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Abstract

We develop a pipeline to mine complex drug interactions by combining different similarities and 

interaction types (molecular, structural, phenotypic, genomic etc). Our goal is to learn an optimal 

kernel from these heterogeneous similarities in a supervised manner. We formulate an extensible 

framework that can easily integrate new interaction types into a rich model. The core of our 

pipeline features a novel kernel-learning approach that tunes the weights of the heterogeneous 

similarities, and fuses them into a Similarity-based Kernel for Identifying Drug-Drug interactions 

and Discovery, or SKID3. Experimental evaluation on the DrugBank database shows that SKID3 

effectively combines similarities generated from chemical reaction pathways (which generally 

improve precision) and molecular and structural fingerprints (which generally improve recall) into 

a single kernel that gets the best of both worlds, and consequently demonstrates the best 

performance.
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1. Introduction

Drug-drug interactions (DDIs) occur when multiple medications are co-administered and 

can potentially cause adverse effects on the patients. DDIs have emerged, around the world, 

as a major cause of hospital admissions, rehospitalizations, emergency room visits, and even 

death [1]. These numbers are even more stark among older adults, who are more likely to be 

prescribed multiple medications; the study by Becker et al. [1] identifies that the elderly 

have an increased risk factor of as much as 8.5 times over the general population. 
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Consequently, DDIs contribute to increased hospital stays and increasing costs of health 

care, even though up to 50% of these adverse drug effects (ADEs) are preventable [2]. While 

regulatory agencies such as the U. S. Food and Drug Administration have rigorous approval 

processes for new drugs, controlled clinical trials do not always uncover all possible drug 

interactions. For example, the last stage of the FDA approval process involves a Phase III 

clinical trial, which typically enrolls 1000–5000 individuals, while the drug may be 

prescribed to millions of patients after approval. In addition to clinical trials, in vitro and in 
vivo experiments are also used to identify DDIs. However, these approaches are highly 

labor-intensive, costly and time-consuming. Another factor is that many known DDIs 

involve medications such as anti-inflammatories or anticoagulants, which are prescribed for 

common and chronic conditions. Other confounding factors that make studying DDIs a 

difficult challenge include dosage variations and demographic variability.

All of these challenges have led to a shift in research towards in silico approaches that 

leverage advances in AI and machine learning [3] for DDI discovery. These approaches for 

DDI can be viewed in one of two ways.

• The feature-based view, which roughly categorizes the approaches based on the 

type of DDI features used. These are either text-based (which involves the 

analysis of abstracts or EHRs) or structure-based (which involve the study of 

chemical, molecular and pharmacological properties). Our approach is structure-

based.

• The algorithm-based view distinguishes between approaches as classification 

(which treat DDI discovery as a binary classification problem) and clustering 

(which assume that similar drugs may interact with a same drug). Our approach 

is a hybrid of both these paradigms.

In our prior work, we have performed ADE discovery and subgroup discovery from 

electronic health records (EHR) [4] and text-mining of medical journal abstracts [5]. These 

approaches address the problem of post-marketing surveillance, that is, they seek to exploit 

the new information available after a drug has been approved and has been prescribed to 

larger, more diverse populations. In this work, we address pre-trial discovery, that is, we 

reframe the problem as one of studying drug-drug interactions, rather than taking a single 

drug and finding adverse events associated with it. The primary motivation is to 

preemptively identify potential DDI and ADE risks during drug design. As we show in this 

work, our novel formulation incorporates elements of both classification and similarity 
based algorithms, which improves discovery as well as explainability. The result is a kernel 

that we call SKID3 (Similarity-based Kernel for Identifying Drug-Drug interactions and 

Discovery).

Our problem setting differs from current approaches in three significant ways, that motivated 

us to develop SKID3:

• A majority of current work focuses on drug-interaction discovery through 

information extraction, specifically through text mining. These approaches 

attempt to identify drug interactions from various unstructured text-based sources 
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such as biomedical journals and semi-structured sources such as electronic health 

records.

We approach the problem by looking at structured sources of information for 
insights into drug interactions. That is, we characterize drug similarities using 
different properties of drugs such as molecular structure and pharmacological 
interaction pathways. This allows us to pose the DDI discovery problem as a 
structure prediction [6] task.

• The approaches that do use structural information generally aim to extract 

explicit vector representations of properties such as 3-d structure, which allows 

the application of off-the-shelf machine-learning techniques such as support 

vector machines and kernel learning [7].

We, instead, analyze structural similarities between drugs in ways that are natural 
and intuitive to their representation (such as random walks on chemical 
interaction pathways), rather than forcing an artificial and uninterpretable 
embedding in a vector space.

• Finally, many current approaches focus on a single type of interaction or 

similarity, whether it is discovered from text sources or from structural analysis. 

This is a significant drawback, as this analysis approach ignores the diverse 

pharmacological facets to drug-drug interaction to look at one (or a few) 

interaction types in isolation.

We develop a general and extensible framework that admits heterogeneous 
characterizations arising from any source including text-based, molecular 
structure, pharmacological, phenotypic, genomic, therapeutic similarities. This 
allows us to exploit diverse characterizations of drug similarities from various 
perspectives, fusing them into one coherent, interpretable model.

