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Summary

Results obtained in randomized trials may not easily generalize to target populations. Whereas in 

randomized trials the treatment assignment mechanism is known, the sampling mechanism by 

which individuals are selected to participate in the trial is typically not known and assuming 

random sampling from the target population is often dubious. We consider an inverse probability 

of sampling weighted (IPSW) estimator for generalizing trial results to a target population. The 

IPSW estimator is shown to be consistent and asymptotically normal. A consistent sandwich-type 

variance estimator is derived and simulation results are presented comparing the IPSW estimator 

to a previously proposed stratified estimator. The methods are then utilized to generalize results 

from two randomized trials of HIV treatment to all people living with HIV in the United States.
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1. Introduction

Generalizability is a concern for many scientific studies, including those in public health and 

medicine (Cole and Stuart, 2010; Hernan and VanderWeele, 2011; Stuart et al., 2011, 2015; 

Tipton, 2013; Keiding and Louis, 2016) and economics (Hotz et al., 2005; Heckman et al., 

2006; Allcott, 2011; Allcott and Mullainathan, 2012; Allcott, 2015; Hartman et al., 2015; 

Muller, 2014; Gechter, 2015). Using information in the study sample, it is often of interest to 

draw inference about a specified target population. Therefore, it is important to consider the 

degree to which an effect estimated from a study sample approximates the true effect in the 

target population. Unfortunately, study participants often do not constitute a random sample 

from the target population, bringing into question the generalizability of effect estimates 

based on such studies. For example, in clinical trials of treatment for HIV-infected 

individuals, there is often concern that trial participants are not representative of the larger 

population of HIV-positive individuals. Greenblatt (2011) highlighted the over-

representation of African American and Hispanic women among HIV cases in the United 

States (US) and the limited clinical trial participation of members of these groups. The 

Women’s Interagency HIV Study (WIHS) is a prospective, observational, multicenter study 

considered to be representative of women living with HIV and women at risk for HIV 

infection in the US (Bacon et al., 2005). However, a review of eligibility criteria of 20 AIDS 

Clinical Trial Group (ACTG) studies found that 28% to 68% of the HIV-positive women in 

WIHS cohort would have been excluded from these trials (Gandhi et al., 2005).

There exist several quantitative methods that provide a formal approach to generalize results 

from a randomized trial to a specified target population. Some of these methods utilize a 

model of the probability of trial participation conditional on covariates. Herein, we refer to 

this conditional probability as the sampling score. Generalizability methods employing 

sampling scores are akin to methods that use treatment propensity scores to adjust for 

(measured) confounding (Rosenbaum and Rubin, 1983) and include the use of inverse 

probability of sampling weights and stratification based on sampling scores. For example, 

Cole and Stuart (2010) estimated sampling scores using logistic regression and then 

employed inverse probability of sampling weighted (IPSW) methods to estimate the 

treatment effect in the target population. The IPSW approach is similar to inverse probability 

weighting methods used in a wide variety of contexts (e.g., see Wooldridge (2002), Ding and 

Lehrer (2010), and Seaman and White (2013)). Another approach to generalizing trial 

results entails an estimator based on stratifying individuals according to their estimated 

sampling scores (Tipton, 2013; O’Muircheartaigh and Hedges, 2013; Tip-ton et al., 2014). 

To date, there have been no formal studies or derivations of the large sample statistical 

properties (e.g., consistency and asymptotic normality) of these generalizability estimators.
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Following Cole and Stuart (2010) and Stuart et al. (2011), we consider an inverse weighting 

approach based on sampling scores to generalize trial effect estimates to a target population. 

The inverse weighted estimator is compared to the stratified estimator. In Section 2, 

assumptions and notation are discussed. The IPSW estimator and the stratified estimator are 

described in Section 3.1. Large sample properties of the IPSW estimator are derived, 

including a closed-form expression for the asymptotic variance and a consistent sandwich-

type estimator of the variance. The finite sample performance of the IPSW and stratified 

estimators are compared in a simulation study presented in Section 4. In Section 5, the IPSW 

estimator is applied to generalize results from two ACTG trials to all people currently living 

with HIV in the US. Section 6 concludes with a discussion.

2. Assumptions and Notation

Suppose we are interested in drawing inference about the effect of a treatment (e.g., drug) on 

an outcome (e.g., disease) in some target population. Assume each individual in the target 

population has two potential outcomes Y0 and Y1, where Y0 is the outcome that would have 

been seen if (possibly contrary to fact) the individual received control, and Y1 is the 

outcome that would have been seen if (possibly contrary to fact) the individual received 

treatment. Let μ1 = E(Y1) and μ0 = E(Y0) denote the mean potential outcomes in the target 

population. The parameter of interest is the population average treatment effect (PATE) Δ = 

μ1 − μ0. The goal is to draw inference about Δ in a setting where two data sets are available. 

