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Abstract

The transition of differentiated Schwann cells to support of nerve repair after injury is 

accompanied by remodeling of the Schwann cell epigenome. The EED-containing polycomb 

repressive complex 2 (PRC2) catalyzes histone H3K27 methylation and represses key nerve repair 

genes such as Shh, Gdnf and Bdnf, and their activation is accompanied by loss of H3K27 

methylation. Analysis of nerve injury in mice with a Schwann cell-specific loss of EED showed 

the reversal of polycomb repression is required and a rate limiting step in the increased 

transcription of Neuregulin 1 (type I), which is required for efficient remyelination. However, 

mouse nerves with EED-deficient Schwann cells display slow axonal regeneration with 

significantly low expression of axon guidance genes, including Sema4f and Cntf. Finally, EED 

loss causes impaired Schwann cell proliferation after injury with significant induction of the 

Cdkn2a cell cycle inhibitor gene. Interestingly, PRC2 subunits and CDKN2A are commonly co-

mutated in the transition from benign neurofibromas to malignant peripheral nerve sheath tumors 

(MPNST’s). RNA-seq analysis of EED-deficient mice identified PRC2-regulated molecular 

pathways that may contribute to the transition to malignancy in neurofibromatosis.
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Introduction

Schwann cells in the peripheral nervous system not only create myelin, but also become 

reprogrammed after nerve injury to support nerve regeneration. Soon after injury, repair cells 

derived from both myelinating and non-myelinating (Remak) Schwann cells create a 

structural and trophic environment that stimulates axon regeneration (Brosius Lutz and 

Barres 2014; Gomez-Sanchez et al. 2017; Jessen and Mirsky 2016). Repair Schwann cells 

activate autophagy and phagocytosis mechanisms to remove myelin debris, which inhibit 

axon regrowth and branching (Brosius Lutz et al. 2017; Gomez-Sanchez et al. 2015; 

Mukhopadhyay et al. 1994; Shen et al. 1998), and promote recruitment of macrophages that 

further facilitate myelin removal and regeneration (Cattin et al. 2015; Fischer et al. 2008; 

Niemi et al. 2013). Elongated Schwann cells distal to the injury site form Bands of Bungner, 

which serve as tracks for axonal regeneration (Arthur-Farraj et al. 2012; Gomez-Sanchez et 

al. 2017).

Such injury-responsive changes are mediated by a distinct transcriptional program that 

involves the transcription factor JUN (Arthur-Farraj et al. 2012). Many injury-induced genes 

encode intercellular signaling molecules such as sonic hedgehog (Shh), which is silenced 

throughout Schwann cell development prior to injury (Lin et al. 2015). Schwann cells in 

injured nerve induce genes encoding factors that promote axon survival and regeneration: 

e.g. brain- and glial-derived neurotrophic factors, Bdnf and Gdnf, nerve growth factor (Ngf), 
and leukemia inhibitory factor (Lif) (Boyd and Gordon 2003; Cafferty et al. 2001; Fontana 

et al. 2012; Li et al. 2015; Widenfalk et al. 2009). While Schwann cells are normally 

dependent on axonal neuregulin type III signaling in normal development (Michailov et al. 

2004; Taveggia et al. 2005), neuregulin 1 (NRG1) type I is also secreted by Schwann cells 

shortly after injury, and is required for efficient remyelination (Stassart et al. 2013). In many 

cases, levels of these genes are low or absent in mature Schwann cells prior to injury.

Despite the striking adaptability of Schwann cells to damage, the clinical outcomes of 

human patients generally exhibit only partial recovery in many cases (Höke 2006; Lundborg 

2000). One of the main reasons is that axons must regenerate over a relatively long distance, 

and Schwann cells more distal to injury sites gradually lose their ability to foster nerve 

regeneration (Jonsson et al. 2013; Ronchi et al. 2017; Sulaiman and Gordon 2009; Sulaiman 

and Gordon 2013), which could be in part due to reduced expression of neurotrophic factors 

like GDNF and BDNF (Eggers et al. 2010; Fontana et al. 2012; Höke et al. 2002; Li et al. 

1997; Michalski et al. 2008; Sulaiman and Gordon 2009). Therefore, identifying the 

molecular mechanisms that enable rapid axon regeneration is important for improving 

therapeutic strategies for peripheral nerve damage.

While many studies of gene expression changes after nerve injury have been performed 

(Arthur-Farraj et al. 2012; Arthur-Farraj et al. 2017; Barrette et al. 2010; Clements et al. 