We make the following contributions with our proposed solution to address the above 

limitations:

• We characterize molecular similarity between two drugs using a novel approach: 

knowledge-refined random walks to measure the reachability of one drug from 

another; reachability informs the intuition that drugs that are more reachable are 

more interactive. As far as we are aware, this is the first work on exploiting bias 

knowledge to characterize drug similarities for DDI discovery.

• We develop a novel framework that combines multiple similarity measures into 

unified kernel that exploits and fuses their potential. In addition to our novel 

reachability measure (described above), we also use four other measures that 

capture molecular and chemical similarities through SMILES strings and 

MACCS fingerprints.

• We formulate DDI as a kernel-learning problem that fuses heterogeneous 

similarity measures. Our formulation enables us to treat each similarity as a 

different view of drug interactions. By fusing similarities from different sources, 

our formulation aims to reconcile various (molecular, pharmacological etc.,) 
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views into a single model. Further, our formulation incorporates terms to capture 

both individual as well as neighborhood interactions, leading to greater 

robustness.

• From a machine-learning standpoint, our formulation is general in that it admits 

a variety of regularization and loss functions. In this work, we show our 

approach for a specific formulation that attempts to simultaneously align the 

optimal kernel with the heterogeneous similarity measures as well as predict the 

drug-drug interactions.

• From an optimization standpoint, our formulation is a bilinear program, which is 

a non-convex optimization problem. We illustrate an alternating minimization 

approach for solving this problem; this approach identifies robust and relevant 

local solutions for DDI discovery and scales well with the underlying drug 

database size.

• Our empirical evaluation on a data set constructed from DrugBank uncovers 

previously known drug-drug interactions with high accuracy. Furthermore, a 

closer inspection of “false positives” and “false negatives” identified by SKID3 

reveals that it has identified drug-drug interactions, missing from Drug-Bank, but 

existing in other independent sources. This clearly demonstrates the potential of 

our approach to perform DDI discovery. More specifically, it also offers us a path 

forward: DDI discovery via active learning with semi-supervised data, which is 

the real-world problem setting.

The rest of the paper is organized as follows: after reviewing related work in the next 

section, we define the problem of DDI prediction/discovery. We then present similarity 

measures and formulate kernel learning for DDI discovery. Next, we present our 

comprehensive experimental evaluation before concluding the paper by motivating 

interesting research directions.

2. Related Work

The interactions of a drug can be specified in two ways: (1) the drug has an adverse effect on 

the human body, called adverse drug events (ADEs), and (2) the drug interacts with another 

drug called drug-drug interactions (DDIs). Most recent research has focused on finding 

ADEs from text. Different approaches have been taken in order to identify and discover 

ADEs in the machine learning community, especially from the natural language processing 

(NLP) perspective. Chee et al. [8] make use of ensemble classifiers to extract ADEs, while 

Liu et al. [9] used transductive SVMs to extract ADEs from online health forums. 

Gurulingappa et al. [10] use NLP with support vector machines (SVMs) to extract ADEs 

from MEDLINE casereports. Karlsson et al. [11] and Page et al. [4] perform ADE 

information extraction from EHR data. More recently, Kang et al. [12] took a knowledge-

based approach for extracting ADEs from bio-medical text, while Natarajan et al. [13] use 

Markov logic networks for the same problem.

The problem of DDI prediction and discovery has received far less attention, although 

similarity-based methods have proven to be very popular. The problem of DDI discovery is a 
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pairwise classification task, which lends itself very well to kernel-based methods [7]. 

Kernels are naturally suited to representing pairwise similarities, and are constructed directly 

from the data vectors during pre-processing. Most similarity-based methods for DDI 

discovery/prediction also use text sources such as biomedical research literature as the 

underlying data source, and construct NLP-based kernels from these medical documents [14, 

15]. Our work differs considerably from such approaches as we do not restrict ourselves to 

corpus-based NLP kernels for similarity, but rather focus on molecular and structural 
similarities. It should be noted, however, that our framework can easily support such NLP-

based similarities as it is designed to work with heterogeneous similarity measures; this will 

be an interesting next step.

Fusing multiple kernels has also been studied as a viable approach for DDI discovery. 

Chowdhury and Lavelli [16] combined linguistic and NLP kernels for the 

DDIExtraction2011 challenge. While this work used multiple similarities (kernels), they 

were all constructed from the same data, making their approach homogeneous. The work of 

Cheng et al. [17] is closest to our heterogeneous approach; they consider four types of drug-

drug similarities (phenotypic, therapeutic, structural and genomic). However, a significant 

difference from our approach is that they treat pairwise similarities directly as features for 

use with standard machine-learning models such as SVMs and k-nearest neighbor 

classifiers. This approach destroys the structural and neighborhood information inherent in 

drug-drug similarity matrices; this means that their model does not capture the true 

complexity of the DDI manifold. Our method differs from Cheng et al’s as we combine 

heterogeneous similarities jointly and (locally) optimally, rather than combining kernels into 

a single feature set.