Assume a random sample (e.g., cohort study) of m individuals is drawn from the target 

population. A second sample of n individuals participate in a randomized trial. Unlike the 

cohort study, the trial participants are not necessarily assumed to be a random sample from 

the target population but rather may be a biased sample.

Throughout it is supposed that the stable unit treatment value assumption (SUTVA) (Rubin, 

1980) holds, i.e., there are no variations of treatment and there is no interference between 

individuals. Under SUTVA, each individual has only two potential outcomes, Y0 and Y1. 

Plausibility of the assumption that there are no variations of treatment will depend on the 

extent to which the form of treatment (i.e., delivery mechanism, dose, non-compliance rate, 

and so forth) differs between individuals, in particular between trial and cohort study 

participants. For example, in a randomized trial, treatment administration may be 

accompanied by adherence counseling, unlike in a cohort study. Note the no variations of 

treatment assumption applies both to the treatment as well as the control condition, and this 

would be suspect if there were a placebo effect in the randomized trial but not in the cohort 

study. The no interference assumption supposes that the treatment of one individual does not 

affect the outcome of any other individuals. This assumption will be plausible in many 

settings, but may be questionable in some studies, e.g., in a influenza vaccine trial, whether 

one individual is vaccinated may affect whether another individual develops flu.

Suppose the following random variables are observed for the cohort and trial participants. 

Let Z be a 1 × p vector of covariates and assume that information on Z is available for those 

in the trial and those in the cohort. Let S = 1 denote trial participation and S = 0 otherwise. 

For those individuals who participate in the trial, define X as the treatment indicator, where 

X = 1 if assigned to treatment and X = 0 otherwise. Let Y = Y1X + Y0(1 − X) denote the 
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observed outcome. Assume (S, Z) is observed for cohort participants and (S, Z, X, Y) is 

observed for trial participants.

Assume the trial participants are randomly assigned to receive treatment or not such that the 

treatment assignment mechanism is ignorable, i.e., P (X = x|S = 1, Z, Y0, Y1) = P (X = x|S = 

1). Assume an ignorable trial participation mechanism conditional on Z, i.e., P (S = s|Z, Y0, 

Y1) = P (S = s|Z). In other words, participants in the trial are no different from 

nonparticipants regarding the treatment-outcome relationship conditional on Z. The set of 

covariates Z should be chosen such that the ignorable trial participation mechanism is 

considered plausible. Judging whether a set of covariates Z is sufficient to satisfy this 

conditional independence assumption may be facilitated by explicitly representing the 

assumed data generating mechanism using a directed acyclic graph (DAG) (Greenland et al., 

1999). The ignorable trial participation mechanism assumption can then be verified by 

inspection of the DAG (Pearl and Bareinboim, 2014).

Trial participation and treatment positivity (Westreich and Cole, 2010) are also assumed, i.e., 

P(S = 1|Z = z) > 0 for all z such that P (Z = z) > 0 and P (X = x|S = 1) > 0 for x = 0, 1. That 

is, there is a positive probability of being included in the trial for each value of the 

covariates. Finally, it is assumed the sampling score model, described in the next section, is 

correctly specified.

3. Inference about the Population Average Treatment Effects

3.1. Estimators

A traditional approach to estimating treatment effects is a difference in outcome means 

between the two randomized arms of the trial. Let i = 1, …, n + m index the trial and cohort 

participants. The within-trial estimator is defined as

ΔT =
∑iSiYiXi
∑iSiXi

−
∑iSiYi(1 − Xi)

∑iSi(1 − Xi)
,

where here and in the sequel ∑i =∑i = 1
n + m. If trial participants are assumed to constitute a 

random sample from the target population, it is straightforward to show ΔT is a consistent 

and asymptotically normal estimator of Δ. On the other hand, if we are not willing to assume 

trial participants are a random sample from the target population, then ΔT is no longer 

guaranteed to be consistent.

Below we consider two estimators of Δ that do not assume trial participants are a random 

sample from the target population. Both estimators utilize sampling scores. Following Cole 

and Stuart (2010), assume a logistic regression model for the sampling scores such that P(S 
= 1|Z = z) = {1 + exp(−zβ)}−1 where β is a p × 1 vector of coefficient parameters. Note here 

and throughout we assume the 1 × p vector Z includes 1 as the first component in order to 

accommodate an intercept term in the sampling score model. Let β denote the weighted 
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maximum likelihood estimator of β where each trial participant has weight ∏Si
−1 = 1 and 

each individual in the cohort has weight ∏Si
−1 = m/(N − n), where N is the size of the target 

population (Scott and Wild, 1986). Let P (S = 1|Z = z) = w(z, β), wi = w(Zi, β), and 

wi = w(Zi, β). The IPSW estimator (Cole and Stuart, 2010) of the PATE is

ΔIPSW = μ1 − μ0 =
∑iSiY iXi/wi

∑iSiXi/wi
−

∑iSiY i(1 − Xi)/wi

∑iSi(1 − Xi)/wi
. (1)