2017; Nagarajan et al. 2002), somewhat less is known about the mechanisms governing the 

epigenomic transition of mature to repair Schwann cells. It has become clear that 

epigenomic changes are important for such reprogramming events, employing mechanisms 

of gene activation and derepression (Brügger et al. 2017; He et al. 2018; Hung et al. 2015; 
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Jacob 2017; Ma and Svaren 2018). Our previous studies identified the association of 

trimethylation at Lys27 of histone H3 tail (H3K27me3) at promoters of many genes that 

become activated after peripheral nerve injury, and we found that the demethylation is 

required for full activation of some repair genes (Ma et al. 2016). H3K27 methylation is 

catalyzed by Polycomb Repressive Complex 2 (PRC2), comprising the lysine 

methyltransferase EZH1/2 and the nonredundant core subunits, suppressor of zeste 12 

(SUZ12) and embryonic ectoderm development (EED). EED is not required during 

Schwann cell development and myelination (Ma et al. 2015), although there is Remak 

bundle disruption and hypermyelination in older EED deficient mice. Gene expression 

analyses, however, revealed a premature derepression of some injury-response genes in 

uninjured Eed cKO nerves. The findings suggested that Schwann cell EED and PRC2 

normally repress the injury responsive-transcriptional program and therefore PRC2 could 

affect nerve regeneration. In addition to its role in injury, loss of PRC2 has been associated 

with disease progression of the Schwann cell-derived tumors in neurofibromatosis, caused 

by loss of the NF1 tumor suppressor. Inactivation of PRC2 occurs in the malignant form, 

known as malignant peripheral nerve sheath tumors (MPNST’s), as SUZ12 or EED genes 

encoding PRC2 subunits are mutated or deleted in a high proportion of MPNST’s (Cleven et 

al. 2016; De Raedt et al. 2014; Lee et al. 2014; Pekmezci et al. 2017; Zhang et al. 2014).

Given that PRC2 has been identified as a regulator of Schwann cell repair genes after injury 

(Ma et al. 2015; Ma et al. 2016), we used the Eed cKO model to determine how lack of 

PRC2 activity would affect nerve injury responses and the gene expression reprogramming 

that occurs in Schwann cells after injury.

Materials and Methods

Primer sequences and Antibodies.

The primers and antibodies are listed in Tables 1 and 2, respectively.

Experimental animals and Nerve injury surgery.

All animal experiments were performed according to protocols approved by the University 

of Wisconsin Graduate School Animal Care and Use Committee. Eed-floxed mice 

(B6;129S1-Eedtm1Sho/J, RRID:IMSR_JAX:022727) were generated by backcrossing the 

flox allele for seven generations against the C57BL/6 genetic background and mated to 

mP0TOTA-Cre (B6N.FVB-Tg(Mpz-cre)26Mes/J, obtained from Jackson Laboratory, RRID: 

IMSR_JAX:017927). Mice were genotyped as described previously (Feltri et al. 1999; Xie 

et al. 2014). Samples collected from mice homozygous for floxed Eed served as control in 

this study. The sciatic nerves of adult Sprague-Dawley rats or mice at the age of 2 months 

were exposed and transected at the sciatic notch (Hung et al. 2015) or crushed 1 min using 

fine forceps. As a control, the contralateral limb also received a sham operation consisting of 

only a skin incision. The nerve tissues distal to the transection or crushed lesions, which 

were labeled with sterile black ink, and contralateral (sham) nerves were isolated for use in 

gene expression analysis, Western blotting, immunohistochemistry or ChIP experiments. For 

electron microscopy analysis, the sciatic nerve was analyzed 4 mm distal to the crushed 

lesion. Both male and female mice were used individually per sample at similar ratio 
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between the floxed Eed and Eed cKO genotypes. Male rats were used in ChIP experiments 

after nerve injury surgery.

Electron microscopy and morphometric quantification.

Freshly dissected sciatic nerves were immersion fixed in a solution of 2.5% glutaraldehyde, 

2.0% paraformaldehyde in 0.1 M sodium phosphate buffer, pH 7.4, overnight at 4°C. The 

nerves were then postfixed in 1% osmium tetroxide in the same buffer for 2 h at room 

temperature. Following OsO4 postfixation, the nerves were dehydrated in a graded ethanol 

series, and then further dehydrated in propylene oxide and embedded in Epon or Durcupan 

epoxy resin. Ultrathin transverse sections were contrasted with Reynolds lead citrate and 8% 

uranyl acetate in 50% ethanol. Images were obtained with a Philips CM120 electron 

microscope with an AMT BioSprint side-mounted digital camera at the UW Medical School 

Electron Microscope Facility. Densitometric quantification was performed using NIS-

Elements 4.0. Three mice per genotype were analyzed, and statistical analyses were 

evaluated by one-way ANOVA in all the experiments.

Immunohistochemistry.