It should also be noted that other multiple kernel approaches do not learn relative weights of 
similarities, that is, kernel combination is not a part of the learning process and is performed 

a priori using fixed weights. This is a significant difference, as our approach learns a kernel 

as well as relative weights between similarities to show which ones have the most influence 

on the final kernel. Molecular structure similarity analysis has been studied in the context of 

DDIs before, where Vilar et al [18] used SMILES code and MACCS fingerprints, with a 

matrix multiplication method thresholded by a Tanimoto coefficient cutoff to predict new 

DDIs. Similarity-based kernels were also used in the different task of drug-target 

interactions prediction [19]. The work of Tatonetti et al. [20], Thomas et al. [21] and Percha 

et al. [22] are also relevant, though they were applied to drug-target interaction prediction.

From a machine-learning standpoint, our work is closely related to multiple kernel learning, 

which combines the power of multiple kernels together to learn a linear or non-linear kernel 

combination. The work of Lanckriet et al. [23] optimizes over a linear combination of 

multiple kernels through semidefinite programming. In this seminal work, Lanckriet et al., 

test their method on two data sets and demonstrate that learning a combination of kernels is 

indeed better than learning single kernels for classification. Bach et al. [24] built upon this 

work and proposed more efficient algorithms for multiple kernel learning. Sonnenburg et al. 

[25] further generalized the formulation by posing the multiple kernel learning problem as 

an semi-infinite linear program that is easier to solve. In recent years, the multiple kernel 

learning has also been extended to multi-class problems [26] and localized kernels [27], 

Dhami et al. Page 5

Smart Health (Amst). Author manuscript; available in PMC 2018 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where kernels are learned more precisely using the local information available. These and 

other methods are discussed by Gönen and Alpaydın [28]. These approaches all rely on the 

fact that multiple kernel learning can be equivalently cast in terms of the SVM dual; thus 

these approaches are used for individual classification of training examples. Our framework 

is considerably different, however, as we are interested in pairwise classification of training 

examples to identify interactions.

Our framework, instead, relies on kernel alignment, which serves to regularize a kernel 

learning problem. Specifically, we seek to learn a single kernel from multiple similarities by 

aligning the kernel with the labels [29] as well as local neighborhood [30]. At a high level, 

our approach seeks to perform manifold regularization [31] and alignment, to fuse 

information from various similarity measures into one kernel.

3. Drug-Drug Interactions

Before we define the DDI task, we give terse definitions of various entities involved when 

two or more drugs interact. The target or drug target is the protein modified by the drug in 

order to achieve the desired effect once the drug is administered to the body. Enzymes are 

catalysts that accelerate biological reactions, while transporters are proteins that help drugs 

reach the intended target [32], and also help in determining whether the drug will be 

absorbed, distributed or eliminated.

DDIs can be either synergistic (positive, and help increase the effect of the drugs) or 

antagonistic (negative, cause serious side effects). In this work, we do not differentiate 

between these two types of interactions. DDIs themselves can be inherently classified into 

two categories [33]:

• Pharmacokinetic: is the effect that a drug goes through when administered, for 

example, it is absorbed or metabolized. In case of DDIs, pharmacokinetic refers 

to the (synergystic or antagonistic) effect of one drug on the other drug’s 

absorption, distribution, metabolism and excretion when administered 

simultaneously or within a short time span of one another.

• Pharmacodynamic: is the effect that body goes through when a drug is 

administered. In case of DDIs, pharmacodynamic refers to the effect of one drug 

on another drug when they are operating on the same target or even different 

targets, but with similar behaviour towards the different targets i.e do they inhibit 

the tendency of the the target to act which can cause an unwanted interaction.

The pharmacokinetic category consists of metabolism interactions like enzyme inhibitors 

and substrates. Target, enzyme and transporter inhibitors are chemical molecules that bind to 

the target (or enzyme, or transporter resp.), and inhibit its activity. Enzyme/transporter 

substrates are molecules which react with the enzyme/transporter, and are converted into 

different molecules called products. The pharmacodynamic category, on the other hand, 

occurs due to the agonists and antagonists. An agonist binds to a target, and evokes a 

response, while an antagonist binds to the target and inhibits a response.
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We build our approach based on these two categories with the motivation that if two drugs 

interact, then there should exist a “path of relationships” describing the molecular and 

structural properties of the drugs, especially when there is an interaction. Thus, we extract 

relations as shown in Table 1 from the DrugBank database, whose general schema is shown 

in figure 1. These relations ensure that we are in the domain of pharmacokinetic and 

pharmacodynamic categories of the DDIs. Another motivation for using these relations is 

that the effect of enzymes on DDIs, especially the cytochrome P450, have been well studied 

extensively in medical literature [34, 35]. Thus, the use of such relations becomes natural in 

DDI prediction, and can be considered a form of domain expertise.