Another approach for estimating the PATE uses stratification based on the sampling scores 

(Tipton, 2013; O’Muircheartaigh and Hedges, 2013; Tipton et al., 2014) and is computed in 

the following steps. First, β is estimated using a logistic regression model as described above 

and the estimated sampling scores ŵi are computed. These estimated sampling scores are 

used to form L strata. The difference of sample means within each stratum is computed 

among those in the trial. The PATE is then estimated as a weighted sum of the differences of 

sample means across strata. The stratum specific weights used in computing this weighted 

average equal estimates of the proportion of individuals in the target population within the 

stratum. Specifically, let nl be the number of individuals in the trial in stratum l and ml be the 

number of individuals in the cohort in stratum l. Let Sil = 1 denote trial participation for 

individual i in stratum l for i = 1, …, (nl + ml) and l = 1, …, L (and Sil = 0 otherwise). If Sil 

= 1, then let Xil and Yil denote the treatment assignment and outcome for individual i in 

stratum l; otherwise, if Sil = 0, then let Xil = Yil = 0. The sampling score stratified estimator 

is defined as

ΔS = ∑
l = 1

L
ωl

∑i = 1
nl + mlSilXilYil

∑i = 1
nl + mlSilXil

−
∑i = 1

nl + mlSil(1 − Xil)Yil

∑i = 1
nl + mlSil(1 − Xil)

,

where ωl = Nl/N, Nl = ∑i = 1
nl + ml ∏Sil

−1, and ΠSil is the weight for individual i in stratum l.

3.2. Large Sample Properties of the IPSW Estimator

Because the trial participants are not assumed to be a random sample from the target 

population, the observed random variables (Si, Zi, SiXi, SiYi) for i = 1, …, n+m are assumed 

to be independent but not necessarily identically distributed. Below, the IPSW estimator is 

expressed as the solution to an unbiased estimating equation to establish asymptotic 

normality and provide a consistent sandwich-type estimator of the variance.

First, consider the case when β is known. Let θ∗ = (μ1, μ0), θ* = (μ1, μ0) and note that θ∗ is 

the solution for θ* of the estimating equation
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∑
i

ΨΔ
∗ (Yi, Zi, Xi, Si, θ∗) =

∑i SiXi(Yi − μ1) /wi

∑i Si(1 − Xi)(Yi − μ0) /wi
= 0.

Define the following matrices:

Am, n(θ∗) = (n + m)−1∑
i

E ∂
∂θ∗ ΨΔ

∗ (Yi, Zi, Xi, Si, θ∗)

Bm, n(θ∗) = (n + m)−1∑
i

cov ΨΔ
∗ (Yi, Zi, Xi, Si, θ∗) .

Define A(θ*) = limm,n→∞ Am,n (θ*) and B (θ*) = limm,n→∞ Bm,n (θ*). Note 

E ΨΔ
∗ (Y i, Zi, Xi, Si, θ∗) = 0 for i = 1, …, n + m, implying under suitable regularity conditions 

that as n, m → ∞, θ∗ converges in probability to θ* and (n + m)1/2(θ ∗ − θ ∗ ) converges in 

distribution to N(0, Σθ) where

∑θ
∗ = A(θ ∗ )−1B(θ ∗ )A(θ ∗ )−T (2)

(Carroll et al. 2010, Appendix A.6). By Slutsky’s theorem and the delta method, ΔIPSW is a 

consistent estimator of Δ and (n + m)1/2(ΔIPSW − Δ) converges in distribution to 

N(0, ∑IPSW
∗ ) where

∑IPSW
∗ = ∑θ

∗ (11) +∑θ
∗ (22) −2∑θ

∗ (12)
(3)

and in general Σ(ij) refers to the entry in the ith row and the jth column of the matrix Σ. A 

consistent estimator of (3) is given in Appendix A.

Next consider the more likely case that β is unknown. Using weighted maximum likelihood, 

the estimator β is the solution for β of the p × 1 vector estimating equation

∑
i

ψ β(Si, Zi, β) = ∑
i

∏Si
−1 Si − wi

wi(1 − wi)
∂

∂β wi = 0

(Scott and Wild, 1986). Let θ = (μ1, μ0, β), θ = (μ1, μ0, β) and note that θ  is the solution for θ 

of the (p + 2) × 1 vector estimating equation
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∑
i

ΨΔ(Yi, Zi, Xi, Si, θ) =

∑i SiXi(Yi − μ1) /wi

∑i Si(1 − Xi)(Yi − μ0) /wi

∑iψ β(Si, Zi, β

= 0.

