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Abstract

A novel approach to analysis of emission tomography data using the posterior probability of the 

numbers of emissions per voxel (emission–count) conditioned on acquired tomographic data is 

explored. The posterior is derived from the prior and the Poisson likelihood of the emission–count 

data by marginalizing voxel activities. Based on emission–count posteriors, examples of Bayesian 

analysis including estimation and classification tasks in emission tomography are provided. The 

application of the method to computer simulations of 2D tomography is demonstrated. In 

particular, the minimum–mean–square–error (MMSE) point estimator of the emission–count is 

demonstrated. The process of finding this estimator can be considered as a tomographic image 

reconstruction technique since the estimates of the numbers of emissions per voxel divided by 

voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a 

classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at 

most r–times the number of events in some other ROI is tested. The ROIs are specified by the user. 

The analysis described in this work provides new quantitative statistical measures that can be used 

in decision making in diagnostic imaging using emission tomography.

1. Introduction

In emission tomography (ET) we are faced with a task of obtaining information about 

scanned object from tomographic data. The data consist of a list of events registered by a 

tomographic camera. In this work we investigate a conditional statistical approach to analyze 

data acquired in ET. The conditional approach to statistical inference is frequently referred 

to as conditional Bayesian analysis. Our method extends the algorithms investigated in the 

past [1, 2] providing statistical significance to the results of these algorithms and based on 

the statistical theory developed in this work introduces a set of new algorithms that can be 

used for drawing inferences about ET data.

We define an event as a nuclear decay in an imaged volume that directly or indirectly creates 

photons which later are detected by the camera. We assume each detected event corresponds 

to a single nuclear decay that occurred in the imaged volume. As an example of the emission 

tomographic imaging modality in Figure 1, a schematic of the positron emission tomography 

(PET) scanner is depicted with and without time–of–flight (TOF) capability. For PET, the 

positron is created by β+ decay from the commonly used medical–imaging agent, 
18Fluorine. A pair of photons is created after annihilation of positrons with electrons from 

the body. The annihilation photons propagate in opposite directions (180° apart in the 
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center–of–mass system) and are detected in coincidence by two detector crystals (Figure 1 A 

B and C D). The difference of arrival times for these two photons can be measured and 

recorded for TOF–PET. In 3D PET scanners (multiple rings of detectors) the number of 

crystals is of the order of 20–30 thousand. Assuming a rough estimate of the scanner radius 

as 90 cm, and a difference in arrival time measured with a precision of 1 ps this gives 

approximately 109 different ways in which an event can be registered by the scanner. This is 

typically much larger than the actual number of events detected, since the number of 

detected events is restricted by the amount of radioactive material that is administered to 

patients and by the limited sensitivity of the camera. Usually, the number of detected events 

is no more than 109 and typically much less than this number. In the reminder of this paper 

we will refer to the set of parameters that describes a possible way of detecting the event as a 

projection element. The number of projection elements is the number of ways an event can 

be detected by the camera. For the example presented in Figure 1, the projection element is 

specified by the two crystals in which the interaction occurred (A B or C D) and the 

difference in the time–of–arrival.

The approach described here is expected to provide information that is valuable in practical 

applications. For example, in amyloid imaging a quantitative value is used to indicate 

abnormal amyloid deposition i.e. a high (larger than predefined threshold) ratio of 

concentrations of the tracer between regions in the gray matter and reference regions usually 

placed on the cerebellum. The method presented in this paper can provide not only the ratio 

but also the probability that the ratio is larger than some threshold. In a decision theoretic 

setting, this information, combined with the loss function defined for false positive and false 

negative findings, provides the decision support for calling the study normal or abnormal.

Another interesting example of the application of information provided by the method 

presented in this work is the calculation of standardized uptake values (SUV) that is a 

common task in PET imaging. The confidence sets (Bayesian version of classical confidence 

intervals) for SUV values can easily be obtained. In longitudinal studies that look at SUVs 

our method provides the means for sound decision making about an increase or decrease in 

SUV over time i.e., the probability that SUV increased/decreased by some amount can be 

determined simply. These calculations can be done for modalities such list–mode TOF–PET 

for which the assessment of the precision of SUV estimate is very difficult using classical 

methods based on variance estimation.

2. Statistical Analysis

2.1. Preliminaries

It is assumed that during the scan N events were detected and, in principle, each event may 

or may not have been detected in a different projection element. Therefore, the method is 

general and works for either binned or list–mode (unbinned) data. In practice, N will vary 

from 20,000 for some 2D problems to hundreds of millions for 3D PET scanners. We 

assume that the imaged volume is divided into voxels (2D version depicted in Figure 1) and 

there are a total of I voxels. Typically, the 3D volume is divided into cubes of size around 4 

mm and 128 × 128 × 128 voxels are used. The geometry of the scanner, photon attenuation, 

Compton scatter, efficiency of the detectors etc. are factored in into a single large matrix that 
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will be referred to in this article as a system matrix. The element of the system matrix αki 

describes the probability that the event emitted in the voxel i is detected in the projection 

element k. By K we indicate the total number of projection elements. In this formulation, the 

number of events registered in projection element k will be denoted by gk. For scanners with 

a large number of detector elements the gk will usually be either zero or one, but in this work 

we keep it general and gk can be any non–negative integer number.