4. Kernel Learning for Drug Drug Interactions

In classical multiple kernel learning [24, 23], kernels are typically constructed in two 

different ways. First, multiple kernels can be constructed from the same data source 

(homogeneous), or from different data sources (heterogeneous). These multiple kernels are 

then combined in a linear or non-linear fashion. A point to keep in mind in such a multiple-

kernel learning setting is the assumption that we have the complete data vectors xi from 

which we can construct multiple kernels. Our method diverges considerably from this 

representation since we never have an explicit representation or embedding of the drugs. 

Instead, we have several different similarity measures, from which we construct a single 

kernel for our prediction/discovery task.

4.0.1. Reachability

A key component describing drug-drug interactions is the charaterization of how two drugs 

react with each other. This is captured using a directed graph of known chemical reactions 
between drugs and enzymes, transporters etc. using ADMET (absorption, distribution, 

metabolism, excretion and toxicity) features. The idea of reachability follows from the 

intuition that two drugs are likely to interact with one another if one is reachable from the 

other via one or more paths in an ADMET knowledge graph.

While there exist numerous approaches in graph theory for reachability analysis on graphs 

[36, 37], our choice is guided by the fact that we operate on multi-relational, directed, 

relatively sparse graphs involving several thousands of entities/nodes representing drugs, 

enzymes, targets etc. An iterative search within such a large graph may be intractable. We 

are inspired by the success of randomized approaches in computational statistics and the 

seminal work on the path ranking algorithm (PRA, [38]). These approaches show that 

random walks on a knowledge graphs can be used to generate robust predictive models for 

relation extraction and reachability analysis. We adapt a similar approach to construct our 

reachability measure. The estimation of reachability between 2 drugs in a given drug pair 

proceeds as follows (Figure 2):

(a) Preprocessing—A knowledge graph is constructed for known chemical reactions 

using ADMET features.

(b) Guided (Parameterized) Random Walk Generation—Parameterized random 

walks are sequences of relations with shared arguments, where the arguments are entity 
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classes (not entity instances) starting and ending in the drug entity. Essentially, 

parameterized random walks are paths in the relational schema of chemical reactions (Figure 

1). Similar to PRA [38], our random-walk generation allows for walking against the implicit 

direction of the relation. Thus, the relations prefixed with represent the inverse of a given 

relation. An example of a random walk through an ADMET graph looks like: 

TargetInhibitor(d0, t0)) ∧ _TargetInhibitor(t0, d1)) ∧ 
TransporterSubstrate(d1, t2)) ∧ _Transporter Inhibitor(t2, d3). We 

impose certain restrictions on the walks, including disallowing same relation types from 

following each other (a relation and its inverse are considered different types). We generate 

several random walks of varying length. Guidance is induced via refining the parameterized 

walks using domain knowledge [39] (Table 2) that indicate certain types of chemical 

reactions (or a series), which when present in the walks, increases the likelihood of an 

interaction between the two drugs at the start and end of the path.

(c) Instantiation—Instantiation of a parameterized walk, 𝕎, is the process of finding all 

possible paths, satisfying 𝕎, that exist in the network of chemical reactions 𝒢 between two 

drugs of a given pair〈d1, d2〉 (Figure 3). If we consider paths as subgraphs, and 𝕎 a motif, 

then set of instances ℐ  d1, d2
= ∀g g ⊆ 𝒢, g = 𝕎, d1 ∧ d2 ∈ g . Searching for the set of 

instances is a combinatorially hard problem (#P-complete). We exploit the power of graph 

databases to compute this. The network of reactions is represented as an RDF1 graph and the 

parameterized walks are posed as SPARQL queries [40]. Some example groundings for a 

couple of given random walks are shown in table 3 and table 4.

(d) Measure/Score generation—The reachability measure is generated for every drug 

pair 〈d1, d2〉 by obtaining the cardinality (count) of the instance set ℐ  d1, d2
.

4.0.2. Similarities based on SMILES and SMARTS strings

The simplified molecular-input line-entry system (SMILES) is a commonly-used 

specification for describing chemical and molecular structure using ASCII strings. The 

SMILES arbitrary target specification (SMARTS) is an extension of SMILES that is also 

commonly used for specifying molecular sub-structures precisely. We extract four similarity 

measures based on molecular and chemical properties of the drug (specified by SMILES and 

SMARTS strings) using the package rdkit2. We compute four similarity measures from 

SMILES strings [41], which have been previously proven useful in various bio-computing 

tasks [42, 43, 44]:

(S1) Molecular Feature Similarity (FS) compares the chemical properties of two 

drugs using 19 features extracted from their SMILES strings. These features include 

the number of valence electrons, number of aromatic rings and number of hydrogen 

donors and receptors, which are important for determining the reactiveness of a 

1The Resource Description Framework (RDF) was developed by the WWW Consortium (W3C) for knowledge representation and 
management on the web.
2http://www.rdkit.org/
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molecule. We use the Jaccard distance between all features as the similarity between 

two drugs.

(S2) SMILES String Similarity (SS) is the similarity between the SMILES strings 

themselves, which is calculated using edit distance between the strings.

(S3) Molecular Fingerprint (FP) similarity is computed between the fingerprints, 

which are bit-string representations of the molecular structure.

