
Engineering the synchronization of neuron action potentials 
using global time-delayed feedback stimulation

Craig G. Rusin1,*, Sarah E. Johnson1, Jaideep Kapur2, and John L. Hudson1

1Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA

2Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia 
22908, USA

Abstract

We experimentally demonstrate the use of continuous, time-delayed, feedback stimulation for 

controlling the synchronization of neuron action potentials. Phase-based models were 

experimentally constructed from a single synaptically isolated cultured hippocampal neuron. 

These models were used to determine the stimulation parameters necessary to produce the desired 

synchronization behavior in the action potentials of a pair of neurons coupled through a global 

time-delayed interaction. Measurements made using a dynamic clamp system confirm the 

generation of the synchronized states predicted by the experimentally constructed phase model. 

This model was then utilized to extrapolate the feedback stimulation parameters necessary to 

disrupt the action potential synchronization of a large population of globally interacting neurons.

I. INTRODUCTION

Abnormal synchronization of neural activity can be seen in many neurological diseases, 

including epilepsy, Parkinson’s disease, and essential tremors [1–4]. Neurostimulation 

therapy can be used to alleviate the symptoms of these diseases [5,6]; it typically involves 

applying a pulse-train stimulation signal to an electrode which has been surgically implanted 

into the brain of the patient [7–9]. This electrical stimulation signal modulates the 

extracellular potential of all of the neurons within the targeted area, which is thought to alter 

their collective behavior. One main challenge is to determine the necessary stimulation 

parameters in order to obtain the desired collective firing behavior. While electrical 

stimulation has been shown to modulate the activity of individual neurons, its effect on the 

synchronization behavior of a group of neurons is currently under investigation [10,11]. 

Theoretical models have been developed which illustrate how electrical stimulation can be 

utilized to alter the firing patterns of simulated populations of neurons [12,13].

Time-delayed feedback has been shown to desynchronize groups of model neurons [12,14–

18], and can be employed in place of pulse-train stimulation. The feedback can be used to 

design a therapeutic state of synchronization [19,20]. The application of locally addressable 

stimulation has been shown to synchronize the action potentials of neurons [21].
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Here, we experimentally demonstrate the use of time-delayed feedback stimulation for 

engineering the synchronization of the action potentials of cultured neurons. Phase models 

have been shown to have sufficient accuracy to allow precise control over synchronization 

states of complex oscillatory systems [21–29]. The standard approach for the construction of 

a phase model involves the measurement of the phase response of a system to a set of 

discrete pulses applied at specific times in the cycle of the element [21,24,30–35]. However, 

precise measurements of phase shift are difficult to obtain, particularly when, for example, 

the period is nonstationary. In this paper, an experimental method was used to construct 

phase-based models using continuous stimulation of a single patch clamped neuron. We 

believe that this method overcomes some of the limitations inherent in standard pulse-based 

approaches. The mean period of the neuron was measured with and without applied 

feedback. The change in the mean period of the action potentials as a result of the 

application of feedback was determined as a function of feedback delay. This allowed for the 

construction of a phase model of the dynamical behavior of the neuron. The experimentally 

constructed model was then used to determine the feedback parameters necessary to produce 

in-phase and antiphase synchronization states within a two-neuron system using global 

stimulation. The parameters were applied to an experimental system of two patch clamped 

neurons, and the desired synchronization states were observed. The validated model was 

then used to determine feedback parameters which may disrupt the synchronization of a 

large population of globally coupled neurons.

II. THEORY

A phase-based model can be constructed to represent the dynamical behavior of a population 

of coupled oscillatory elements:

dϕi
dt = ωi + K

N ∑
j = 1

N
H(ϕ j − ϕi) for i = 1, 2, …, N, (1)

where ϕi is the phase of the element, K is the interaction strength, ωi is the natural 

frequency, and H(Δϕ) is the interaction function [36,37]. The interaction function can be 

determined from macroscopic physical quantities:

H(Δϕ) = 1
2π∫0

2π
Z(ϕ)h(ϕ + Δϕ)dϕ, (2)

where Z(ϕ) is the response function and h(ϕ) is the stimulation function [37]. The response 

function quantifies the sensitivity of the neuron to perturbations as a function of phase, while 

the stimulation function quantifies the amount of stimulation applied to the neuron at a given 

phase.