The typical goal of the tomographic data reconstruction in ET is to determine emission 

intensities for voxels based on a list of events detected by the scanner. The units of emission 

intensities are the number of events divided by the unit of volume divided by the unit of 

time. We assume that the acquisition time is 1 and the volumes of all voxels are the same 

and equal to 1. In this case, the emission intensities are in units of numbers of events. The 

vector f of size I signify the voxel activities with element fi denoting the emission intensity 

of voxel i.

2.2. Classical Statistical Analysis in ET

An overwhelming majority of the analyses of the ET data today is based on the classical 

approach to statistics, in which the values of unknown parameters (eg. voxel activities) are 

deterministic. When analyzing imaging systems or reconstruction methods this approach 

involves averaging over all possible data sets assuming the values of parameters are 

constant. In practice the use of multiple noise realizations (multiple data sets, MDS) which 

approximates averaging over all possible outcomes, is common. The typical result of MDS 

approach, estimates of biases, variances, and covariances, are important and useful 

indicators used in medical imaging to characterize performance of inverse tomographic 

methods for a given imaging system and assumed object. The MDS are demanding in terms 

of computing time and approaches have been developed to approximate MDS calculation of 

the biases and variances of the quantities of interest. Obviously the MDS are more difficult 

to realize when only a single data set is available (a typical clinical scenario). Statistical 

analysis when only a single sample of the data is available can be performed assuming the 

variance of the data is known and the propagation of variance in the image reconstruction 

process can be studied. When data variance is unknown it can be approximated for Poisson 

statistics by assuming that it is equal to the data. The quality of this approximation drops as 

the gk become smaller.

To determine the statistical properties of the linear estimator Huesman 1984 [3] calculated 

the covariances of the parameters in the reconstruction image for filtered backprojection 

(FBP) exploiting linearity of the FBP operation. For non–linear estimation methods such 

expectation maximization (EM) [4, 5, 6] and general iterative methods that maximize 

penalized likelihoods [7] covariance of the estimate can be approximated without relying on 

MDS [8, 9, 10, 11, 12]. The computational cost for approximate methods for non–linear 

estimations is high and the methods have so far not found wide applications.

2.3. Conditional Analysis in ET

The conditional approach to statistics shifts the modeling of randomness from the data to the 

unknown parameters. In the conditional approach, the data are assumed constant and equal 
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to the actual measurement. We will refer to this approach as the conditional Bayesian 
approach [13]. The word ‘conditional’ is used because of the fact that the analysis does not 

use the classical concept of averaging over all possible data sets; i.e. relies solely on the 

single dataset that was actually observed. This approach seems better suited than classical 

methods for analysis of just a single ET data set acquired in the clinical setting as knowledge 

of data variance is not necessary to perform the statistical analysis.

The description of conditional statistics is fully described by the posterior probability (or 

simply the posterior). In this paper we do not make a distinction in notation between 

probability and probability density, and always refer to distributions as probabilities. 

Whether probability or probability density is being considered should be obvious from the 

context.

In the past, some applications of Bayesian analysis have been investigated in the standard 

setting where voxel activities were considered as unknown parameters. In our approach we 

analyze emission counts. A high computational cost associated with evaluating the posterior 

𝒫 f ∣ g ∝ 𝒫 g ∣ f 𝒫 f  is an obstacle even with today’s powerful computers to the 

widespread utilization of methods based on analysis of the posterior. The first work 

published by Geman and McClure [14] developed two Bayesian estimators of the image 

activities f for single photon emission computed tomography (SPECT). The maximum a 

posteriori (MAP) and minimum–mean–square-error (MMSE) estimators corresponding to 

the posterior mean were developed. The estimators were determined by using Monte Carlo 

methods and Gibbs sampling [15]. Monte Carlo methods based on Metropolis–Hastings 

sampling were used by Higdon [16] and Weir [17] who determined the posterior nodes and 

means and used hierarchical approaches in order to implement the priors. Credible sets for 

the estimators were also determined.

Most of the work done so far in terms of statistical analysis applies to binned data 

(sinograms) and in most cases it is not applicable to list–mode (unbinned) data. Our 

conditional approach does not make a distinction between these two types of acquisitions 

and applies the same to binned and list–mode data.

We depart from the standard formulation of the conditional inverse tomography investigated 

in the past in which the posterior of voxel activities was analyzed. In conditional Bayesian 

approach formulated here, we derive the posterior probability of the number of events 

emitted per voxel (emission count) and draw inferences from it. The inferences are drawn by 

means of the Origin Ensemble (OE) algorithm that is used to obtain samples of the posterior. 

By averaging the samples, the expectations over the posterior of various quantities can be 

determined.

Algorithms for image reconstruction based on origin ensemble were derived and used by us 

and others in the past [1, 18, 2, 19, 20]. In previous studies the origin ensemble algorithms 

were used but no statistical significance of the results were provided. In the first paper in 

which the algorithm was given [1], the algorithm was derived by assuming that the voxel 

activity can be estimated by dividing the number of emissions per voxel by sensitivity and 

acquisition time. This algorithm was investigated thoroughly in [2] and shown to provide 

Sitek Page 4

Phys Med Biol. Author manuscript; available in PMC 2018 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reconstructions that approximate standard ML estimates of voxel activities for a high 

number of acquired counts. Slight ad hoc modifications of the algorithm derived in [1] were 

used for problems of the reconstruction of Compton Camera data in [18, 19, 20] and have 

shown to provide reconstructions comparable with ML approaches. This lack of statistical 

theory underlying the algorithm prevented investigators from making statistical inferences 

about the results and only point estimates of EC were provided in work published up–to–

date as the statistical significance of the results of this method were unavailable.