Define the following matrices:

Am, n(θ) = (n + m)−1∑
i

E ∂
∂θ ΨΔ(Yi, Zi, Xi, Si, θ)

Bm, n(θ) = (n + m)−1∑
i

cov ΨΔ(Yi, Zi, Xi, Si, θ) .

Define A(θ) = limm,n→∞ Am,n (θ) and B(θ) = limm,n→∞ Bm,n (θ). Note E{ΨΔ(Yi, Zi, Xi, 
Si, θ)} = 0 for i = 1, …, n + m, implying under suitable regularity conditions that as n, m → 
∞, θ  converges in probability to θ and (n + m)1/2(θ − θ) converges in distribution to N(0, Σθ) 

where

∑θ = A(θ)−1B(θ)A(θ)−T (4)

(Carroll et al., 2010). By Slutsky’s theorem and the delta method, ΔIPSW is a consistent 

estimator of Δ and (n + m)1/2(ΔIPSW − Δ) converges in distribution to N(0, ΣIPSW) where

∑IPSW ∑θ
(11) +∑θ

(22) −2∑θ
(12) . (5)

A consistent estimator of (5) is given in Appendix A. This variance estimator can be used to 

construct Wald-type confidence intervals (CIs) for Δ.

Comparison of (3) and (5) shows that the variance is smaller when the sampling scores are 

estimated (see Appendix B). Therefore, even if the correct sampling scores are known, 

estimation of the sampling scores is preferable due to improved efficiency. This is analogous 

to a well-known result for inverse probability of treatment weighted estimators (Hirano et 

al., 2003; Robins et al., 1992; Wooldridge, 2007). In general, it is common practice to 

compute the variance of the inverse probability weighted estimators using standard software 

assuming the weights are known. This leads to valid but conservative CIs. In the 

Supplementary Materials, an R function is provided which computes the IPSW estimator 

and the corresponding (consistent) sandwich-type estimator of the variance described in 

Appendix A which does not assume β is known.
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3.3. Estimator of the Variance of the Stratified Estimator

One approach to obtain an estimator of the variance of the stratified estimator is to express 

ΔS as the solution to an unbiased vector of estimating equations, which include an estimating 

equation for the potential outcome means, the L quantiles, and each element of β. This 

approach can be used to show ΔS is asymptotically normal (Lunceford and Davidian, 2004). 

In practice, it is routine to approximate the sampling variance of ΔS by treating the estimator 

as the average of L independent, within-stratum, treatment effect estimators (Tipton, 2013; 

Lunceford and Davidian, 2004). Specifically, the approximate variance of ΔS is

∑
l = 1

L
ωl

2σl
2, (6)

where σl
2 = ∑x = 0

1 nxl
−1sxl

2 , nxl = ∑i = 1
nl + mlSilI(Xil = x), 

sxl = nxl
−1∑i = 1

nl + mlSilI(Xil = x)(Y il − Yxl)
2 and Yxl = nxl

−1∑i = 1
nl + mlSilI(Xil = x)Y il for x = 0, 1.

4. Simulations

A simulation study was conducted to compare the performance of the IPSW and stratified 

estimators in scenarios with a continuous or discrete covariate and a continuous outcome. 

The following quantities were computed for each scenario: the bias for each estimator, the 

average of the estimated standard errors, empirical standard error, and empirical coverage 

probability of the 95% CIs.

A total of 5,000 data sets were simulated per scenario as follows. There were N = 106 

observations in the target population with sample score wi = {1 + exp(−β0 − β1Z1i)}−1. In 

the first two scenarios, one binary covariate Z1i ~ Bernoulli(0.2) was considered and, for 

scenarios 3 to 6, one continuous covariate Z1i ∼ N(0, 1) was considered. The covariate Z1i 

was associated with trial participation and a treatment effect modifier. A Bernoulli trial 

participation indicator, Si, was simulated according to the true sampling score wi in the 

target population and those with Si = 1 were included in the trial. The parameters β0 and β1 

were set such that the sample size in the trial was approximately n ≈ 1000. The cohort was a 

random sample of size m = 4,000 from the target population (less those selected into the 

trial). The number of participants in the randomized trial was small compared to the size of 

the target, so the cohort was essentially a random sample from the target.

For those included in the randomized trial (Si = 1), Xi was generated as Bernoulli(0.5) and 

the outcome Y was generated according to Yi = ν0 + ν1Z1i + ξXi + αZ1iXi + εi, εi ∼ N(0, 

1). For scenarios 1 to 4, (ν0, ν1, ξ, α) = (0, 1, 2, 1). For scenarios 5 to 6, (ν0, ν1, ξ, α) = (0, 

1, 2, 2). Two sampling score models were considered: β = (−7, 0.4) for scenarios 1, 3, and 5; 

β = (−7, 0.6) for scenarios 2, 4, and 6. The truth was calculated for each scenario based on 

the distribution of Z1i in the target population. The truth was Δ = 2.2 for scenarios 1 and 2 

and Δ = 2 for scenarios 3 through 6. To estimate the sampling scores, the combined trial (Si 
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= 1) and cohort (Si = 0) data was used to fit a (weighted) logistic regression model with Si as 

the outcome and the covariate Z1i as described in Section 3.1.