Freshly dissected nerves were embedded in Tissue-Tek OCT compound (Sakura Finetek) 

and snap frozen with liquid nitrogen. Longitudinal or transverse cryostat sections (14 μm) 

were air-dried for 5 min and fixed in 4% paraformaldehyde for 15 min. The sections were 

then blocked in PBS containing 5% donkey serum/1% BSA/3% Triton-X 100 for 1 h at 

room temperature. Primary antibody incubation was performed overnight at 4˚C in PBS 

containing 5% donkey serum/1% BSA/1% Triton-X 100 and secondary incubation was 

performed in PBS at room temperature for 1 h. Hoechst 33342 (1:5000 in PBS, Sigma) was 

applied to stain nuclei for 1 min. Three 4 min washes were performed in PBS after fixation 

and blocking, and in PBS containing 0.1% Tween20 after primary antibody incubation and 

nuclear staining. After coverslips were mounted using Fluoromount-G™ (SouthernBiotech), 

sections were examined on a confocal microscope (Nikon A1R-Si). Statistical analyses were 

evaluated by one-way ANOVA.

Western blot.

Freshly dissected nerves were snap frozen with liquid nitrogen and crushed. The nerves were 

then homogenized in lysis buffer (50 mM Tris-HCL at pH 6.8, 10% glycerol, 2% SDS, 10% 

β-mercaptoethanol, 50 mM NaF, 1 mM Na3VO4 and Protease Inhibitor Cocktail (Sigma, 

P8340)) using a motorized pellet pestle. Cells in culture were homogenized in 3X lysis 

buffer. After a 15 min incubation in ice, lysates were boiled at 95˚C for 3 min and 

centrifuged at 4˚C for 15 min. Subsequently, supernatants were collected and subjected to 

SDS-PAGE. After transfer to nitrocellulose membrane, proteins were blocked in TBST 

containing 5% nonfat dry milk for 1 h at room temperature. Primary and Secondary antibody 

incubations were performed in TBST containing 5% non-fat dried milk at 4˚C for overnight 

and at room temperature for 1 h, respectively. Three 5 min-washes were performed in TBST 

after the incubations. The membranes were scanned and quantitated with the Odyssey 

Infrared Imaging System (Li-Cor Biosciences). Statistical analyses were evaluated by one-

way ANOVA.

Ma et al. Page 4

Glia. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nerve explant cultures.

Adult male Sprague-Dawley rat sciatic nerves were cut into 3 mm segments and cultured in 

serum-free RPMI-1640 medium supplemented with penicillin/streptomycin in the presence 

of GSKJ4 (Tocris, Cat. No. 4594) or DMSO at 37 °C for 1 d. RNA was purified from the 

explanted nerves at the indicated timepoints.

Micrococcal nucleases (MNase) aided Chromatin immunoprecipitation (ChIP) in vivo.

Sciatic nerves were subjected to MNase-ChIP with an antibody targeting H3K27me3 as 

described previously (Ma et al. 2016) with a few changes. Instead of washing with RIPA 

buffer after the immunoprecipitation, ChIP samples were washed with washing buffer 1 

(WB1, 50 mM Tris–HCl, pH7.5; 10 mM EDTA; 125 mM NaCl) once, WB2 (50 mM Tris–

HCl, pH7.5; 10 mM EDTA; 250 mM NaCl) once, and WB3 (50 mM Tris–HCl, pH7.5; 10 

mM EDTA; 500 mM NaCl) twice.

ChIP-seq.

Library preparation and sequencing was performed by the UW Biotechnology Center as 

described previously (Hung et al. 2015). Basecalling was performed using the standard 

Illumina Pipeline. Reads were mapped to the Rattus norvegicus genome rn5 using Bowtie 

(RRID:SCR_005476) to produce SAM files for further analysis. From the two biological 

replicates, we obtained 24,145,063 and 30,080,399 reads in input and 28,792,879 and 

30,462,059 reads in H3K27me3 ChIP samples. Hypergeometric optimization of motif 

enrichment (HOMER, RRID:SCR_010881) (Heinz et al. 2010) was used to determine 

enriched binding regions for H3K27me3-ChIP relative to sequencing of an input chromatin 

sample. H3K27me3-occupied genes were defined by the presence of the histone 

modification around the transcriptional start site (±7 Kb) with HOMER peak-score ≥ 10 (Ma 

et al. 2016). The raw data files are deposited in National Center for Biotechnology 

Information Gene Expression Omnibus (GEO) under accession number GSE106994.

qRT-PCR.