In this work we provide the complete statistical theory of the approach. The understanding 

of the theory allows us to not only use point estimates of the EC but also to draw other 

inferences from the data and to understand the significance of modifications of the algorithm 

used in previous published work.

3. Derivation of Emission–Count Posterior

We will use the concept of the unobservable complete–data random variable Y with a vector 

y being a realization from Y. The complete data was introduced to emission tomography by 

Shepp and Vardi [5] who used it to derive the expectation–maximization (EM) algorithm [4] 

for estimation of emission intensities from tomographic projection data. y is defined as a 

vector with elements yki which describes the unobservable number of counts emitted in the 

voxel i and detected in the detector element k. Although double indexes are used, the y is a 

vector with K × I elements. The y will be refereed to as emission counts.

The goal of this section is to derive the posterior of the emission counts per voxel, 

conditioned on the acquired data 𝒫 y ∣ g . It is clear that this posterior is discrete since y is 

discrete. First, the following conditional is defined which can be interpreted as data 

likelihood

𝒫 g ∣ y = 1 if∑i = 1
I yki = gk

0 otherwise
. (1)

Using Bayes theorem the posterior becomes a ratio of marginals of y and g multiplied by 

𝒫 g ∣ y :

𝒫 y ∣ g = 𝒫 y
𝒫 g 𝒫 g ∣ y =

∫ f𝒫 y ∣ f 𝒫 f
𝒫 g 𝒫 g ∣ y . (2)

The posterior is non–zero only for the subspace (Yg) of Y corresponding to the observed 

data g which comes from the definition of likelihood in eq. 1. To keep the notation clear we 

will indicate the posterior by 𝒫 y ∣ g  keeping in mind that it is equal to zero if y ∉ Yg. We 

use simplified notation such ∫ f = ∫ 0
∞df 1⋯∫ 0

∞df I. We implicitly assumed that since the fi 

represent physical quantities the values cannot be negative. This is equivalent to requirement 
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that the prior on 𝒫 f  is 0 for fi < 0. It should be pointed out that even though we are 

calculating the posterior on y, the prior is specified on f.

The denominator of the above equation is independent of y and therefore it is factored in the 

constant Z. In all sections constants are denoted as Z although they will have different values 

depending on the context.

Since the emission of counts from voxels is a Poisson process the conditional probability of 

y conditioned on f can be specified using Poisson distribution

𝒫 y ∣ f = ∏
i = 1

I
∏
k = 1

K αki f i
ykie

−αki f i

yki!
= ∏

i = 1

I
f i

cie
−∊i f i ∏

k = 1

K αki
yki

yki!
(3)

where ∊i = ∑k = 1
K αki is the detection sensitivity of voxel i i.e. the probability that if a count 

is emitted in voxel i it is detected by the camera. The ci = ∑k = 1
K yki is the total number of 

emitted and detected counts from voxel i. In the above equation the functional dependence 

on f is described by the gamma distribution.

In the following three sections we derive the explicit form of the posterior 𝒫 y ∣ g  by 

marginalizing f using different priors.

3.1. Flat Prior

The most straightforward prior 𝒫 f  to implement here is the non–informative flat prior 

which assumes that the prior probability of all values of the activity per voxel are equally 

likely for fi ≥ 0 and zero otherwise. This can be summarized by

𝒫F f ∝ 1 (4)

The posterior that is independent of f is obtained from Eqs. 2 and 3 by integrating out (see 

Appendix B) the voxel activities fi which leads to

𝒫F y ∣ g ∝ ∏
i = 1

I Γ ci + 1

∊i
ci

∏
k = 1

K αki
yki

yki!
for y ∈ Yg (5)

and zero for y ∉ Yg. The symbol Γ(A) is a Gamma function equal to ∫ 0
∞tA − 1e−tdt.

3.2. Truncated Flat Prior

The assumption made in section 3.1 of a flat prior is simplistic. A probability of the voxel 

activity being infinite cannot be the same as the probability that the activity is close to zero 
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since it is known that, due to the limited radioactive dose, fi < ∞. Therefore it is more 

reasonable to assume that activities have probabilities between zero and some maximum Φi 

and zero otherwise. This is a generalization of the flat prior since for Φi → ∞ the flat prior 

is obtained. Truncation of the flat prior makes it proper. The truncated flat prior can be 

expressed by the following:

𝒫T f = 1
∏i = 1

I Φi
∏
i = 1

I
χ 0, Φi

f i (6)

where χ[0,Φi](fi) is an indicator function equal to 1 for fi ∈ [0, Φi] and 0 otherwise. This 

leads to the following posterior

𝒫T y ∣ g = 1
Z ∏

i = 1

I γ ci + 1, ∊iΦi

∊i
ci

∏
k = 1

K αki
yki

yki!
for y ∈ Yg (7)

where γ(A, B) is a lower incomplete Gamma function equal to ∫ 0
BtA − 1e−tdt

3.3. Conjugate Prior

Suppose the mean of voxel activity ϕi is specified a priori. The conjugate prior is postulated 

as follows:

𝒫C f = 1
Z ∏

i = 1

I
f i

βiϕi − 1
e

−βi f i . (8)

where Z is a normalization constant. The prior distribution is designed such that the mean is 

at fi = ϕi for all i. Parameter βi (rate parameter of the Gamma distribution) can be interpreted 

as the confidence in the knowledge of ϕi. For large values of βi the prior distribution is 

strongly peaked around ϕi (high confidence). We require that a priori specified values of ϕi 

and βi are such that ϕiβi ≥ 1. This guarantees that the integral of the prior probability is finite 

and can be normalized to 1. For βi → 0 and βiϕi = 1 the conjugate prior is reduced to flat 

prior. See section 6 for more discussion on the conjugate prior postulated here.