The construction of the model proceeds by experimental determination of the response 

function of the neuron. Standard methods for determining the response function of an 

oscillatory element often require large pulses [38] or access to multiple coupled elements 
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[39], making them difficult to apply in experimental systems. As a result, a method was 

developed which utilized weak delayed self-feedback stimulation applied to a single 

oscillator [40]. A phase model can be defined for a system composed of one element as

dϕ1
dt = ω1 + KH(ϕ1

† − ϕ1), (3)

where ϕ1
† is the phase of the stimulation signal applied to the element. For delayed self-

feedback stimulation, the phase of the stimulation is related to the phase of the physical 

element by

ϕ1
† = ϕ1 − τ, (4)

where τ is the feedback delay.

The phase of an oscillator can be integrated over one cycle and expressed as a function of 

the period of the oscillation:

2π = ∮ dϕi = ∫
0

Pi + ΔPi
dt

dϕi
dt , (5)

where Pi is the intrinsic mean period of the oscillator (2π/ωi), and ΔPi is the change in the 

period of the oscillator due to external stimulations, such that Pi + ΔPi is the observed period 

of the element [39,41]. By substituting Eqs. (3) and (4) into (5), H(Δϕ) can be analytically 

approximated as

H(Δϕ) = −2π
KP1

2 [ΔP1(Δϕ)],

Δϕ = − τ .
(6)

Equation (6) allows for the determination of the interaction function directly from 

experimental measurements of the period of an oscillatory element stimulated using delayed 

self-feedback. A similar method using a synaptic stimulation function was developed by Cui 

et al. [42].

Z(ϕ) can be analytically determined from Eq. (2) given an experimentally measured 

interaction function obtained under a known stimulation. Each function in Eq. (2) can be 

expanded in a Fourier series,
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H(Δϕ) = ∑
n = 1

∞
Rn cos(nΔϕ) + Sn sin(nΔϕ), (7)

Z(ϕ) = ∑
m = 1

∞
Am cos(mϕ) + Bm sin(mϕ), (8)

h(ϕ) = ∑
l = 1

∞
Cl cos(lϕ) + Dl sin(lϕ) . (9)

Substitution of these Fourier series into Eq. (2) and integration yields a linear system of 

equations in terms of their Fourier coefficients:

Cn Dn

Dn −Cn

An

Bn
=

2Rn

2Sn
, (10)

which can be solved using standard matrix techniques.

Once the response function is known, Eqs. (1) and (2) can be used to determine how the the 

parameters of the stimulation function affect the collective phase behavior of a set of two or 

more neurons. For a system of two neurons, we construct a phase model of the form

dϕi
dt = ωi + K

2 ∑
j = 1

2
H(ϕ j − ϕi) for i = 1, 2, (11)

which by subtraction yields

d Δϕ
dt = Δω + K

2 [H( − Δϕ) − H(Δϕ)] . (12)

Stationary solutions to this equation will occur at phase differences which satisfy

Δω
K = H−(Δϕ), (13)

where H−(Δϕ) is the odd part of the interaction function. A linear stability analysis indicates 

that these stationary states will be stable when
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d H−(Δϕ)
d Δϕ > 0 . (14)

Synchronization states can therefore be generated by selecting feedback stimulation 

parameters such that the interaction function has the necessary properties Eqs. (13) and (14) 

to stabilize the desired states.

III. EXPERIMENTAL METHODS AND APPARATUS

Rat hippocampal cells were cultured using methods modified from the literature [43,44]. 