RNA was isolated from sciatic nerves using RNeasy Lipid Tissue Mini Kit (Qiagen) 

according to the manufacturer’s directions. To prepare cDNA, 250 ng or 1 μg of total RNA 

of mouse or rat nerves, respectively, was used from each sample. qRT-PCR and data analysis 

were performed as described previously (Hung et al. 2012). qPCR was performed with two 

replicates per sample, i.e., two technical replicates. Statistical analyses were evaluated by 

one-way ANOVA.

RNA-seq.

>500 ng total RNA was used to generate RNA-seq libraries using the Illumina TruSeq 

Stranded total RNA sample preparation kit according to the manufacturer’s instructions. An 

average of 14 million reads per sample was obtained and mapped to the GRCm38/mm10 

genome. Data were analyzed using CLC Bio Workbench to determine differentially 

regulated genes between uninjured and injured nerves in wild type and Eed cKO mice (p-

value, < 0.05). The raw data files are deposited in National Center for Biotechnology 

Information Gene Expression Omnibus under accession number GSE106994.
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Results

Analysis of Nerve Injury Responses in the Eed cKO

To explore the potential importance of EED in Schwann cell responses to nerve injury, we 

examined the repair process by electron microscopy at 14 d following sciatic nerve crush at 

the sciatic notches of 2 month old mice. Regenerating nerves initiate a program that includes 

myelin debris removal, axon regeneration and remyelination (Arthur-Farraj et al. 2012; 

Jessen and Mirsky 2016). Since our previous studies showed precocious activation of injury 

genes in the Eed cKO (Ma et al. 2016), we had anticipated that there may be accelerated 

regeneration. However, the ultrastructural analysis revealed that there were relatively fewer 

axons at the transverse sections 4 mm distal to the injury site in Eed cKO nerves compared 

to sections of control mice, which exhibited a substantial number of myelinated axons at 14 

d after injury (Figure 1A, B). Importantly, the number of regenerated axons greater than 1 

μm in diameter, which should eventually become remyelinated, were significantly reduced in 

Eed cKO nerves.

Clearance of myelin debris is a critical step because myelin, particularly myelin-associated 

glycoprotein (MAG), inhibits axon growth (Filbin 2003; Mukhopadhyay et al. 1994; Shen et 

al. 1998). Soon after injury, Schwann cells downregulate a myelin gene network and activate 

autophagy and phagocytic programs to carry out myelin clearance, which is further 

facilitated by recruited macrophages (Brosius Lutz et al. 2017; Gomez-Sanchez et al. 2015; 

Hirata and Kawabuchi 2002). Quantitation of myelin debris at 14 d post-injury did not reveal 

a significant difference in Eed cKO nerves compared to control nerves (Figure 1C). The 

number of infiltrating macrophages and engulfed myelin debris were also comparable. In 

addition, myelin breakdown was apparent 3 d post injury in Eed cKO nerves at levels 

comparable to control nerves (not shown), along with the expected decrease in myelin gene 

expression such as Mag, peripheral myelin protein 22 (Pmp22) and an essential transcription 

factor of myelination, Egr2/Krox20 (Figure 1-figure supplement 1).

To assess the regeneration affected by Eed deletion, we examined nerves at one month after 

crush injury (Figure 1A). Myelination in Eed cKO nerves appeared largely similar to control 

nerves at this later timepoint. The number of myelinated axons and, more importantly, the 

total number of axons greater than 1 μm in diameter were comparable between the two 

groups (Figure 1B), indicating that delayed axon regeneration did eventually recover. The 

analysis of g-ratios, the ratio of the axonal diameter to the diameter of outer myelin sheath, 

however, revealed persistently thinner myelin sheaths around axons greater than 3 μm in Eed 
cKO nerves (Figure 1D). In summary, the lower number of axons (> 1 μm) at 4 mm distal to 

crush sites at 14 d indicated that Eed cKO nerves have delayed axonal regeneration after 

injury.

Nerve remyelination involves re-activation of a number of myelin genes that are controlled 

by the EGR2/Krox20 transcription factor (Decker et al. 2006; Le et al. 2005; Topilko et al. 

1994). To determine if there was a deficit in remyelination responses of Schwann cells, we 

examined levels of Egr2 and found that its level in the Eed cKO had recovered to a similar 

level as in control nerves (Figure 1E). However, the expression levels of myelin-associated 

genes such as Pmp22, Mbp, and Mpz of Eed cKO nerves were lower than that of control 
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nerves, which reflects the overall reduced number of myelinated axons at 14 d after injury. 

Nonetheless, sciatic functional indexes and responses to the toe pinch test, which evaluate 

functional recovery of motor and sensory nerves, respectively, were comparable between 

control and Eed cKO mice, measured at 2 d and every week till the 4th week after crush 

injury (data not shown). In summary, these data indicate that PRC2 activity is required for 

timely axon regeneration during nerve repair process. Although remyelination eventually 

occurred in the Eed cKO, a lower level of myelin gene expression and thinner myelin 

sheaths (> 3 μm) at 14 days after injury is likely due to a delay in axon regeneration and 

subsequent myelination.