Comparisons between the IPSW and stratified estimator when the sampling score model was 

correctly specified are summarized in Table 1. The within-trial estimator ΔT was biased for 

all scenarios and had low coverage (results not shown). For all scenarios, ΔIPSW was 

unbiased. For scenarios 1 to 2, ΔS was unbiased and standard errors were comparable to 

ΔIPSW. For scenarios 3 to 6, ΔS was biased, possibly due to residual confounding from a 

continuous covariate in the sampling score model. For the IPSW estimator, the average of 

the estimated standard error was approximately equal to the empirical standard error, 

supporting the derivations of the sandwich-type estimator of the variance. For all scenarios, 

coverage was approximately 95% for the Wald CI of ΔIPSW. With a continuous covariate, 

the Wald CI of the stratified estimator had poor coverage, particularly in the presence of 

stronger effect modification (e.g., scenarios 5 and 6). Histograms of the three estimators for 

scenario 4 are given in Figure 1; the IPSW was approximately unbiased and normally 

distributed.

Simulations were also performed with the sampling score model misspecified. A second 

covariate was generated for each member of the target population and the true sampling 

score was wi = {1 + exp(−β0 −β1Z1i − β2Z2i)}−1. For the first two scenarios, Z2i ∼ 
Bernoulli(0.6), and for scenarios 3 to 6, Z2i ~ N(0, 1). For those included in the randomized 

trial (Si = 1), Xi was generated as Bernoulli(0.5) and the outcome Y was generated 

according to Yi = ν0+ν1Z1i+ν2Z2i+ξXi+α1Z1iXi+ α2Z2iXi+εi, εi ∼ N(0, 1). For scenarios 1 

to 4, (ν0, ν1, ν2, ξ, α1, α2) = (0, 1, 1, 2, 1, 1). For scenarios 5 to 6, (ν0, ν1, ν2, ξ, α1, α2) = 

(0, 1, 1, 2, 2, 2). The estimated sampling scores were computed based on a misspecified 

logistic regression with Z1i as the only covariate, i.e., wi = 1 + exp( − β0 − β1Zi1) −1. Two 

sampling score models were considered: Scenario 1, 3, and 5 set β = (−7, 0.4, 0.4); Scenario 

2, 4, and 6 set β = (−7, 0.6, 0.6). Based on the distribution of Zi = (Z1i, Z2i) in the target 

population, the truth was Δ = 2.8 for scenarios 1 and 2 and Δ = 2 for scenarios 3 through 6.

Comparisons between the IPSW and stratified estimators when the sampling score model 

was misspecified are summarized in Appendix C Table 1. The bias was reduced by 

approximately half when either the IPSW or the stratified estimator was employed as 

compared to the within-trial estimator. The sandwich-type estimator of the variance of the 

IPSW estimator performed reasonably well when the sampling score model was 

misspecified; however, CI coverage was below the nominal level.

Lastly, simulations were also performed with reduced overlap in the distribution of Z in the 

trial and target population. Specifically, the simulation study described above with correct 

specification of the sampling score model was repeated, except that β1 = 1 in scenarios 1, 3, 

and 5, and β1 = 2 in scenarios 2, 4, and 6. Thus, there was a stronger association between the 

covariate Z1 and trial participation than in the original set of simulations, leading to greater 

differences in the covariate distributions between trial participants and the cohort. For 

example, in scenario 1, P (Z1 = 1|S = 1) = 0.40 and P (Z1 = 1|S = 0) = 0.20 when β1 = 1, 
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compared to P (Z1 = 1|S = 1) = 0.26 and P (Z1 = 1|S = 0) = 0.20 when β1 = 0.4. Results from 

this last simulation study are summarized in Appendix C Table 2. The IPSW estimator was 

unbiased for all scenarios, with the corresponding CI coverage approximating the nominal 

level except in scenarios 4 and 6. The stratified estimator was biased (although less than the 

within trial estimator) and the corresponding CIs did not cover at the nominal level except in 

scenario 1. Because of the reduced overlap in the covariate distributions between the trial 

and cohort, both the IPSW and stratified estimators were more variable relative to the 

simulation results in Table 1.

5. Applications

5.1. Trials and Cohorts

In this section, the methods described in Section 3.1 are applied to generalize results from 

two different ACTG randomized clinical trials, ACTG 320 and ACTG A5202. Two different 

target populations are considered, namely all women currently living with HIV in the US 

and all people currently living with HIV in the US.