Cultures were prepared from P0-P1 Sprague-Dawley newborn rats. The newborn rats were 

decapitated, and their brains were removed and placed in cold HEPES-buffered Hank’s 

balanced salt solution 4- (2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)- 

HBSS. The hippocampi were removed under a dissecting microscope and collected in a 

small petri dish containing HEPES-HBSS. Tissues were incubated in 0.125% trypsin for 15 

min at 37 °C. The trypsin solution was replaced with 5 ml HEPES-HBSS and the cells were 

rinsed twice more with HEPES-HBSS at 5 min intervals. The hippocampi were triturated 

until no fragments of tissue remained. Neurons were collected by centrifugation and 

resuspended in 5 ml of Dulbeccos modified Eagles medium and F-12 supplement (1:1) 

(Invitrogen) with 10% fetal bovine serum (heat inactivated, Invitrogen), 2 mM L-glutamine 

(Invitrogen), and penicillin (100 U/ml)-streptomycin (100 U/ml).

Culture dishes were coated with polylysine and filled with 2 ml of culture medium. Cells 

were plated at a minimum density of 50 000 per 35 mm2 dish and kept at 37 °C in a 5% CO2 

incubator. After 24 h, the culture medium was changed to serum-free medium containing 2% 

B27 and 2 mmol/l glutamine. The medium was replaced with fresh medium every 2–3 days. 

The cultures used for the experiments were between 9 and 15 days old. Cells were placed in 

external media consisting of (in mM) 146 NaCl, 3 KCl, 2 CaCl2, 3 MgCl2, 11 glucose, and 

10 HEPES, pH 7.4, osmolarity 310–315 mOsm. The neurons were synaptically isolated by 

adding 50 μM DL-2-Amino-5-phosphonopentanoic acid (DL-AP5), 50 μM bicuculline 

methiodide, and 20 μM 6,7-Dinitroquinoxaline-2,3-dione (DNQX). In order to create 

periodic spiking, 50 μM of 4-aminopyridine, a common agent used to induce seizurelike 

activity, was added to the external solution.

Cells were patched using a micropipette with a resistance of 6–9 MΩ and filled with a 

solution of (in mM) 145 K-gluconate, 0.6 Ethylene glycol-bis(2-aminoethylether)-

N,N,N’,N’-tetraacetic acid (EGTA), 11 HEPES, 8 KCl, 3 NaCl, and 4 MgATP, pH 7.3, 

osmolarity 295–300 mOsm. A silver counterelectrode was placed into the external solution. 

The membrane potentials of the cells were recorded using two Axopatch amplifiers. The 

amplified membrane potential measurements were digitized using a 16-bit data acquisition 

system. A Xilinx FPGA processor was programmed to calculate a stimulation signal from 

the membrane potential measurements of the neurons. The stimulation was of the form
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I(t) = Iapp + δI, (15)

δI = K
N ∑

i = 1

N
h(V i(t)), (16)

h(V) = K0 + K1(V(t − τ) − V), (17)

where I(t) is the injected current stimulation signal, Iapp is the baseline injected current, V is 

the mean value of the neuron membrane potential, K is the feedback gain, τ is the feedback 

delay, and V is the measured neuron membrane potential. The loop rate of the controller was 

25 kHz. A schematic of the dynamic clamp apparatus is in Fig. 1. Other similar dynamic 

clamp apparatuses have been discussed in the literature [45,46].

After the cells were successfully patched, they were hyperpolarized to −70 mV and allowed 

to rest for 120 s to ensure the formation of a 1 GΩ seal. A baseline current of 40 pA was 

injected into the neurons, causing repetitive spiking. After allowing 1 s for accommodation, 

feedback stimulation was applied to the neuron. The feedback signal was applied for 

approximately 10 s, after which time the current stimulation was removed and the neuron 

was allowed to rest for a period of approximately 20–30 s, before the next depolarization.

1V. EXPERIMENTAL RESULTS

Experiments were conducted to illustrate the use of global feedback stimulation for 

controlling the synchronization behavior of neurons. The interaction function of a single, 

synaptically isolated neuron to delayed feedback stimulation was experimentally measured. 

