for details).

After applying this criterion, there were nine serine/threonine kinase

families (AGC/AKT, AGC/PKA, AGC/PKC, Atypical/PIKK, CAMK/

CAMKL, CMGC/CDK, CMGC/CK2, CMGC/GSK, CMGC/

MAPK), and two tyrosine kinase families (TK/Abl and TK/Src)

included in this analysis.

The percentages of true positives (TP) in the top 1, 3, 5, 10 and

20 ranking lists (Verspurten et al., 2009) of predicted phosphoryl-

ation sites and the AUC, MCC, ACC, Sn and Sp are provided in

Supplementary Table S2. As can be seen, the LR models performed

best among all the compared scoring functions and their combina-

tions in terms of AUC for all the 11 examined kinase families. In

terms of the percentages of TP in the top N ranking lists, the LR

models also performed best, except for CMGC/CDK [for which BSI

performed best when predicting the True Positives (TP) in the Top

20 ranking list], CMGC/GSK (for which WLS�BSI performed best

when predicting TPs in the Top 20 ranking list) and Atypical/PIKK

(for which WLS performed best when predicting TPs in the Top 10

ranking list). In addition, BSI outperformed all other four scoring

functions, except for the prediction of phosphorylation regulated by

Atypical/PIKK. As for the three combinations of scoring functions,

WLS�BSI outperformed the other two except for the AGC/AKT

kinase family. In summary, BSI is the best scoring function

among all five individual scoring functions, while the second-layer

logistic regression model achieved the overall best performance.

Accordingly, we used the LR model as the final model for perform-

ing phosphorylation site prediction in Quokka.

3.3 Performance comparison between Quokka and

other prediction tools
In this section, we compared the prediction performance of Quokka

against eight existing tools on the independent test datasets.

Specifically, we compared Quokka against NetPhos 3.1 (Blom et al.,

2004), KinasePhos 2.0 (Wong et al., 2007), PhoScan (Li et al.,

2007), GPS 2.0 (Xue et al., 2008), Musite (Gao et al., 2010),

PhosphoPICK (Patrick et al., 2015), PhosphoPredict (Song et al.,

2017) and GPS 3.0. To evaluate and compare the prediction per-

formance, the protein sequences in FASTA format from the inde-

pendent test datasets were submitted to each of these servers with

default/recommended settings described by respective works. It is

worth noting that some tools were specifically designed for certain

kinases, indicating that they could be only used to predict the phos-

phorylation sites of the specific kinases they were designed for. As

Quokka is designed for kinase family-specific phosphorylation pre-

diction, we conducted performance comparisons of all the predic-

tors at the kinase family level. To do so, for a given kinase family,

we predicted the phosphorylation sites regulated by the kinase fam-

ily. Then, the prediction result that received the best prediction score

for each phosphorylation site was used to represent the final predic-

tion outcome for this kinase family. For example, there are a num-

ber of kinases in the CMGC/CDK family, including CDK1, CDK2,

CDK3, etc. PhosphoPICK is a computational tool that can predict

phosphorylation sites regulated by eight types of CDK kinases (i.e.

CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7 and CDK9).

To assess the performance of PhosphoPICK, we submitted the sub-

strate sequences of the CMGC/CDK family to its webserver and

selected all these eight CDK kinases to perform the prediction. For

each protein sequence, PhosphoPICK calculated a score for each po-

tential phosphorylation site (S/T). As a result, eight prediction scores

of each S/T(/Y) site for eight kinases were generated. Then, for the

sites which were labelled as positive samples in the independent test

datasets, the best prediction score among these eight values was

selected to represent the prediction outcome for such phosphoryl-

ation site regulated by the CMGC/CDK family. In contrast, for the

sites which were labelled as negative samples, the minimum scores

were selected as the prediction results to calculated the performance

metrics. We summarize the performance comparison results between

these methods for the 11 kinase-family-specific phosphorylation

sites in Supplementary Table S3 and also present the ROC curves in

Figure 3 and Supplementary Figure S2.