The ACTG 320 trial examined the safety and efficacy of adding a protease inhibitor (PI) to 

an HIV treatment regimen with two nucleoside analogues. A total of 1,156 participants were 

enrolled in ACTG 320 between January 1996 and January 1997 and were recruited from 33 

AIDS clinical trial units and 7 National Hemophilia Foundation sites in the US and Puerto 

Rico. These participants were HIV-positive, highly active antiretroviral therapy (HAART) 

naive, and had CD4 T cell counts ≤ 200 cells/mm3 at screening. Of the 1,156 participants, 

200 were women (Hammer et al., 1997). Among ACTG 320 participants, 116 (10%) were 

missing the outcome of CD4 count at week 4, so they are excluded from the analysis below. 

The baseline characteristics of the ACTG 320 participants are shown in Table 2.

The ACTG A5202 trial assessed equivalence of abacavir-lamivudine (ABC-3TC) or 

tenofovir disoproxil fumarate-emtricitabine (TDF-FTC) plus efavirenz or ritonavir-boosted 

atazanavir. A total of 1,857 participants were enrolled in A5202 between September 2005 

and November 2007 and were recruited from 59 ACTG sites in the US and Puerto Rico. 

These participants were HIV-positive, antiretroviral (ART) naive, and had viral load > 1,000 

copies/ml at screening. Of the 1,857 participants, 322 were women (Sax et al., 2009, 2011). 

Among A5202 participants, 417 (22%) were missing the outcome of CD4 count at week 48, 

so they are excluded from the analysis below. The baseline characteristics of the A5202 

participants are shown in Table 3.

Data from two cohort studies, WIHS and Center for AIDS Research Network of Integrated 

Clinical Systems (CNICS), are used in the analysis below to generalize the ACTG 320 and 

A5202 trial results. Participants in WIHS and CNICS were considered to be representative 

samples of the target populations, i.e., all women living with HIV in the US and all people 

living with HIV in the US, respectively. A total of 4,129 women (1,065 HIV-uninfected) 

were enrolled in WIHS between October 1994 and December 2012 at six US sites (Bacon et 

al., 2005). The CNICS captures comprehensive and standardized clinical data from point-of-

care electronic medical record systems for population-based HIV research (Kitahata et al., 
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2008). The CNICS cohort includes over 27,000 HIV-infected adults (at least 18 years of age) 

engaged in clinical care since January 1995 at eight CFAR sites in the US.

For generalizing results from ACTG 320, the analysis included cohort participants who were 

HIV-positive, HAART naive, and had CD4 cell counts ≤ 200 cells/mm3 at the previous visit 

(m = 493 women and m = 6,158 men and women combined). For generalizing results from 

A5202, the analysis included cohort participants who were HIV-positive, ART naive, and 

had viral load > 1,000 copies/ml at the previous visit (m = 1,012 women and m = 12,302 

men and women combined). Table 2 displays the characteristics of the women in the WIHS 

sample and the participants in the CNICS sample used to generalize results from ACTG 320. 

Likewise, the characteristics of the women in the WIHS sample and participants in the 

CNICS sample used to generalize results from ACTG A5202 are displayed in Table 3.

5.2. Analysis

The IPSW and stratified estimators were employed to generalize the difference in the 

average change in CD4 from baseline between treatment groups observed among women in 

the trials to all women currently living with HIV in the US and among all participants in the 

trials to all people currently living with HIV in the US. Based on Centers for Disease 

Control and Prevention (2012) estimates, the size of the first target population was assumed 

to be 280,000 women and the size of the second target population was assumed to be 1.1 

million people.

The population average treatment effect was estimated using the IPSW estimator in (1). To 

estimate the sampling scores, the data from the ACTG trial (i.e., 320 and A5202) and cohort 

(i.e., WIHS or CNICS) were analyzed together, with S = 1 for those in the ACTG trial and S 
= 0 for those in the cohort. In the model to estimate the sampling scores, the outcome was 

trial participation and the possible covariates for ACTG 320 included sex, race/ethnicity, 

age, history of injection drug use (IDU), and baseline CD4 and for ACTG A5202 included 

sex, race/ethnicity, age, history of IDU, hepatitis B/C, AIDS diagnosis, baseline CD4 and 

baseline log10 viral load. The variable hepatitis B/C was binary, indicating infection with 

hepatitis B or hepatitis C or both. Variables associated with trial participation, the outcome, 

or effect modifiers, as well as all pairwise interactions, were included in the sampling score 

model. Sex was not included as a covariate in analyses generalizing the trial results among 

women.