A single neuron was patch clamped and its membrane potential was recorded over time [Fig. 

2(a)]. Delayed feedback stimulation was then applied to the neuron. Figures 2(b)–2(d) 

illustrate the firing period of the neuron as a function of feedback delay. Baseline 

observations of the natural firing rate of the neuron (without applied stimulation) were taken 

before and after each experiment (left and right panels). The natural period distribution of 

the neuron was observed to be approximately the same before and after the application of 

feedback stimulation, indicating that the stimulation did not disrupt the intrinsic behavior of 

the neuron. Experiments were repeated using three different neurons.

The period of the neuron action potentials was observed to change as the feedback delay was 

increased [middle panels, Figs. 2(b)–2(d)]. The maximum firing period was achieved with a 

feedback delay of approximately τ = 0.25 rad/2π, while the minimum firing period was 

obtained at approximately τ = 0.7 rad/2π. The firing period of the neuron with τ = rad/2π 
was close to the firing period when τ = 0 rad/2π. Drift in the natural period of the action 

potentials occurred but was small compared to the mean period of the action potentials, 
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except for the case of the second cell [Fig. 2(c)]. For this cell, the mean period was adjusted 

linearly from the initial prestimulation mean period to the poststimulation mean period. The 

qualitative frequency response was found to be similar for each neuron.

Equation (6) was applied to the experimental observations in Figs. 2(b)–2(d); the resulting 

interaction functions are illustrated in Fig. 3(a). The period of the neuron action potentials 

was taken to be the median period of the observed action potentials. Once the interaction 

functions were determined for each of the neurons, their corresponding response functions 

were calculated using Eq. (2). For this calculation, the stimulation function was set to Eq. 

(17) and the neuron wave form x(ϕ) was set to the mean cycle of the neuron action potential. 

The resulting response functions for each of the neurons are illustrated in Fig. 3(b). 

Qualitative agreement was seen between these three functions, indicating that their 

sensitivities to electrical stimulation are approximately equal.

The experimentally constructed phase model was used to determine the values of feedback 

delay which would produce in-phase and antiphase synchronization states in a system of two 

neurons. As indicated by Eqs. (12) and (14), a system of two neurons will exhibit a stable 

phase-locked state when the odd part of the interaction function equals the value Δω/K with 

positive slope. Assuming the ratio of Δω/K is small, the stationary states of the system can 

be found as the roots of H−(Δϕ). The roots of H−(Δϕ) for the experimental system were 

determined as a function of the feedback delay. It was observed that feedback delays less 

than 0.2 rad/2π produced a unique and stable in-phase synchronization state while feedback 

delays between 0.4 and 0.6 rad/2π produced a unique and stable antiphase synchronized 

state. Figures 3(c) and 3(d) illustrate the odd part of the interaction function for feedback 

delays of 0 and 0.5 rad/2π, respectively.

The identified feedback delays were applied to the two-neuron system in order to produce 

the expected in-phase and antiphase synchronization states. To ensure that the neurons were 

connected only through the feedback stimulation, they were synaptically isolated and placed 

in separate cultures. Both neurons were patch clamped using standard methods. The 

recorded membrane potentials for both cells under different experimental conditions can be 

seen in Figs. 4(a1)–4(a3); the applied stimulation signal is illustrated in Figs. 4(b1)–4(b3). 

The neurons were observed to experience accommodation for the first three seconds of each 

experiment; these data were not considered as part of the analysis.

Without feedback stimulation, the phases of the action potentials of the two neurons were 

found to be uncorrelated [Figs. 4(a1)–4(e1)]. The mean periods of the cells were not 

observed to lock and no preferred phase orientation was found [Fig. 4(e1)]. Application of 

the global feedback stimulation with a delay of τ = 0 rad/2π caused the mean period of the 

two cells to lock with a period of approximately 180 ms [Figs. 4(c2) and 4(d2)]. The mean 

phase difference between the neuron action potentials was observed to be approximately 

0.05 rad/2π, indicating the presence of a nearly in-phase synchronized state [Fig. 4(e2)]. 