Using Eqs. 2, 3, and 8 and integrating out f the resulting posterior is

𝒫C y ∣ g = 1
Z ∏

i = 1

I Γ ci + βiϕi

∊i + βi
ci

∏
k = 1

K αki
yki

yki!
for y ∈ Yg (9)

and zero for y ∉ Yg.
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4. Numerical Evaluation of the Posteriors

A very popular Bayesian approach for finding point estimates of voxel activities is based on 

maximum a posteriori (MAP) estimation. The MAP estimate corresponds to node of the 

posterior. It is computationally the easiest Bayesian analysis that can be performed in 

medical imaging when parameters are continuous. However, calculation of the expectations 

needed to perform other types of Bayesian analysis is much more difficult and 

computationally intensive. Interestingly, for EC posterior the situation is the opposite. 

Finding the maximum of the posterior is very difficult because the posterior has high–

dimensionality and it is discrete. On the other hand, sampling the emission–count posterior 

and evaluating expectations is relatively straightforward as will be shown in the following 

section.

The factor yki! in equations 5, 7, and 9 is problematic from the computational point of view. 

Even taking into account the sparsity, this vector is typically too large to store in the 

computer memory. As we will show below this factor disappears when the emission–count 

posterior is considered in the Origin Ensemble [1] space. We first introduce a new discrete 

random variable s that we will refer to as a state from Origin Ensemble (OE) of states. The 

element of this discrete random vector sin is either 0 or 1 and indicate if the origin of the 

detected event n is located in voxel i for state s. It follows that sni equal to 1 indicates that 

the origin of the event n is in voxel i and 0 that is not. For a given y there are m(y) 

corresponding OE states. If locations of two events detected in the same detector element k 
are interchanged it is the same y but corresponds to two different OE states, before and after 

interchanging. This reasoning can easily be generalized and using combinatorics we obtain:

m y = ∏
k = 1

K gk!
∏i = 1

I yki!
for y ∈ Yg (10)

For list mode data for which gk is either 0 or 1 it is obvious that OE space and Y space are 

the same. Since there is no reason to say otherwise, we assume that all OE states that 

correspond to the same y are equally probable which leads to:

𝒫 s ∣ g = 𝒫 y ∣ g
m y = 1

Z 𝒫 y ∣ g ∏
i = 1

I
∏
k = 1

K
yki! (11)

subject to ∑i
I ∑n

N sni1k n = ∑i
I yki = gk where 1k(n) is an indicator function equal to 1 if the 

event n was detected in the detector element k and zero otherwise. For the posteriors Eqs. 5, 

7, and 9 considered in OE space the problematic term yki! cancels.

Even without the yki! term, the posteriors seem difficult to evaluate. It can be noticed by 

considering two states from the OE that differ just by the location of a single event and 

considering the ratios of posterior probabilities of two such states, the formulas for the ratios 

become quite simple. Without losing generality, we assume that the event n detected in 
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projection element k in OE state s is located in voxel i, and in OE state s’ in voxel i’. Note 

that αki must be larger than 0. In this case, the ratios of posteriors for OE states s and s’ 

assuming 𝒫 s ∣ g > 0 can be derived from Eqs. 5, 7, and 9 and have the following simple 

forms for the priors that were considered:

𝒫F s′ ∣ g
𝒫F s ∣ g =

αki′∊i ci′ + 1
αki∊i′ci

, (12)

𝒫T s′ ∣ g
𝒫T s ∣ g =

αki′∊i ci′ + 1 − ζ ci′ + 1, ∊i′Φi′
αki∊i′ ci − ζ ci, ∊iΦi

(13)

where ζ(A, B) is BAe−B

γ A, B , and

𝒫C s′ ∣ g
𝒫C s ∣ g =

αki′ ∊i + βi ci′ + βi′ϕi′
αki ∊i′ + βi′ ci + βiϕi − 1 (14)

where the values of ci and ci’ are ones for OE state s from the definition, ci = ∑n = 1
N sni and 

ci′ = ∑n = 1
N sni′. The explicit dependence of ci on s was dropped for clarity. See appendix 

Appendix C for derivation of the above ratios from posteriors given in Eqs. 5, 7, and 9. The 

above ratios can be used to construct a Markov Chain in which subsequent states in the 

chain differ by just the location of a single event.

Whichever Bayesian analysis technique is chosen the posterior probabilities need to be 

sampled in some computationally efficient way. The simplicity of equations 12, 13, and 14 

makes the algorithm an attractive approach from the point of view of computational 

efficiency. It depends only on the total number of events in each voxel for a given state s and 

no calculation is done in projection space; therefore, expensive computation of the 

likelihood in projection space, needed for standard approaches, is not necessary. We used the 

Metropolis approach [21] to sample the space s:

(i) Select starting state s0. This can be done by randomly selecting for each event 

detected in projection element k a voxel for which αki > 0 i.e. assign the origin of the 

event to this voxel.