Figure 3 and Supplementary Figure S2 show the ROC curves of

Quokka and other existing methods on the independent test data-

sets. As can be seen, Quokka (red line) outperformed the existing

tools on nine out of 11 kinase families, with an exception of

Atypical/PIKK and CMGC/GSK, for which GPS 3.0 performed best

in terms of the AUC score (GPS 3.0, AUC¼0.925 versus Quokka,

AUC¼0.921 for Atypical/PIKK and GPS 3.0, AUC¼0.886 versus

Quokka, AUC¼0.870 for CMGC/GSK). The complete perform-

ance comparison results (as evaluated using AUC, MCC, ACC,

Sn and Sp measures) on the independent tests are shown in

Supplementary Table S3. Altogether, these results indicate Quokka

is a powerful bioinformatics tool that provides a favourable predic-

tion performance of kinase-specific phosphorylation prediction.

Fig. 3. Performance comparison results between different kinase-specific

phosphorylation site predictors in terms of the AUC value, for AGC/PKA,

AGC/PKC, CMGC/CDK, CMGC/CK2, CMGC/MAPK and TK/Src. The following

phosphorylation site prediction tools were included and compared: Quokka

(based on the logistic regression model), NetPhos 3.1, KinasePhos 2.0,

PhoScan, GPS 2.0, Musite, PhosphoPICK, PhosphoPredict and GPS 3.0
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In addition, to investigate if Quokka is able to provide kinase-

specific phosphorylation prediction, we selected eight kinases

according to the numbers of available phosphorylation sites specific

for these kinases (each kinase has more than 30 specific phosphoryl-

ation sites) from the independent test datasets, including AGC/AKT/

AKT1, AGC/PKA/PKACA, AGC/PKC/PKCA, Atypical/PIKK/ATM,

CMGC/CDK/CDK1, CMGC/CK2/CK2A1, TK/Abl/Abl1 and TK/

Src/Src. We then conducted experiments to compare the perform-

ance of Quokka with existing methods at the kinase-specific level.

The performance comparison results (in terms of AUC, MCC, ACC,

Sn and Sp) are shown in Supplementary Table S4. We can see that

Quokka outperformed the other eight tools on six out of eight tested

kinases in terms of AUC, with the exception of AGC/AKT/AKT1 for

which PhosphoPICK achieved the best performance (PhosphoPICK,

AUC¼0.944 versus Quokka, AUC¼0.936) and CMGC/CK2/

CK2A1 for which Musite achieved the best performance (Musite,

AUC¼0.918 versus Quokka, AUC¼0.906).

3.4 Web server implementation
We constructed an open-access web server for Quokka using

HTML and Perl programming languages, which we have made

available at http://quokka.erc.monash.edu/. The Quokka web server

is managed by Tomcat7 and resides on a Linux server, equipped

with an 8-core CPU, 4 TB hard disk and 16 GB memory. Several

steps need to be conducted to perform kinase-regulated phosphoryl-

ation prediction using Quokka. First, users need to provide Quokka

proteins of interest in the FASTA format. An ‘Example’ link has

been provided to assist users with the acceptable input format. Note

that, to guarantee the prediction efficiency, we allow users to submit

no more than 1000 sequences simultaneously. In the second step,

users will need to select a specific kinase family for phosphorylation

prediction. In total, Quokka provides prediction for 43 serine/threo-

nine and 22 tyrosine kinase families. In the third step, a scoring

function/model will be selected for Quokka to employ, overall,

Quokka is able to conduct prediction for phosphorylation sites

using nine functions/models. Based on our experimental results, the

logistic regression models performed best amongst all scoring func-

tions. However, the sequence scoring functions usually return the

prediction result more rapidly than the logistic regression model.

Therefore, the selection of appropriate scoring functions is left at the

users’ discretion, based on their computational requirement and the

complexity of the question at hand. In the last step, users can choose

the number of top-ranking predicted phosphorylation sites (N;

N¼1, 3, 5, 10 and 20) to be displayed in the result webpage. An

example of a typical input for Quokka is demonstrated in

Supplementary Figure S3, and an online instruction explaining the

input, prediction parameters and result interpretation are detailed

on the Quokka website.