Control of Neuregulin-regulated Pathways by PRC2

We tested if EED affects activation of the ERK (extracellular signal-regulated kinase) 

pathway 1 d after injury, which becomes highly upregulated within few hours and regulates 

myelin breakdown at an early stage of nerve repair (Napoli et al. 2012), and lasts over 2 

weeks after injury (Guertin et al. 2005; Sun et al. 2013; Yamazaki et al. 2009). The level of 

ERK activation was not statistically different in the Eed cKO compared to control (p value, ~ 

0.09). Accordingly, RNA-seq analysis (described below) did not identify changes in ERK-

dependent injury genes. Our previous analysis of uninjured nerves had revealed an increase 

in p-AKT in the cKO (Ma et al. 2015), and at 1 d after injury, there was a similar increase in 

AKT phosphorylation at Thr308 and Ser473, which are catalyzed by PDK1 and mTORC2, 

respectively (Andjelković et al. 1997; Sarbassov et al. 2005) (Figure 2). At 1 d after injury, 

there is little change in p-AKT in wild type mice (Norrmén et al. 2018; Ronchi et al. 2016).

The AKT pathway is induced by neuregulin binding to the ERBB2/3 receptor in Schwann 

cells (Atanasoski et al. 2006b; Carroll et al. 1997; Fledrich et al. 2014; Guertin et al. 2005). 

Therefore, we decided to examine regulation of Neuregulin1 (Nrg1) type I, which is induced 

in Schwann cells within 24 hours after injury, and increases remyelination efficiency 

(Ronchi et al. 2016; Stassart et al. 2013). Interestingly, the ChIP-seq mapping of H3K27me3 

in mature nerve (Ma et al. 2016) indicated that transcription start sites of Nrg1 type I and III 

are occupied by this repressive histone mark (Figure 3A), and ChIP-qPCR assays showed a 

decrease in H3K27me3 in the type I promoter after injury (Figure 3B), showing a correlation 

between methylation dynamics of H3K27 and Nrg1 type I gene activation. Gene expression 

analysis of Eed cKO nerves, which display a Schwann cell-specific loss of H3K27me3 (Ma 

et al. 2015), revealed derepression of Nrg1 type I in Eed cKO nerves at 2 months of age in 

the absence of injury (Figure 3C). In contrast, the Nrg1 type III transcript was not induced 

by injury in either control or Eed cKO nerves, as expected (Stassart et al. 2013).The 

increased level of Nrg1 type I in Eed cKO nerves was also observed by Western blot in 

uninjured nerves (Figure 3E), and could contribute to elevated AKT phosphorylation in the 

Eed cKO before and after injury (Ma et al. 2015).

In order to independently test if H3K27 trimethylation regulates induction of mRNA 

encoding NRG1 type I, we tested if the activity of H3K27 demethylases is required for the 

Nrg1 type I gene activation after injury. Peripheral nerve injury increases the protein 

expression of a H3K27 demethylase JMJD3/KDM6B in Schwann cells (Gomez-Sanchez et 

al. 2013). We employed a nerve explant model in which there is activation of injury-
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responsive signals and repair genes by incubation of nerve segments in culture media 

(Arthur-Farraj et al. 2012; Gomez-Sanchez et al. 2015; Ma et al. 2016; Shin et al. 2013). In 

this system, we did observe increased mRNA for Nrg1 Type I, but the GSK-J4 inhibitor of 

H3K27-demethylases JMJD3/KDM6B and UTX/KDM6A (Kruidenier et al. 2012), blocked 

the induction (Figure 3D). Our results collectively suggest that peripheral nerve injury 

promotes the activity of H3K27 demethylases that is required for full and timely activation 

of the Schwann cell Nrg1 type I transcript, which is repressed by H3K27me3 in uninjured 

nerves.