5.3. Results

Estimates of the mean differences based on the within-trial estimator among women and all 

participants are given in Table 4. Among all participants and among just women in ACTG 

320, there was a significant difference in the change in CD4 from baseline to 4 weeks 

between the PI and non-PI groups. Among women in A5202 at week 48, those randomized 

to ABC-3TC had an average change in CD4 cell count comparable to those randomized to a 

regimen with TDF-FTC. Among all participants in A5202, those randomized to ABC-3TC 

had an average change in CD4 cell count slightly higher than those randomized to a regimen 

with TDF-FTC, but this did not achieve statistical significance.
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Table 4 also displays the results for the two ACTG trials generalized to both target 

populations. In the target population of all women living with HIV in the US, the IPSW 

estimate was approximately double the within-trial estimate ( ΔIPSW = 46 compared to 

ΔT = 24), suggesting that the within-trial result may underestimate the effects of PIs in all 

HIV-infected women in the US. The IPSW estimator also indicated a much stronger 

protective effect of ABC-3TC (vs. TDF-FTC) in the target population of all HIV-infected 

women in the US ( ΔIPSW = 35 compared to ΔT = 1, providing evidence that this particular 

ART combination may increase CD4 cell counts more on average than what was observed in 

the trial. In the target population of all people living with HIV in the US, the IPSW estimates 

were comparable to the within-trial effect estimates, suggesting that both the effect of PIs 

and the effect of the ART combination ABC-3TC (vs. TDF-FTC) from the trials may be 

generalizable to all people living with HIV in the US. In summary, these results suggest the 

ACTG trial results are more generalizable for US men with HIV than US women with HIV.

6. Discussion

In this paper, we considered generalizing results from a randomized trial to a specific target 

population using inverse probability of sampling weights. The IPSW estimator was shown to 

be consistent and asymptotically normal and a consistent sandwich-type estimator of the 

variance was provided. In a simulation study, the IPSW outperformed the stratified estimator 

when the sampling score was correctly specified. The IPSW was unbiased for all scenarios 

and the CIs exhibited coverage approximately at the nominal level, except when there was 

limited overlap in the distribution of covariates in the trial as compared to the target 

population. With a continuous covariate, the stratified estimator exhibited bias and the 

corresponding CI had poor coverage, particularly in the presence of stronger effect 

modification.

In the illustrative example, the ACTG 320 and A5202 trial results appear to be generalizable 

to all people living with HIV in the US. On the other hand, the within-trial effect estimates 

among women in the two ACTG trials were not comparable to the effect estimates in the 

target population of women. This lack of comparability may be explained by differences in 

the distribution of certain effect modifiers between the trial and the target population. 

Figures 1-4 in Appendix D show within-trial subgroup effect estimates and CIs for both 

trials. Among women in A5202, the results in Figure 3 of Appendix D suggest hepatitis B/C, 

IDU, and age were possible effect modifiers. These three covariates were also associated 

with trial participation among women, and thus may explain why the A5202 within-trial 

effect estimate among women was not similar to the IPSW effect estimate in the target 

population of women. In particular, women with hepatitis B/C were less likely to participate 

in A5202 and tended to have a greater mean change in CD4. Thus by accounting for 

hepatitis B/C, we would expect the IPSW estimate to be greater than the within-trial 

estimate. Likewise, women who were younger or had a history of IDU were also less likely 

to participate in A5202 and tended to have a greater mean change in CD4 than older women 

or those without a history of IDU, respectively. Results from both ACTG A5202 and ACTG 

320 were not sensitive to the specification of the size of the target population, although some 

results were sensitive to the specification of the sampling score model (results not shown). In 
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the data example, a complete case analysis was performed; however, in practice, one would 

want to address the possibility that the missingness was not completely at random.

When applying these methods, the analysis is subject to the following considerations. First, 

the ignorable trial participation mechanism is a key assumption which supposes participants 

in the ACTG trials are no different from individuals in WIHS and CNICS with respect to the 

treatment-outcome relationship conditional on observed covariates. However, it is plausible 

that there exist unmeasured covariates associated with trial participation and the outcome 

which confound the association between treatment and outcome even after conditioning on 

the observed covariates. The methods considered in this paper also assume there are no 

variations of treatment. Within the context of the HIV treatment trial analysis, this 

assumption supposes antiretroviral treatment adherence rates were similar among those in 

the target population and participants in the ACTG trials. This assumption could be assessed 

if data related to adherence was collected in WIHS, CNICS, and the ACTG trials. The no 

variations of treatment assumption additionally supposes there are no other behavioral 

responses or contextual effects (Ding and Lehrer, 2015) of study participation that would not 

remain if the treatment were adopted in the target population.

In addition, the sampling score model was assumed to be correctly specified (e.g., correct 

covariate functional forms). Because some degree of model misspecification is inevitable, 

sensitivity analysis of inferences about the treatment effect in the population to the sampling 

score model specification is recommended. Similarly, the stratified estimator (Tipton et al., 

2014; O’Muircheartaigh and Hedges, 2013) requires that individuals sharing the same 

stratum of the sampling score distribution can be identified. This estimator may be biased 

when there is residual confounding within strata and, in general, is not a consistent estimator 

of the PATE (Lunceford and Davidian, 2004).