A strength of Quokka is that it can rapidly return the prediction

result, thus facilitating high-throughput prediction. Our test sug-

gested that, on average, it takes eight minutes to finish processing

1000 sequences and to return the prediction results. This efficiency

is a result of Quokka not calculating high-dimensional feature sets

for the input, unlike most other machine-learning based methods.

After Quokka completes the prediction, the outcomes of all submit-

ted sequences are returned to the result webpage. Each result table

contains the prediction scores for each protein (Supplementary Fig.

S3). To comprehensively demonstrate the prediction results, six sort-

able columns, including ‘Rank’, ‘Position’, ‘Site’, ‘Motif’, ‘Score’,

‘Phosphorylation site?’ and ‘Kinase family’, are provided within

each table. All the prediction results can be easily exported to widely

used file formats, including CSV, ExcelV
R

spreadsheet and PDF.

In addition, there are two buttons ‘Phosphorylation Sites

Distribution’ and ‘Visualize’ at the top of each result table for pre-

diction results visualization. The corresponding results are shown in

Supplementary Figures S5 and S6.

3.5 Proteome-wide prediction of kinase-specific

phosphorylation sites
We further applied Quokka to perform proteome-wide prediction

of kinase family-specific phosphorylation sites in the human prote-

ome (containing 20 198 proteins extracted from the UniProt data-

base; release June 07, 2017) for the 11 kinase families. We briefly

summarize the results in this section. To obtain high-confidence pre-

dicted phosphorylation sites, we applied the prediction threshold at

the 99% specificity (Gao et al., 2010; Li et al., 2015, 2016; Song

et al., 2018a,b,c). The statistical summary of the predicted phos-

phorylated proteins and phosphorylation sites for the 11 kinase fam-

ilies are shown in Supplementary Table S5. A complete list of the

predicted phosphorylated proteins and their phosphorylation sites

are available on the Quokka, and can be downloaded and analyzed

on a local computer (http://quokka.erc.monash.edu/#proteome).

3.6 Gene ontology enrichment analysis
Furthermore, we performed an in-depth analysis of enriched gene

ontology (GO) terms including cellular component (CC), biological

process (BP), molecular function (MF) and pathways of predicted

phosphorylated proteins at the proteome-scale, in an effort to pro-

vide an insight into biological annotations and functional roles of

those predicted phosphorylated proteins. For this purpose, we car-

ried out two-sided hypergeometric tests, to identify significantly

enriched (P-value�0.05) GO terms and pathways against the back-

ground protein dataset composed by the entire human proteome.

The P-value of a given term t can be defined as:

P-value ¼ Fhypergeom m;n;N;Mð Þ; (15)

where m is the number of predicted phosphorylated proteins anno-

tated by the term t, n denotes the number of human proteins anno-

tated by term t, N is the number of human proteins annotated by at

least one term, while M is the number of phosphorylated proteins

annotated by at least one term. All the statistical results of GO term

and pathway analysis are listed in Supplementary Tables S5 and S6,

respectively. Figure 4 and Supplementary Figure S4 highlights the

top five significantly over-represented BP, CC and MF terms of

the predicted phosphorylated proteins for the 11 kinase families at

the proteome-scale.

Importantly, as shown by Figure 4 and Supplementary Figure S4,

phosphorylated proteins by different kinase families are associated

with different GO terms. The sectorial area for a GO term indicates

the number of human proteins annotated by this term (n) while the

different colors of the sectorial area represents the P-value for the

corresponding GO term.