EED-mediated Transcriptional Regulation in Schwann Cells

To further investigate how PRC2 represses injury induced gene expression, we performed 

RNA-seq analysis of mouse sciatic nerves at 2 months of age. The use of RNA-seq 

compared to our previous microarray data (Ma et al. 2015) identified a significantly larger 

group of PRC2-regulated genes due to the inherent sensitivity of the RNA-seq analysis. We 

compared these expression data to a genome wide ChIP-seq profile of H3K27me3 in 

wildtype mature sciatic nerves to identify genes regulated by the EED-containing PRC2 

complex. Our chromatin immunoprecipitation protocol was optimized to employ 

micrococcal nuclease digestion to produce mononucleosomal fragments (< 200 bp), to 

increase the resolution of ChIP-seq analysis. The analysis identified 4091 genes of 

peripheral nerves that were occupied by H3K27me3 around the transcription start site (± 7 

kb), including 532 genes that are normally induced (> 2 fold) after injury, and revealed the 

H3K27me3 enrichment at silent or low-expressed genes (RPKM= < 1) (Figure 4A and 

Supporting Information Table 1). For example, H3K27me3 was highly enriched at a silenced 

gene of peripheral nerves, sonic hedgehog (Shh) (Arthur-Farraj et al. 2012; Lin et al. 2015), 

and over 73% of H3K27me3-occupied genes were expressed at very low levels (RPKM < 5). 

Interestingly, H3K27me3 was also abundant at some highly expressed genes, such as desert 
hedgehog (Dhh), a signaling molecule required for the structural and functional integrity of 

the peripheral nerves (Parmantier et al. 1999; Sharghi-Namini et al. 2006). This may be due 

to cell heterogeneity in sciatic nerves including endothelial cells and fibroblasts, although 

the majority of sciatic nerve (>75%) are Schwann cells (Joseph et al. 2004; Salonen et al. 

1988).

Comparing the Eed cKO to wild type littermate, there were 471 upregulated genes, including 

85 injury genes, with greater than 2-fold change (p-value, < 0.05) (Figure 4B and Supporting 

Information Table 2). Approximately half (234) of the upregulated genes were associated 

with H3K27me3, including 48 injury genes. Among 196 genes with a high fold change (> 5-

fold), the most highly induced genes were quite low in control nerves (RPKM < 1, 145 

genes). Some of the more highly derepressed genes in Eed cKO nerves include fatty acid 
binding protein 7 (Fabp7/Bfabp), a marker of Schwann cell precursors and immature 

Schwann cells (Jacob et al. 2014; Kurtz et al. 1994), and protein tyrosine phosphatase 
receptor type Z 1 (Ptprz1), which regulates oligodendrocyte differentiation (Harroch et al. 

2002; Kuboyama et al. 2015). 130 genes were decreased by the deletion (<2-fold), including 

29 H3K27me3-associated genes. The function of H3K27me3 in gene activation has not been 

reported, however. In contrast, major myelin genes were largely not affected in Eed cKO 

nerves.
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EED regulation of Injury-induced genes

Together with the ultrastructural analysis, the results showed that EED-mediated repression 

controls hundreds of genes, but appears dispensable for primary myelination as the 

phenotype of peripheral nerve is essentially normal at this age (Ma et al. 2015). In addition, 

Eed cKO resulted in derepression of only a subset of H3K27me3-associated injury genes. 

However, we reasoned that there may be other injury-induced genes in which loss of 

polycomb repression is not sufficient for activation but is nonetheless required. In other 

words, some polycomb-repressed genes may require additional injury responsive pathways, 

such as the transcription factor JUN-mediated regulation that is critically involved in 

reprogramming of Schwann cells for nerve repair (Arthur-Farraj et al. 2012; Hung et al. 

2015).

To provide a more comprehensive view of injury responsive gene regulation and identify 

more EED-regulated genes, we performed RNA-seq analysis of control and Eed cKO nerves 

1 d after nerve transection. This timepoint was chosen to show the transcriptome of injured 

nerves before significant infiltration by immune cells, such as macrophages, which migrate 

into peripheral nerve beginning at 3 d after injury (Hirata and Kawabuchi 2002). Previous 

studies have shown that the early repair response of Schwann cells promotes survival of 

injured neurons and axon regeneration through activation of neurotrophic factors and surface 

proteins, and elicits an innate immune response to further facilitate nerve regeneration (Boyd 

and Gordon 2003; Cafferty et al. 2001; Fontana et al. 2012; Hashimoto et al. 2008; 

Henderson et al. 1993; Martinez et al. 2015; Perrin et al. 2005; Rotshenker 2011).

In addition to the genes induced prior to injury in the Eed cKO (described above), the 

analysis revealed an additional 116 genes were upregulated in Eed cKO nerves only after 

injury, including 46 H3K27me3-associated genes, therefore identifying more EED-regulated 

genes in injury-induced pathways (Figure 5A). The list included 50 genes that normally 

become activated after injury, and 22 genes, such as Gap43, Sox2, Hmga2, Vgf, Wif1, and 

Esm1, were associated with H3K27me3. Many of this set normally become activated at later 

timepoints after injury (at 3–7 days, referred to as late injury genes), but are unchanged or 

even reduced at 1 d after injury in control mice (Figure 5C and Supporting Information 

Table 4) as previously reported for Bdnf (Ma et al. 2016). As discussed above, removal of 

PRC2 repression is presumably not sufficient for their activation, but their activation at this 

early time is accelerated by removal of H3K27me3. Therefore, loss of EED leads to 

augmented or premature induction of a number of genes in addition to those that are elevated 

in the uninjured Eed cKO nerves.