The inferential methods considered in this paper assume the cohort to be a random sample 

(i.e., representative) of the target population. In the HIV application, participants in WIHS 

(CNICS) are assumed to constitute a random sample of women (men and women) living 

with HIV in the US. This assumption would be violated if cohort participation is associated 

with individual characteristics, such as age, living in an urban area, income, employment 

status, etc. In the context of the HIV application, this assumption might be considered more 

plausible if the target population were instead defined with greater specificity, e.g., as all 

women (and men) living with HIV who are in care at the geographical locations which have 

sites in the cohort studies. If the cohort is not considered representative of the target 

population, one possibility is weighting the cohort data to the distribution of covariates in a 

census (e.g., Centers for Disease Control and Prevention (CDC) estimates). A limitation of 

this approach is that the census may not have covariate information as rich as the cohort 

data. The CDC estimates used to quantify the size of the target population in the example 

were for all people living with HIV. Use of surveillance studies that report on the number of 

ART and HAART naive HIV patients in the US could further sharpen the information about 

the target population.

In this paper, we consider randomized trials where individuals are independently 

randomized to treatment or control. Future research could entail extensions to cluster 
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randomized trials wherein clusters of individuals are independently randomized to treatment 

or control, with all individuals in the same cluster receiving the same randomization 

assignment. Causal inference methods for individually randomized studies are not 

necessarily valid for cluster randomized trials (Middleton and Aronow, 2015), such that the 

methods considered in this paper may not be directly applicable to cluster randomized trials.

Future research could also entail using machine learning methods (Westreich et al., 2010), 

maximum entropy (Hartman et al., 2015), or flexible regression methods such as Bayesian 

adaptive tree regression (Chipman et al., 2010) instead of weighted logistic regression to 

estimate the sampling scores. The IPSW estimator considered in this paper may be highly 

variable when there is limited overlap in the distribution of the covariates in the trial as 

compared to the target population. Thus, alternative estimators should be developed for 

settings where there is limited covariate distribution overlap. Formal sensitivity analysis 

methods could be developed to assess the extent to which violations of key assumptions, 

such as the ignorable trial participation mechanism assumption, potentially affect inference 

about the treatment effect in the target population. Alternatively, bounds could be derived (as 

in Gechter (2015)) under weaker assumptions which only partially identify the population 

average treatment effect. For the methods considered in this manuscript, no information on 

the exposure or outcome is required from the cohort study. In settings where the outcome 

data is available in the cohort, approaches similar to Hotz et al. (2005) and Hartman et al. 

(2015) could be developed to test the ignorable trial participation mechanism assumption.

Additional extensions might be considered based on the types of data typical of biomedical, 

public health, and econometric studies. For example, time-to-event endpoints are common in 

HIV/AIDS trials, so extensions to accommodate right censored outcomes could be 

considered. Lastly, in some settings such as infectious disease studies, the treatment or 

exposure of one individual may affect the outcome of another individual; extensions of 

existing generalizability methods, such as using inverse probability of sampling weights, to 

allow for interference would have utility in such settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of the distributions of within-trial estimator ΔT, stratified estimator ΔS, and 

inverse probability of sampling weighted estimator ΔIPSW, based on 5,000 simulated data 

sets where the sampling score model is correctly specified and Δ = 2 with one continuous 

covariate, β = (−7, 0.6) and α = 1 (scenario 4).
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Table 2

Characteristics of WIHS participants, CNICS participants, and ACTG 320 participants at baseline.a

Variable
WIHS

(m = 493)
ACTG 320 Women

(n = 200)
CNICS

(m = 6,158)
ACTG 320 Men and Women

(n = 1,156)

Male sex - % 0 0 80 83

Race or ethnic group - %

 White, non-Hispanic 18 31 40 52

 Black, non-Hispanic 55 48 44 28

 Hispanic 25 21 12 18

 Asian/Other 2 1 5 2

Median age - yr (Q1-Q3)b 40 (35-45) 36 (30-42) 41 (34-47) 38 (33-44)

Age group - no. %

 [16, 30) yr 7 23 12 12

 [30, 40) yr 43 44 34 47

 [40, 50) yr 40 27 37 30

 [50, ·) yr 10 7 17 11

Injection drug use - % 37 18 20 16

Median CD4 countc (Q1-Q3) 108 (41-172) 82 (26-139) 89 (27-172) 75 (23-137)

Baseline CD4 count - %

 (0, 50) cells/mm3 30 36 36 39

 [50, 100) cells/mm3 17 22 17 22

 [100, 200) cells/mm3 37 37 30 32

 [200, ·) cells/mm3 16 6 17 7

a
m is the number of participants in the cohort study. n is the number of participants in the trial.

b
Q1 is the first quartile and Q3 is the third quartile.

c
One ACTG 320 participant was missing CD4 cell count.
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