(ii) Randomly select an event n, note the voxel i in which the origin of n is located for 

s.

(iii) Randomly select a candidate new voxel i’ for event n with αki’ > 0.

(iv) Move event n to candidate voxel with a chance equal to
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min 1, 𝒫 s′ ∣ g
𝒫 s ∣ g (15)

where s indicates a state with the event n in i and s’ a state with the event n in i’. The 

ratio of probabilities 𝒫 s′ ∣ g
𝒫 s ∣ g  can be one of ones defined by Eqs. 12, 13, or 14.

(v) Repeat last 3 steps

One iteration of the algorithm is defined as repetition of the algorithm above N times. For 

the reminder of this paper we refer to the above algorithm as the OE algorithm.

4.1. MMSE Estimator

The OE algorithm described above is a reversible Markov Chain with Metropolis sampling. 

The algorithm will reach a steady state regardless of the starting point. Once in the steady 

state, future states are drawn with a chance proportional to the posterior. Effectively then, the 

expectation value over the posterior E𝒫 y ∣ g F y  of any other function F(y) can be 

estimated. For example, the minimum mean square error (MMSE) estimator of the number 

of emitted counts per voxel ci = ∑k = 1
K yki can be calculated as:

c i = ∑
y ∈ Yg

ci𝒫 y ∣ g = ∑
s

ci𝒫 s ∣ g ≈ 1
T ∑

t = 1

T
ci yst

(16)

where T indicates the number of samples taken from the chain while in steady state, and yst 
indicates a vector y corresponding to OE state st.

4.2. Hypothesis Testing Using Emission–Count Posteriors

Binary and multiple hypothesis testing with Bayesian emission–count posteriors can also be 

done relatively easily. For the hypothesis testing in a conditional Bayesian setting used in 

this work, a loss function L(y, Dm) is specified which describes a penalty incurred when a 

decision Dm is made in favor of hypothesis Hm. Index m = 1…M indicates the hypothesis 

number; for a binary test, m = {1, 2}. We assume that the loss is zero for correct decisions. 

A decision–theoretic selection of Dm is made based on the smallest posterior expected loss, 

i.e. we seek to minimize the expectation ρ(Dm) of the loss for decision m.:

ρ Dm = E𝒫 y ∣ g L y, Dm . (17)

One of the simplest forms of the loss function that can be used is a 0 – Km loss.
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L y, Dm =
0 if y ∈ Ym

Km if y ∉ Ym
(18)

where Km is positive. By Ym we indicate a subspace of Y for which hypothesis m is true.

For the special case of a binary hypothesis with 0 – K loss, the posterior expected losses are 

ρ D1 = K2𝒫 Y1 ∣ g  and ρ D2 = K1𝒫 Y2 ∣ g . Where Y1 and Y2 indicate subspaces of Y for 

which H1 and H2 are true. For notational convenience we used the following definitions 

𝒫 Y1 ∣ g = ∑y ∈ Y1
𝒫 y ∣ g  and 𝒫 Y2 ∣ g = ∑y ∈ Y2

𝒫 y ∣ g .

5. Application to computer simulated tomography data

We used computer simulations of a 2D tomographic system. The reconstruction area 

consisted of 64×64 pixels with pixel size equal to 1 – the total number of image elements 

was I = 4096. We simulated 60 projections over 180°, each with 64 bins (K = 3840). The 

size of each projection bin was 1. The element of the system matrix αki was defined as the 

area of pixel i inside the parallel strip defined by projection bin k. This resulted in ∊i equal to 

60 for each pixel i.e. an area of 1 was projected onto 60 projections. Next, the activity for 

each voxel fi was simulated as shown in Fig. 2, and noiseless data g  were generated as 

gk = ∑i
I αki f i. The noiseless data were scaled such that the sum of all 3840 projection bins 

was equal to the desired number of detected counts. Three levels of total counts were 

simulated 20k (low), 100k (normal), and 2M (high). The Poisson distributed noise deviates 

were determined from the noiseless projection data. Figure 2 shows the noiseless sinogram 

and examples of noisy sinograms for a total of 20k and 2M counts. Since we aimed to 

investigate statistical properties in this work, the idealized tomographic system was used in 

which no attenuation, Compton scatter, finite spatial and energy resolutions of the detectors 

were simulated. This was done so the effects due to inaccuracies in system modeling were 

avoided.

The object consisted of a large background circle with eight smaller circles representing 

lesions. The activity of the lesions was simulated to achieve a 5:1 ratio between hot lesions 

and the background, and a 0.2:1 ratio between cold lesions and the background. Three ROIs 

were identified (Fig. 2), one 12×12 pixels in size, positioned in the center of the object, and 

two 2×2–pixels in size, positioned on high– and low–intensity regions.

Calculations of the posterior expectations and marginalized distributions were done using 

5000 iterations of the OE algorithm as a burn–in period (required for the algorithm to reach 

equilibrium) followed by 5 million iterations for low, 100 thousand iterations for normal, 

and 20 thousand iterations for high count cases. To make sure that system reaches 

equilibrium we observed the number of iteration at which number of counts in ROIs does 

not change significantly (which was around 1000 iterations) and then multiplied it by 5 to 

make sure equilibration is reached. We assumed that correlations between y in subsequent 

iterations can be ignored because assuming similar correlation times they average out in the 
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long run (more than 20 thousand iterations). This assumption was verified by comparing 

results when samples were obtained in every iteration and in every hundred iterations and we 

found resulting images and distributions indistinguishably close. For current implementation 

using code not optimized for speed, the computing time for 1 iteration for 100k counts was 

0.8 seconds on Xeon E5520 @ 2.27 GHz CPU and scaled linearly with number of counts. 