(S4) Molecular ACCess System (MACCS) keys are a particular type of fingerprint 

generated from SMARTS strings. Similarities on MACCS are commonly used in the 

drug discovery domain, though they have been proven to be useful on the DDI 

domain as well [45].

4.1. Notation and Problem Description

Before describing our approach in detail, we formalize our notation. Given a drug database 

with N drugs, we are interested in discovering whether a pair of drugs di and dj interact 
with each other. Recall that we do not distinguish between synergistic and antagonistic 

interactions. Let all possible drug pairs in the database be 𝒫 = (di, d j) 1 ≤ i, j ≤ N , and we 

use the short-hand notation ij to denote the drug-drug pair (di, dj). As mentioned previously, 

our problem setting is considerably different from the classical multiple kernel learning 

framework. We do not attempt to construct an explicit vector representation or embedding of 

a drug di. Instead, given N drugs, we construct M pairwise similarity matrices Sm, for m = 1, 

…, M. As described above, these similarities can be constructed using various drug 

properties that represent the potential for interactions such as molecular structure, 

pharmacological attributes etc. Since these “similarities” represent potential for interactions, 

they can also be constructed from natural language text extracted from such diverse sources 

as electronic health records [4] and journal abstracts [5].

Our approach seeks to combine different interaction measures and similarities, Sm, from 

various sources into one coherent kernel. Note that the only requirement on the similarity 

matrices is that Sm ∈ 𝕊N, the space of all N × N symmetric matrices. We do not assume 

positive semi-definiteness (psd3) of similarity measures; as we show below, it is possible to 

align a psd kernel with non-psd similarity matrices. Thus, any symmetric scoring function 

σm(di, dj) can be used to generate a similarity matrix Sm. This allows our approach to be 

agnostic to multiple representations of a drug. For example, σ1 can be string alignment 

similarity of the genomic strings of two drugs, while σ2 can be the bag-of-words co-

occurence count of the two drugs in a biomedical corpus. Broadly, any scoring function that 

measures similarity of a potential for interaction can be considered a candidate similarity 

measure.

3A symmetric matrix is positive semi-definite if its eigenvalues are all non-negative (≥ 0), and positive definite if its eigenvalues are 
strictly positive (> 0). Positive semi-definiteness allows us to manipulate kernels instead of explicitly transforming the data into a 
higher dimensional space.
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The (i, j)-th element of Sm is denoted sm
i j, and describes the interaction between di and dj 

according to interaction measure Sm. The interaction label yij = +1 if the drugs di and dj 

interact adversely with each other and yij = −1 otherwise. We denote the matrix of all drug-

drug interactions as Y ∈ 𝕊N, the symmetric matrix whose (i, j)-th entry is the interaction 

label yij. Generally, we only know the true labels for a small subset of drug pairs, ℒ ⊂ 𝒫, 

and our goal is to learn a model on ℒ in order to discover drug-drug interactions in the 

remaining pairs 𝒰 = 𝒫\ℒ. Our problem can be formulated as follows:

Given: For N drugs, M interaction similarities Sm, a small subset of known interactions yjj for pairs i j ∈ ℒ ⊂ 𝒫,

Learn: A kernel Z ⪰ 0, and interaction similarity combination weights αm ≥ 0, ∑m = 1
M αm = 1,

Predict/Discover: Previously unknown pairwise drug-drug interactions yi j = sign(zi j), for pairs i j ∈ 𝒰 = 𝒫\ℒ.

Our novel formulation addresses kernel learning at an element-wise, local and global level, 

enabling us to learn robust models for discovery of new drug-drug interactions.

4.2. Incorporating Neighborhood Information

We view each interaction/similarity measure as a graph that provides a different view of the 
neighborhood of a drug. That is, each similarity matrix Sm represents a fully-connected 

graph with sm
i j representing the edge weight between drugs di and dj. Since each Sm 

measures similarities differently, the neighborhood of a drug 𝒩m(di) with respect to different 

Sm will be different. In order to effectively incorporate this multi-view neighborhood 

information, we construct graph Laplacians Lm, m = 1, …, M, for each similarity. 

Laplacians are naturally locality-preserving [46, 47], that is, they preserve the neighborhood 

structure in the data. This allows us to learn a kernel that fuses neighborhood information 

𝒩m from multiple interaction types. Without loss of generality, we set the diagonal of Sm to 

zero: diag(Sm) = 0, reflecting that drugs do not interact with themselves. The Laplacian can 

be constructed as

Lm = (1 + δ)IN − D
− 1

2SmD
− 1

2 , (1)

where IN is an N × N identity matrix and D is a diagonal matrix with entries dii = ∑ j = 1
N si j

m

(the row sum of the similarity matrix Sm).

We formulate the following kernel learning problem:
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minimize
L, Z, α

L, Z + L, Y
alignment

+ λ1r(α)
regularization

  λ2(ℓ1(Z, Y) + ℓ2(L, Y)
loss functions

subject to L = ∑
m = 1

M
αmLm, α ≥ 0, e′α = 1, Z≽0.