This observation was consistent with theoretical expectations [Fig. 3(c)]. The in-phase 

synchronized state persisted until the feedback stimulation was removed (not shown). 

Increase in the feedback delay to τ = 0.5 rad/2π caused the action potentials of the two 
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neurons to synchronize in an antiphase configuration [Figs. 4(a3)–4(e3)]. This was 

consistent with expectations [Fig. 3(d)].

V. DISCUSSION

Current research has explored the synchronization behavior of neurons as a function of 

inhibitory and excitatory synaptic connections [47–49]. Here we demonstrate that the phase 

model can also be used to generate global electrical stimulation parameters which can 

potentially overcome natural behaviors of a neural system. Phase-based models have proven 

to be a valuable tool for characterizing the individual and collective dynamical behavior of 

neurons [30,31,35,50,51]. Such models are advantageous since no detailed knowledge of the 

biochemistry of neurons is required; only macroscopic measurements of membrane potential 

are necessary for model construction. Typically, models are generated from experimental 

measurements on a single neuron and subsequently used to infer the synchronization 

behavior of a population of interacting neurons. We reverse the process by using the phase 

model to determine the stimulation required to produce a desired synchronization behavior.

Models constructed from experimental measurements on single neurons have proved 

effective for estimating stimulation parameters for controlling the action potential 

synchronization of two neurons. However, the ultimate goal is the creation (or disruption) of 

synchronization in large-scale systems. To demonstrate this application, the experimentally 

constructed phase model was utilized to estimate stimulation parameters which would 

disrupt the collective synchronization of a large population of globally coupled neurons. The 

dynamical behavior of such a system is governed by the superposition of all interactions 

(internal and external) between elements:

dϕi
dt = ωi + ∑

j = 1

N
Hint(ϕ j − ϕi) + Hext(ϕ j − ϕi)

for i = 1, …, N .
(18)

Typically the intrinsic interactions (Hint) of such a system are unknown. The application of 

an external stimulation is utilized to overwhelm the unknown intrinsic coupling between 

elements, allowing new dynamical behaviors to be artificially created. The challenge is in 

picking the stimulation parameters which will produce the desired effect on the collective 

behavior of the target system.

To create a desynchronized state, all stationary states of the system must be simultaneously 

destabilized. The stability of synchronized states can be determined by calculating the 

eigenvalues associated with these states. Assuming that only balanced phase cluster states 

are possible, the associated eigenvalues can be determined from the Fourier coefficients of 

the net interaction function [52,53]. To actively disrupt phase synchronized states in a 

rhythmic population, a set of feedback parameters must be selected such that all phase 

cluster states have at least one eigenvalue with positive real part.
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Having experimentally obtained the response function of the experimental neuron system, 

the stability of balanced phase cluster states can be determined as a function of the 

stimulation parameters. Only linear feedback will be considered for this analysis. By 

adjusting the feedback delay parameter, the stability of the synchronized states can be 

externally influenced; the amplitude of the feedback signal does not affect the stability of 

such states. The eigenvalues of cluster states 1–4 were calculated as a function of feedback 

delay for the experimental neuron system under first-order feedback (Fig. 5). The 

eigenvalues indicate that the external feedback signal will desynchronize a population of 

globally coupled neuron when the feedback delay is between 0.35 and 0.45 rad/2π. In this 

parameter range each cluster state will have at least one eignevalue with a positive real part. 

This parameter range is believed to be large enough to provide a robust starting point for 

future experiments.

The use of model-derived feedback signals for controlling the synchronization behavior of 

neurons may represent an improvement over the ad hoc methods of parameter estimation for 

current neurostimulation therapies. We have previously demonstrated that phase models can 

be used to engineer global feedback stimulations for controlling the collective behavior of 

large populations of complex rhythmic elements in nonlinear electrochemical systems [22]. 