For analysis with the truncated flat prior, we assumed that Φi was the same for each pixel 

and equal to 1.1 times the maximum value of simulated activity per pixel.

We used the maximum–likelihood (ML) expectation–maximization (EM) algorithm [5] to 

obtain ML estimates of pixel activities (f). This was done by performing 10,000 iterations of 

the EM algorithm [5] so the ML solution was determined within the limits of the double–

precision numerical accuracy.

5.1. Estimation of Emission–Count Images

Images of the MMSE estimators of the number of emission counts per pixel using a flat 

prior are shown in Figure 3. The pixel values were determined using equation 16. Note that 

with an increasing number of acquired counts, the resulting images appear less noisy and 

resemble the original image more closely. For a high number of counts (2M), the one–pixel 

high intensity object can clearly be identified. For low–count images low–intensity regions 

are very difficult to identify. We see that the use of a truncated flat prior affects the 

uniformity of the high–intensity objects, but low–intensity regions and background seem 

unaffected.

Figure 3(second row first column) shows reconstruction with gamma prior with ϕ equal to 

the true simulated values of f. The values of β were equal to 0.1. This experiment was done 

to demonstrate the stability of the OE algorithm. It shows that if an accurate prior is used, 

the OE estimate is very accurate. The lack of accurate prior information when non–

informative priors were used for the reconstructions (Figure 3) leads to images that are 

similar to the ML reconstruction (see Figure 3). Note that although the ML image is much 

more noisy, artifacts due to noise correlations (artificially increased/deceased relative 

reconstructed value) are in the same locations in the image compared to MMSE estimates of 

the emission counts.

5.2. Hypothesis Testing/Detection

One task performed frequently in medical imaging is to determine whether apparent hot 

lesions (spots of increased uptake of the tracer) are significantly higher than the background 

region. Another similar task could be to determine if the apparent cold lesion are 

significantly lower than the background. If we define a signal as an increase (or decrease) of 

activity in some specified region compared to the background, this can be considered as a 

detection task.

To simulate such a task, we define two ROIs in the image, one corresponding to the lesion 

(ROI 1) and one corresponding to the background (ROI 2). Then, we for hot lesions we test 

if the average number of emissions per pixel in ROI 1 is r or more times higher than the 

average number of emissions in the ROI 2. For cold lesions we test if the average number of 
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emissions per pixel in ROI 1 is r or more times smaller than the average number of 

emissions in the background ROI 2. These tasks would correspond to detection of hot and 

cold spots in the image. For hot lesion detection task we define hypothesis H1 as the average 

number of emissions per pixel in ROI 1 being r–times or more higher than in ROI 2 and 

alternative hypothesis H2 that it is not. In other words, the signal is defined as an r–times 

increased emission –count value compared to the background. For the cold lesion, 

hypothesis H1 is defied as the average number of emissions per pixel in ROI 1 being r–times 

or more smaller than in the background ROI 2 and alternative hypothesis H2 that it is not. 

Although not investigated in this paper, it is also straightforward to define a signal in terms 

of an absolute number of emissions.

Using definitions in section 4.2 the expected losses for D1 and D2 (decisions in favor of H1 

and H2) are ρ D1 = K2𝒫 Y1 ∣ g  and ρ D2 = K1𝒫 Y2 ∣ g . Since, for the binary hypothesis 

𝒫 Y1 ∣ g + 𝒫 Y2 ∣ g = 1, H1 will be accepted for ρ(D1) < ρ(D2), which leads to:

𝒫 Y1 ∣ g >
K1

K1 + K2
= λ (19)

Decisions are made based on a decision threshold, λ, which is a function of K1 and K2. The 

value 𝒫 Y1 ∣ g  has an intuitive interpretation as the probability of the hypothesis H1.

Figure 4 presents the value of the posterior probability of the hypotheses as a function of r. 
The graphs can be used for the hypothesis testing. For example from figure 4(A) the 

posterior of the hypothesis for r = 0.5 for 20k counts is about 0.4. Therefore the hypothesis 

is accepted if λ (see eq. 19) is less than 0.4. We note that use of the truncated prior does not 

effect the hypothesis about the low–intensity region, but it influences significantly the 

hypothesis about the high–intensity ROI. This can be appreciated in figure 4 (A) and (B) 

which shows that the posteriors are almost identical and therefore decisions made based on 

the posteriors will also be identical. On the contrary for hot lesions (Figure 4(C) and (D)) if 

decision to be made for 500k counts about lesion emitting at least 5.25 times counts as the 

background we see that posterior probability of this is 0.54 for flat prior (Figure 4(C)) and 

0.24 for truncated flat prior (Figure 4(D)). If the decision threshold λ is assumed to be 0.5 

than hypothesis is accepted for flat and rejected for truncated flat prior, respectively. This 

illustrates the effect of the prior on decision making.