(2)

We highlight the various components of the formulation (2):

The variable L = ∑m = 1
M αmLm is a convex combination of the Laplacians Lm arising from 

the various interaction similarities. The matrix variable L is introduced purely for 

convenience of notation and can easily be eliminated from the objective function of (2). We 

select a convex rather than a linear or conic combination in order to improve interpretability 
[28]. That is, positive αm enable us to intuitively interpret the importance of one similarity 

relative to the others. The formulation attempts to identify a combination weights α as well 

as a kernel Z ⪰ 0, which ensures that Z is psd.

The alignment terms are inspired by the success of alignment-based regularization for kernel 

learning [29]. Hoi et al [30] observe that these alignment terms essentially perform manifold 

regularization [31], which has the effect of incorporating local neighborhood information 

encoded in the different Laplacians as well as the labels into learning α and Z. Specifically, 

〈L, Y〉 encourages the weights on the Laplacians α to be consistent with the labels Y. The 

impact of labels is also propagated into Z by the 〈L, Z〉 term.

The entries of the learned kernel zij directly provide a unified interaction score and we 

predict drug interactions as

yi j = sign(zi j) . (3)

While the unified kernel Z is positive semi-definite, it’s entries can still be negative, which is 

a fact that we exploit here. Enforcing positive semi-definiteness also naturally imposes 

symmetry on the learned kernel.

In order that the elements of Z capture interactions effectively into a score, we require a loss 

function that ensures that the interaction margin is maximized. We use the hinge loss to 

ensure that yijzij ≥ 1 holds. Intuitively, these constraints ensure that zij ≥ 1 when yij = +1 and 

zij ≤−1 when yij = −1. The interaction margin behaves very similarly to the margin in SVMs 

[7]. Thus, we select ℓ1 to be the hinge loss in (2), which is applied to the drug pairs with 

known labels (indexed by) i j ∈ ℒ:
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ℓ1(Z, Y) = ∑
i j ∈ ℒ

max(1 − yi jzi j, 0) . (4)

The loss function ℓ1 ensures element-wise consistency between the learned kernel Z and the 

labels Y. In a similar vein, the loss function ℓ2 aims to propagate this consistency into the 

combination weights α. To this end, we measure the element-wise deviation of the weighted 

Laplacian with the labels as well, through the Frobenius norm:

ℓ2(L, Y) = 1
2 L − Y F

2 . (5)

Finally, we also add a regularization term over α, typically to ensure robustness in weight 

learning. In this work, we chose the classical L2 regularizer, r(α) = 1
2 α 2

2
. Other norms can 

also be used, depending on what properties of α are desired. For instance, the L1 regularizer, 

r (α) = ║α║1 encourages sparsity, while the L∞ regularizer, r(α) =║α║∞ encourages the 

model to select the single best kernel. We use L2 regularization here, and defer the 

exploration of the properties of the other regularizers to future work.

We formulate the following kernel learning problem:

minimize
L, Z, α

L, Z + L, Y +
λ1
2 α 2

2

  λ2 ∑
i j ∈ ℒ

ξi j +
λ2
2 L − Y F

2

subject to yi jzi j − 1 + ξi j ≥ 0, ξi j ≥ 0, ∀i j ∈ ℒ,

  L = ∑
m = 1

M
αmLm, α ≥ 0, e′α = 1, Z≽0

.

(6)

The slack variables ξij ≥ 0 measure the hinge loss of the pairwise interaction fit between the 

labels and the entries of Z as shown in equation (4). These slack variables function in a 

manner very similar to the slack variables in SVMs: if the prediction zij and the label yij 

have the same sign, then the model correctly identifies the interaction for drugs di and dj. In 

this case, we will have, yijzij > 0 and consequently, ξij = 0. However, for misidentified 

interactions, ξij = 1 − yijzij > 0. Thus, by minimizing ξij, we are able to minimize the 

misclassification of drug-drug interactions. The formulation (6) is an instance of a bilinear 

program, owing to the terms L, Z = ∑m = 1
M αm Lm, Zm

We solve (6) using alternating minimization [48]. At the t-th iteration, we fix the current 

estimate of the similarity weights αt (note that when α are fixed, this also fixes L, owing to 
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the equality constraint in eq. 6). This allows us to infer the new interactions scores Z i, j
t + 1 by 

solving the following sub-problem, which we denote SubProbE (Z αt). This can be 

interpreted as the expectation step of an EM procedure, where we identify the hidden 

variables, in this case, the drug-drug interactions Z. We can now fix Z = Z t + 1 in (6), which 

gives us a sub-problem we denote SubProbM (α |Z t + 1). Again, this step can be considered 

equivalent to the maximization step of an EM procedure, where we estimate the parameters 

(here, α, which parameterize the influence of the various similarities on the final kernel). 

This procedure is summarized in Algorithm 1. Both sub-problems were solved using SDPT3 

[49].