Our analysis of wildtype transcriptome identified 845 genes that were induced greater than 

2-fold (p-value, < 0.05) in distal stumps 1 d after injury, compared to contralateral uninjured 

nerves (Supporting Information Table 3). Consistent with previous studies, induction 

included a significant number of genes encoding secreted proteins, such as neurotrophic 

factors GDNF, FGF5, and NGF, in addition to molecules mediating signaling pathways such 

as TGF-β1 (Boyd and Gordon 2003; Cafferty et al. 2001; Fontana et al. 2012; Henderson et 

al. 1993; Meyer et al. 1992). Genes that promote macrophage recruitment and myelin debris 

clearance (e.g. Mcp1/Ccl2, Il1a, Il1b, Lif, Il11) were also induced at this time point (Napoli 

et al. 2012).
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While we have previously demonstrated reduction of H3K27me3 on injury induced genes 

already at 1 day (Ma et al. 2016), we hypothesized that loss of EED could augment or 

accelerate induction of injury genes at this time point. Among genes activated at 1 d after 

injury, 38 genes were further upregulated in the Eed cKO (> 2 fold; p-value, < 0.05), 

including 18 genes associated with H3K27me3 (Figure 5B). For example, Vgf and Ecel1 
became highly activated (> 50 fold, relative to uninjured control nerves) 1 d after injury. Eed 
cKO further elevated the induction of such genes by greater than 3-fold compared to injured 

control nerves. There are also genes that become repressed after injury, and the analysis 

showed that EED is required for injury-induced downregulation of a subset of such genes. 

However, this did not include myelin genes that normally are reduced after injury.

Polycomb Regulation of Axon Regeneration Genes

While we have initially focused on the effects of EED on early gene induction after injury, 

we also wished to analyze potential mechanisms for the delayed axon regeneration. 

Therefore, RNA-seq analysis of wildtype nerves was performed 14 d after crush injury, 

which revealed 1020 genes upregulated greater than 2 fold (p-value, < 0.05), compared to 

uninjured nerves. Comparison to the Eed cKO at 14 d after injury showed that a lack of EED 

led to a further upregulation of 203 genes (> 2 fold) and a downregulation of 100 genes (< 

−2 fold) in the overall transcriptome (Supporting Information Table 5). Only a small fraction 

of such genes was, however, part of the injury-responsive transcriptome of control nerves 

(Figure 6A).

To better understand the phenotype of Eed cKO nerves, we compared our RNA-seq data 

with data from the analysis of injured nerves, in which Jun was deleted specifically in 

Schwann cells (Arthur-Farraj et al. 2012). The loss of the JUN transcription factor led to 

failures in axon regeneration but also in Bungner band formation and myelin debris 

clearance. Importantly, the Jun cKO array analysis identified a subset of injury genes 

implicated in nerve regeneration and provided a list of genes critical for axon regeneration. 

We also compared with gene expression analysis of injured nerves of WldS mice, in which 

axons degrade slowly, and Schwann cells therefore remain differentiated and incompetent to 

support repair process (Barrette et al. 2010). The comparison analysis did not yield a large 

overlap of genes that were commonly downregulated or upregulated between Eed cKO and 

Jun cKO studies. Such an observation was consistent with facts that the induction of JUN 

protein and mRNA in the Eed cKO was very similar to control, measured at 5 d and 14 d 

after injury, respectively (Figure 6B, C). Instead, we identified only 10 genes that were 

commonly downregulated in the Eed cKO and Jun cKO in injured nerves, including Sema4f, 
Epha5, Fgf5, Olig1, Btc, Mmp17, and Runx2 that were lower also in WldS-injured nerves 

compared to wildtype injured nerves (Figure 6C). Importantly, the critical role of 

semaphorin 4F transmembrane protein (SEMA4F) in axoglial interactions was demonstrated 

in a dorsal root ganglion neuron and Schwann cell co-culture system (Parrinello et al. 2008). 

EPHA5 has not been studied in the context of peripheral nerve injury, but it does affect axon 

guidance in retinal ganglion cells and spinal cord (Wang et al. 2016; Yue et al. 1999). The 

transcript level of other genes known for promoting axon regeneration and neuronal survival 

such as Shh, Bdnf and Gdnf (Boyd and Gordon 2003; Fontana et al. 2012; Hashimoto et al. 