6. Discussion

One of the frequent criticisms of conditional Bayesian methods is concentrated on the issue 

of the subjectivity introduced by the prior, and relying only on observed data. In general, this 

issue is a core of the dispute between frequentist (classical) and Bayesian statisticians and is 

a long–standing problem. We do not wish to enter this discussion here, as it is beyond the 

scope of this work; however, it should be pointed out that classical methods used in imaging 

are not without flaws either. The most prominent flaw is that the classical measures used in 

imaging, such bias and variance, are object dependent. Therefore, if methods are shown to 
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be valid for the assumed object, there is usually no effort expended to provide convincing 

arguments that the same methods would work for other objects as well. On the other hand, 

object variability is explicitly addressed in conditional Bayesian methods through the use of 

priors.

This paper is concerned with theoretical aspects of the novel approach to analysis of the data 

based on a conditional Bayesian approach for analysis of emission–count posteriors. One of 

the next steps would be to compare this approach with classical methods. The best procedure 

to achieve this comparison is far from obvious. One way of proceeding would be to compare 

the estimates obtained by the standard tomographic reconstruction with the emission–count 

posterior approach presented in this paper. From the decision–theoretic perspective the most 

reasonable measure that can be used is Bayes Risk. By using the Bayes risk, the same loss 

functions and the same priors can be utilized for both classical and conditional Bayesian 

approaches and averaged over the the objects and data variability. This procedure would 

provide a fair comparison in the decision theoretic setting between the methods. 

Unfortunately, for inverse problems in medical imaging the Bayes risk is computationally 

difficult to calculate especially for classical methods. A straightforward approach to 

compare point estimates obtained by classical and conditional Bayesian methods can be to 

use purely frequentist methods as bias/variance (quadratic loss in a decision theoretic 

setting) or task–specific methods [22, 23] without the use of priors. This in our view is 

disadvantageous to the conditional Bayesian approach as the method presented in this paper 

provides much more information over a simple point estimate.

An important aspect of analysis of the tomographic data that was not covered in this paper is 

the incorporation of attenuation, scatter, normalization, and randoms in the analysis. The 

attenuation effect is trivial as, for the method presented here it is contained in the system 

matrix, α, and sensitivity vector, ∊. Inclusion of other effects requires methods specific to 

the origin ensemble algorithm that we covered in our previous publication [24].

For the particular example presented in this paper, it is quite clear that for the low–count 

studies (20k and 100k), non–informative priors are not so useful. This is clearly reflected in 

Figures 4(C)(D), which indicate that the hypothesis that r > 4.5 (true simulated of activities r 
was 5) would be rejected for most loss functions. The reason for this is the limited 

information contained in the data. In other words the “strength” of the data is not sufficient 

to overcome the “strength” of the non–informative prior.

This initial study provides the groundwork for the development of better priors as well as for 

investigation of limits of quantitation achievable in emission tomography in the conditional 

Bayesian setting. An interesting continuation of this work is to use the conjugate prior with a 

good guess for ϕi and the hierarchical prior on β. For example a “good guess” can be 

obtained by performing a simple analytic reconstruction of the image using FBP. Although 

such a step violates the independence of the data and the prior, it brings into the problem the 

principles of analytic tomography that constitutes new a priori knowledge. Although not 

discussed in the paper the objective Jeffreys prior [25] can be easily implemented within our 

methods as well.
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In summary, a novel approach to analysis of emission tomography data using the posterior 

probability of emission–count is explored. The EC posterior is derived by marginalizing 

voxel activities. Based on EC posteriors, examples of Bayesian analysis including estimation 

and classification tasks in emission tomography are provided using computer simulated data. 

The analysis described in this work provides new quantitative statistical measures that can 

be used in decision making in diagnostic imaging using emission tomography.
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Appendix A: List of symbols used in paper

Table A1

Glossary

Symbol Meaning

α System matrix with size K by I that defines the imaging system

αik Element of the system matrix that corresponds to i–th voxel and k–th projection element

βi Rate parameter of Gamma distribution for voxel i used as conjugate prior

c Vector of size I of the number emissions per voxel

ci Element of the vector c from the definition equal to ∑k = 1
K yki

c i Estimate of ci

Dm Decision in favor of the hypothesis Hm

∊i Sensitivity of voxel i equal to ∑k = 1
K αki

f Vector of size I of voxel activities. Realization of the random variable (RV)

fi Element i of the vector f

Γ(A) Gamma function equal to ∫ 0
∞tA − 1e−tdt

γ(A, B) Lower–Incomplete Gamma function equal to ∫ 0
BtA − 1e−tdt

g Data vector of size K. Realization of RV but considered constant for conditional analysis

gk Element k of the vector g

Hm Hypothesis m

I Total number of voxels

K Total number of projection elements

Km Value of the constant loss (0 – Km) incurred when wrong decision m is made

λ Binary decision threshold

L(y, Dm) Loss function incurred when decision Dm is made assuming y is the true emission count vector

m(y) Number of OE states that correspond to vector y

N Total number of acquired counts

𝒫 A Probability or probability density distribution of RV A

𝒫 A ∣ B Conditional probability or probability density distribution of RV A conditioned on RV B
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Symbol Meaning

Φi Maximum value of activity for voxel i used for definition of truncated flat prior

ϕi Product of ϕi and βi defines shape parameter of gamma distribution for voxel i used as conjugate prior

r Ratio of average EC values in ROIs

ρ(Dm) Expected loss corresponding to decision Dm

s Vector from the OE space

sni Element of the vector s equal to 0 or 1 indicating the event n located in voxel i (1 for yes 0 for no)

T Number of samples used in Markov Chain Monte Carlo to approximate the posterior expectations.