Algorithm 1

Alternating Minimization for Learning SKID3

1:
α0 = 1/m ⊳ Initialize weights uniformly

2:
Z0 = IN ⊳ Initialize kernel to identity matrix

3: for t ≤ tmax do

4:
  Zt + 1 SubProbE(Z|αt) ⊳ Update Z

5:
  αt + 1 SubProbE α|Zt + 1) ⊳ Update α

6:

 If 
1

N2 Zt + 1 − Zt
F
2 + 1

m αt + 1 − αt
2
2 ≤ τtol then

7:    break ⊳ Converged to tolerance

8:  end if

9:  t ← t + 1

10: end for

5. Experiments

In this section, we aim to answer the following questions, which address the effectiveness of 

our proposed approach:

(Q1) How effective are the similarity measures on their own for the task of 

identifying drug-drug interactions?

(Q2) Is kernel learning effective for the DDI task?

(Q3) Is combining multiple similarity measures more advantageous than using a 

single similarity measure? How do the learned weights change with increasing 

database size?

(Q4) Does our work motivate further clinical investigations?

(Q5) How scalable is our method?
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Our data set consists of 78 drugs obtained from DrugBank4. This gives rise to 3003 possible 

interactions5. All our reported results were obtained across five runs with a held-out test set 

of 603 drug pairs. Different methods were trained with increasing number of drug pairs 

ranging from 400 to 2400, chosen randomly for each run.

The results of our experiments are shown in Figure 5. Note that all the metrices shown in the 

results are averaged over 5 runs on a hold-out set. Figures 5(a)–5(d) show that a kernels 

learned from each individual similarity measure (described in Sec. 4.0.1 and 4.0.2) are able 

to perform reasonably well on the DDI prediction task, thereby answering Q1 affirmatively.

We also learn a single kernel (Z ≡ SKID3) as well as the weights for the five similarity 

measures (αm). It is evident that learning from multiple similarity measures provide a more 

stable learning curve that performs well. Our initial hypothesis was that the similarities 

generated from molecular structures (SS, FS, FP and MACCS) and chemical reaction 

pathways (RW) fused into a single kernel could combine the advantages of both. That is, our 

hypothesis was that similarity fusion should achieve the high precision of the molecular 

structures similarity as well as the high recall of the chemical reaction pathways similarity. 

The results clearly confirm this, thereby answering Q2 and Q3 affirmatively. Figure 5(e) 

shows the change of the learned weights as the number of training drug pairs increases. A 

key observation from Figure 5(e) is that the influence of the random walk (RW) similarity 

decreases, while the weight of the molecular structure similarities increases. This suggests 

that RW similarities are particularly effective in smaller databases, for targeted identification 

of interactions.

Q1–Q3 evaluate the performance of our approaches and confirm existing interactions as 

provided by DrugBank. Our goal with Q4 was to see if SKID3 is able to discover new 
interactions. In order to answer Q4, it is necessary that our analysis goes beyond ground 

truth that we are considering in constructing the model. Thus, we look closely at the false 

positives and false negatives, under the intuition that DrugBank (or any other database) is 

never fully complete or accurate.

In Table 5 we present a few drug pairs that are supposedly “incorrectly classified” by our 

method using the DrugBank ground truth6. Table 5 shows that the interactions discovered by 

our approach can be supported by independent sources or research. Specifically, according 

to the ground truth, 6 interactions were flagged as false positives. On the contrary, according 

to literature, these are likely true interactions. Thus, we answer Q4 affirmatively. This is a 

crucial observation in the task of drug surveillance: many sources of DDIs need to be 

carefully and continuously curated for updating this ground truth. This result highlights the 

fact that SKID3 can indeed not only classify DDIs, but can help in knowledge refinement as 

well as knowledge discovery. Validating this hypothesis more fully requires large-scale 

evaluation, which is an interesting direction for future research.

4https://www.drugbank.ca/

5Given n drugs, since each drug can interact with every other drug except itself, there will be a total of 
n
2 = n(n − 1)

2  interactions.

6In the previous instance of the Drugbank database download in April 2017, this instance was not present whereas in February 2018, 
when checked again, this interaction was added. We use the previous instance as ground truth.
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Finally, Figure 5(f) shows the time taken by our method. The training time increases linearly 

with the number of drug pairs, showing the scalability of our method and answering Q5 
affirmatively. This result has practical implications for scalable DDI discovery with full drug 

databases.

6. Conclusion and Future work

We consider the problem of drug-drug interaction discovery, and develop a framework to 

exploit deeper structures and drug features using kernel learning. Our extensible framework 

can fuse information from multiple views including chemical reaction pathways and 

molecular structure, which we have demonstrated here. Furthermore, our formulation can 

easily admit other types of interactions as similarities including phenotypic, 

pharmacological, genomic and text, to name a few.