However, some similar GO terms can be found not only in the

same kinase group but are shared by different families. For instance,

in the AGC group (kinase families AGC/AKT, AGC/PKA and AGC/

PKC), the phosphorylated proteins of both AGC/PKA and AGC/PKC

families were found to be enriched with the GO BP terms ‘Interferon-

gamma-mediated signalling pathway (GO: 0002479)’ and certain

immune/anti-viral terms including ‘Antigen processing and presenta-

tion of exogenous peptide antigen via MHC class I (TAP-dependent)

(GO: 0002479)’, ‘Antigen processing and presentation of exogenous

peptide antigen via MHC class I (TAP-independent) (GO: 0002480)’,
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‘Antigen processing and presentation of peptide antigen via MHC

class I (GO: 0002474)’. This observation is consistent with previous

experimental studies of the activities of these two kinase families

(Burke et al., 1989; David-Watine and Yaniv, 1996; Kirshner, 2000;

Lv et al., 2015). The GO_MF term ‘Protein kinase activity (GO:

0004672)’ was over-represented in phosphorylated proteins of AGC/

AKT and AGC/PKA families, and ‘Enzyme binding (GO: 0019899)’

was over-represented in phosphorylated proteins of AGC/AKT and

AGC/PKC families. In the case of the CMGC group (family CMGC/

CDK, CMGC/CK2, CMGC/GSK and CMGC/MAPK), the GO_CC

term ‘Nucleus (GO: 0005634)’ and the GO_BF term ‘Positive regula-

tion of transcription from RNA polymerase II promoter (GO:

0045944)’ were over-represented in phosphorylated proteins for all

these four kinase families.

In addition, our analysis also identified significantly enriched

GO terms which were in good agreement with several previous

experimental studies. For instance, the phosphorylated substrate of

the Atypical/PIKK family was found to be enriched in the biological

process of ‘Cellular response to DNA damage stimulus’. This is not

surprising considering the fact that ATM and ATR have been identi-

fied as important members of this family due to their key roles in

DNA damage response (Cortez et al., 1999; Zhou and Elledge,

2000). Similarly, the CMGC/CDK kinase family was characterized

to be significantly enriched in the biological process of ‘cell division’.

For example, the cyclin-dependent kinases (CDKs) from the

CMGC/CDK family, have been previously demonstrated to be

strongly associated with the process of cell division (Ortega et al.,

2003; Wang et al., 2000). In addition, our analysis identified that the

GO CC term ‘Focal adhesion’ was enriched for the TK/Src, consistent

with the known regulatory role for Src at this subcellular location

(Frame, 2004). Overall, the GO term enrichment analysis suggests

that kinase-specific phosphorylated proteins play multi-faceted and

fundamentally important roles in a variety of biological processes.

4 Conclusion

In this study, we present Quokka, a novel computational tool for

rapid and accurate prediction of kinase family-specific phosphoryl-

ation sites in the human proteome. Quokka combines various

sequence-scoring functions, and a logistic regression optimization al-

gorithm is used to train the optimal model for each kinase family.

Our empirical studies, based on cross-validation and independent

tests, demonstrate Quokka logistic regression models’ competitive-

ness by outperforming existing tools, including NetPhos 3.1,

KinasePhos 2.0, PhoScan, GPS 2.0, Musite, PhosphoPICK,

PhosphoPredict and GPS 3.0. The improved performance of

Quokka can be attributed to three major factors: i) Extraction of the

most-recent experimental datasets that provide up-to-date know-

ledge on kinase-specific phosphorylation; ii) Inclusion of a variety of

sequence-scoring functions and their combinations for calculating

scores for each phosphorylation site, which were subsequently used

as input features of the logistic regression models. These scoring

functions themselves can be used as phosphorylation site prediction

methods. Thus, Quokka is a two-level prediction system. The

sequence-scoring functions are the first-level, while the subsequent

logistic regression models are the second-level of this predictive sys-

tem; iii) Use of an optimization algorithm to build the optimized lo-

gistic regression models which showed robust predictive power for

each kinase family. The Quokka web server further provides a user-

friendly interface and allows customizable prediction of kinase

family-specific phosphorylation sites. The predicted human phos-

phoproteomic data by Quokka is also provided for further biologic-

al validation and analysis. We anticipate Quokka will be a valuable

addition to efforts in developing next-generation bioinformatics

tools for phosphorylation site identification and phosphoproteomic

data analysis. We intend to apply this two-level prediction system to

the prediction of kinase-specific phosphorylation sites of other spe-

cies in our future work.
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