Y A set of of all possible y’s.

Yg Subset of Y for which ∑i = 1
I yki = gk

Ym Subset of Y for which hypothesis m is true

y Vector of size K × I of emission counts (a.k.a complete data). A realization of RV Y.

yki Element of vector y which indicates the number of counts emitted in voxel i and detected in projection 
element k.

Appendix B: Derivation of the posterior by marginalization of voxel 

activities

Using Eq. 1 and 2 the posterior for the flat prior is of the form

𝒫 y ∣ g = 1
𝒫 g ∫

0

∞
df 1⋯∫

0

∞
df I ∏

i = 1

I
f i

cie
−∊i f i ∏

k = 1

K αki
yki

yki!
(B.1)

Pulling constant terms in the front of the integrals and interchanging the order of summation 

and integration the above equation becomes:

𝒫 y ∣ g = 1
𝒫 g ∏

i = 1

I
∏
k = 1

K αki
yki

yki!
∏
i = 1

I ∫
0

∞
df i f i

cie
−∊i f i

= 1
𝒫 g ∏

i = 1

I
∏
k = 1

K αki
yki

yki!
∏
i = 1

I Γ ci + 1

∊i
ci + 1

= 1
𝒫 g ∏i = 1

i ∊i
= Z

∏
i = 1

I
∏
k = 1

K αki
yki

yki!
∏
i = 1

I Γ ci + 1

∊i
ci

(B.2)

For the case of the flat prior ci represents integer value and Γ(ci + 1) = ci!. In general 

however this will not be true if the argument of the gamma function in not an integer.

Marginalizations of f for posteriors derived using other priors were done in a similar manner.
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Appendix C: Derivation of the ratio of the posteriors

Posterior ratios in section 4 were calculated directly from derived posteriors. For example, 

for the flat prior in the OE state s event n detected in projection element k is located in voxel 

i. In OE state s’ the same event is located in voxel i’. The ratio of the flat–prior posteriors 

corresponding to these two states using Eqs. 5 and 10 is:

𝒫F s′ ∣ g
𝒫F s ∣ g =

1
Z ∏ j = 1, j ≠ i, j ≠ i′

I Γ c j + 1

∊ j

c j
∏l = 1

K αlj

ylj

1
Z ∏ j = 1, j ≠ i, j ≠ i′

I Γ c j + 1

∊ j

c j
∏l = 1

K αlj

ylj
×

×

Γ ci

∊ j

ci − 1 αki
yki − 1

∏l = 1, l ≠ k
K αli

yli Γ ci′ + 2

∊ j

ci′ + 1 αki′
yki′ + 1

∏l = 1, l ≠ k
K αli′ yli′

Γ ci + 1

∊ j

ci
αki

yki∏l = 1, l ≠ k
K αli

yli Γ ci′ + 1

∊ j

ci′
αki′

yki′∏k = 1, l ≠ k
K αli′

yli′

(C.1)

The first square bracket in the equation above contains identical numerator and denominator 

and will be canceled. Expressions under the product symbol ∏ in numerator and 

denominator of the second part of the equation are identical and will be canceled as well. 

Using the property of the gamma function AΓ(A) = Γ(A + 1) and simplifying remaining 

terms we arrive to Eq. 12 repeated here for convenience:

𝒫F s′ ∣ g
𝒫F s ∣ g =

αki′∊i ci′ + 1
αki∊i′ci

. (C.2)

Almost identical calculations can be used to derive Eq. 14. To derive Eq. 13 the property of 

the lower–incomplete Gamma function Aγ(A, B) – BAe−B = γ(A + 1, B) is used. Values of 

ζ(A, B) can be precalculated, or a very good approximation can be used such that ζ(A, B) = 

0 for A ≤ B and ζ(A, B) = A – B for A > B.
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Figure 1. 
Schematic drawing of a PET scanner. Rectangles represent detector crystals. For standard 

PET, coincidence event detected in A and B define a line along which the origin of the event 

is located. For time–of–flight PET the difference in time of arrival is measured and location 

of the origin is assumed to be located in some section of the line joining detectors C and D. 

Shaded pixels represent possible pixels that contain the origin of the event. Note that for the 

TOF the number of these pixels is substantially smaller indicating more precise localization.
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Figure 2. 
Test image used in this work (upper–left). Three ROIs are marked as red squares. The 

numbers correspond to relative activities per pixel. The upper–right image is the noiseless 

sinogram of the test image. The bottom row shows two sinograms corresponding to noisy 

data with Poisson distributed noise with a total of 20k and 2M counts, respectively.
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Figure 3. 
Estimates of f using ML method, and MMSE estimates of the emission–count for different 

priors (F–flat, T–truncated flat, C–conjugate with perfect knowledge of the mean) and 

different total number of counts in the sinogram. We show ML image to demonstrate that 

noise structure is identical in ML and emission–count MMSE estimates. We are not trying to 

show the superiority of one method over the other.
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Figure 4. 
(A) and (B): values of the posterior probability for the hypothesis the the low–intensity ROI 

on average emitted r–times or fewer events than the background ROI and, (C) and (D), of the 

hypothesis that the high–intensity ROI emitted on average r–times or more than the 

background ROI. Graphs (A) and (C) correspond to the flat prior, and (B) and (D) to the 

truncated flat prior.
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