This work demonstrates a proof of concept for the application of our engineering framework 

to control the synchronization behavior of biological neurons. As seen in Fig. 4, both in-

phase and antiphase configurations were successfully generated using global delayed 

feedback. In both cases, a single common stimulation signal was applied equally to the 

neurons. Such global stimulation is required for clinical neurostimulation applications. 

Previous work has demonstrated the use of addressable electrical stimulation for influencing 

the synchronization of neurons [54].

The effect of synaptic connections on the synchronization of neurons was not considered 

due to experimental limitations. However, past work has shown that synaptic connectivity 

and interactions may be directly incorporated into the phase model [49,55]. Previous work 

has also demonstrated that stimulation signals can be created to overwhelm intrinsic 

interactions between elements and guide the target system toward the desired state [22]. The 

use of nonlinear stimulation for controlling populations of neurons has been previously 

demonstrated in numerical simulations [56].

The use of a phase model for estimating neurostimulation parameters is subjected to 

limitations. As derived, the phase model requires the use of relatively periodic elements. 

Since neurons under physiological conditions have long quiescent periods, describing their 

natural behavior by such a model may not be possible. However, neurological events such as 

seizures have long episodes of roughly periodic neuronal activation which may be described 

using such models [57].

Additionally, the use of phase models requires that the stimulation signal remains small such 

that the amplitude of the action potential remains undisturbed. However, weak feedback 

stimulation is desirable since it minimizes disruption of the natural rhythmic behavior of the 

neurons. This can be seen in Fig. 2, where upon the removal of the feedback stimulation, the 
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period distributions of the action potentials of the neurons return to their prestimulation 

baseline distribution. No permanent changes to the neuron were observed.

VI. CONCLUSIONS

A method of constructing a phase model, using time-delayed self-feedback, has been 

developed; this method requires experimental access to only a single representative rhythmic 

unit. After construction of the phase model from observations of the action potential of a 

single neuron, it was used to predict the synchronization states of a two neuron system. 

Experiments were conducted to observe the phase behavior of the action potentials of two 

neurons under linear time-delayed feedback. The predictions of the phase model were 

confirmed by the experimental observations. This method provides an additional approach 

for the construction of dynamical models of complex rhythmic systems.
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FIG. 1. 
(Color online) Schematic of the patch clamp apparatus setup. For one-cell experiments only 

one patch clamp apparatus was used and for the two-neuron experiments both patch clamp 

apparatuses were used.
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FIG. 2. 
(a) The membrane potential of a single neuron (top) and the applied stimulation signal 

(bottom) as functions of time (K0 = 13 mV, K1 = 350, τ = 0.5 rad/2π). (b), (c), (d) Period 

distributions for three separate cells. Middle panel shows the period distribution as the 

feedback stimulation delay was increased from from 0 to 1 rad/2π. Left and right panels 

illustrate the period distribution of the neuron action potentials before and after application 

of stimulation.
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FIG. 3. 
(a) Calculated interaction function data and Fourier fit for three neurons. (b) Calculated 

response functions for three isolated neurons. (c) Odd part of the interaction function for the 

experimental system with applied global feedback (K0 = 13 mV, K1 = 350, and τ = 0 rad/

2π). (d) Odd part of the interaction function for the experimental system with applied global 

feedback (K0 = 13 mV, K1 = 350, and τ = 0.5 rad/2π). In (c) and (d) the open circles are 

stable states and the gray squares are unstable states.
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FIG. 4. 
(Color online) (a) Membrane potential recording of two neurons. (b) Applied stimulation 

current (K0 = 13 mV, K = 400). (c), (d) Period distribution of neuron action potentials of 

neurons 1 and 2, respectively. (e) Observed distribution of phase differences between the 

action potentials of the two neurons.
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FIG. 5. 
Eigenvalues calculated for balanced cluster states as a function of feedback stimulation 

delay. (a) One-, (b) two-, (c) three-, and (d) four-cluster state. Dashed lines indicate region of 

possible desynchronization. In the three-cluster state λ1 = λ2, and in the four-cluster state 

λ1 = λ3.
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