Our evaluations on the DrugBank database established the superiority of our proposed 

approach, which is distinct from many current approaches that generally ignore drug 

properties and instead seek interactions through text mining of existing literature. Extending 

this work to include more features including other semantic similarity metrics is an 

interesting direction. Combining the results of learning from DrugBank with other NLP 

based extraction techniques is another direction. Finally, using other labeling techniques 

such as weak supervision or distant supervision can potentially lead to larger training sets 

and can make the discovery process more effective.
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Figure 1. 
A general schema representation of the DrugBank database
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Figure 2. 
Reachability measure generation
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Figure 3. 
Instantiation process of a parameterized random walk 𝕎 (left) is equivalent to sub-graph 

matching for a given motif. The graph 𝒢 (middle) shows a part of the chemical reaction 

network (Dx, Cx & Tx indicate drugs, enzymes and transporters resp.). The rightmost figure 

shows how 3 different instances/paths (marked in red) have been identified that satisfy 𝕎.
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Figure 4. 
Our formulation aims to learn a positive semi-definite kernel Z and combination weights αm 

for various similarity measures. These similarities represent interaction scores, which help 

determine how likely two drugs are to interact. The similarities can be constructed from 

diverse sources (such as molecular, structural, genomic, text). The similarity measures are 

expressed through Laplacians, which view the interactions as a neighborhood graph. In this 

manner, we can incorporate local information into the kernel. The loss functions ensure that 

the learned Z is element-wise consistent with the labels.
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Figure 5. 
Experimental results, with kernels learned using All similarity measures ( SKID3), random-

walk reachability (RW), SMILES string similarity (SS), molecular feature similarity (FS), 

molecular fingerprint similarity (FP) and MACCS fingerprint similarity (MACCS). (a)–(d) 

Classification performance of each kernel on a hold-out test set as the size of the training set 

increases; (e) Weights of each individual kernel in All, as training set size increases; (f) 

Training time for learning the combined kernel ( SKID3) that fuses all the similarity 

measures, as training set size increases.
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Table 1

Initial relations

Initial Relations

Enzyme(enzyme,drug)

Target(target,drug)

Transporter(transporter,drug)

EnzymeSubstrate(drug, enzyme)

EnzymeInhibitor(drug, enzyme)

EnzymeInducer(drug, enzyme)

TargetSubstrate(drug, target)

TargetAntagonist(drug, target)

TargetInducer(drug, target)

TargetInhibitor(drug, target)

TargetAgonist(drug, target)

TransporterSubstrate(drug, transporter)

TransporterInhibitor(drug, transporter)

TransporterInducer(drug, transporter)
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Table 2

Domain knowledge

Enzyme Inhibitor(drug, enzyme) ∧ _EnzymeInducer(enzyme, drug)

Enzyme Inhibitor(drug, enzyme) ∧ _TransporterInhibitor(transporter, drug)

Enzyme Inhibitor(drug, enzyme) ∧ _EnzymeInhibitor(enzyme, drug)

Enzyme Inhibitor(drug, enzyme) ∧ _EnzymeInhibitor(enzyme, drug) ∧ 
EnzymeInhibitor(drug, enzyme)
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Table 3

Few of the groundings generated for the random walk TargetAgonist (d0, e1) ∧ _TargetAgonist 

(e1, d1) ∧ EnzymeSubstrated1, e2)(∧ _EnzymeInhibitor (e2, d2)

Tramadol,Mu-type opioid receptor,Morphine,Cytochrome P450 2C8,Pravastatin

Morphine,Mu-type opioid receptor,Tramadol,Cytochrome P450 3A4,Tadalafil

Hydromorphone,Mu-type opioid receptor,Morphine,Cytochrome P450 2D6,Amlodipine

Methadone,Mu-type opioid receptor,Oxycodone,Cytochrome P450 3A4,Risperidone

Oxycodone,Mu-type opioid receptor,Hydromorphone,Cytochrome P450 2D6,Risperidone
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Table 4

Few of the groundings generated for the random walk TransporterSubstrate(d0, t1) ˄ 
Transporter(t1, d1) ˄ TargetInhibitor(d1, e1) ˄ Enzyme(e1, d2)

Pravastatin,Multidrug resistance protein 1,Acetaminophen,H synthase 
1,Hydromorphone

Metoprolol,Multidrug resistance protein 1,Diclofenac,H synthase 2,Ibuprofen

Venlafaxine,Multidrug resistance protein 1,Acetylsalicylic acid,H synthase 
1,Diphenhydramine

Cephalexin,Solute carrier family 22 member 6,Naproxen,H synthase 1,Zolpidem

Levothyroxine,Solute carrier organic anion transporter family member 
1C1,Diclofenac,H synthase 1,Hydromorphone
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Table 5

Table depicting example drug pairs where the prediction does not match the ground truth. However, we 

additionally cite sources (last column) that support our prediction.

Drug 1 Drug 2 DrugBank Ground Truth Predicted Class Independent Source

Amitriptyline Tamsulosin Not interacting Interacting Drugs.com [50]

Omeprazole Metformin Not interacting Interacting Nies et al. [51], rxlist.com [52]

Salbutamol Clonidine Not interacting Interacting Thoolen et al. [53]

Cephalexin Diclofenac Not interacting Interacting Ali et al. [54]

Amoxicillin Metronidazole Not interacting Interacting Pavicic et al. [55]

Amphetamine Salbutamol Not interacting Interacting DrugBank6

Cephalexin Methadone Interacting Not interacting Drugs.com [56]
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