2008; Ma et al. 2016; Martinez et al. 2015) was largely unaffected at 14 d post-crush injury, 
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even though EED loss caused derepression in uninjured nerves or premature induction 

(Figure 6C).

Furthermore, the analysis identified a significant decrease in ciliary neurotrophic factor 
(Cntf) (Figure 6D). The neuropoietic cytokine CNTF is primarily expressed by Schwann 

cells and substantially mediates axonal growth, demonstrated by markedly decreased 

number of regenerated axons in mouse models with genetic ablation of Cntf (Masu et al. 

1993; Selvaraj et al. 2012; Simon et al. 2010).

EED Supports Injury-induced Schwann Cell Proliferation

One gene controlled by H3K27 trimethylation is the Cdkn2a tumor suppressor gene 

encoding the INK4A/p16 (cyclin-dependent kinase inhibitor) and ARF/p19 proteins 

(Bracken et al. 2007; Gomez-Sanchez et al. 2013). The p16 and p19 proteins are implicated 

in controlling Schwann cell over-proliferation during nerve regeneration after injury-induced 

expression (Atanasoski et al. 2006a; Gomez-Sanchez et al. 2013). Using transcript-specific 

primer sets for p16 and p19 transcripts in qRT-PCR, there is not much induction at 1 day 

after injury in control mice, but there is a premature induction of both transcripts 1 d after 

injury in the Eed cKO (Figure 7A). In addition, the two transcripts are modestly induced at 

7d in control mice, but are greatly increased in the Eed cKO and remain elevated at 14 d 

after crush. Consistent with the regulation of Cdkn2a by PRC2, we also observed 

H3K27me3 over the promoters of both the p16 and p19 transcripts (not shown).

Since p16 and p19 control Schwann cell proliferation, we tested if injury-induced 

proliferation of Schwann cells after injury is affected in the Eed cKO by assessing the 

number of denervated Schwann cells with Ki67 expression 5 d after injury. Double labeling 

of Ki67 and the Schwann cell specific marker SOX10 showed that there was a significantly 

lower number of proliferating Schwann cells in Eed cKO nerves (Figure 7B, C). In addition, 

as predicted by the mRNA analyses, we see enhanced expression of the p19/ARF protein at 

the same timepoint. These data indicate that EED promotes proliferation of Schwann cells in 

the early response to injury by limiting induction of the p16 and p19 transcripts of the 

Cdkn2a gene, as predicted by earlier studies of H3K27 demethylation (Gomez-Sanchez et 

al. 2013). Previous studies have shown that Schwann cell proliferation after injury is offset 

by increased apoptosis, and that proliferation per se is not required for regeneration (Yang et 

al. 2008).

Comparison to NF1-associated MPNST gene expression profiles

PRC2 subunit mutations are often associated with CDKN2A mutations in development of 

malignant peripheral nerve sheath tumors. In one study, ~80% of ~50 MPNST’s lost 

CDKN2A expression, and ~75% of those tumors have mutations in either the EED or 

SUZ12 genes (Lee et al. 2014). To identify other EED-regulated genes that may be relevant 

to pathogenesis of MPNST, we compared genes upregulated in the Eed cKO with 

differentially expressed genes between PRC2-deficient and other MPNST’s. An RNA-seq 

analysis of MPNST’s identified 449 genes with a 3 fold or higher expression in the absence 

of SUZ12 or EED (Lee et al. 2014). The comparison analysis revealed that 40 such genes 

were upregulated in Eed cKO nerves either in uninjured or injured conditions (Figure 7D 
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and Supporting Information Table 6). This includes Igf2 and homeobox transcriptional 

regulators, Hoxa13 and Hoxd13, which are highly overexpressed in cancers such as 

esophageal and gastric cancers (Gu et al. 2009; He et al. 2017). Our ChIP-seq analysis found 

that 193 genes among the 449 genes activated in PRC2-deficient human MPNST’s were 

occupied with H3K27me3 in rat peripheral nerve.

Discussion

Our studies of the Eed conditional knockout show that PRC2 function is dispensable for 

early postnatal myelination by Schwann cells, and that myelin is largely normal at two 

months of age (Ma et al. 2015). However, there is premature derepression of injury genes in 

the Eed cKO nerves, indicating that loss of H3K27me3 is an epigenomic switch involved in 

regulation of a subset of injury genes (Ma et al. 2016). Therefore, we decided to test if loss 

of EED may alter the nerve injury process and found that many of the early steps of repair 

process, termed Wallerian degeneration, appear to proceed normally in the Eed cKO. We 

found no significant differences in the amount of myelin debris and the number of 

infiltrating macrophages, suggesting that PRC2 was not required for clearance of myelin 

debris that can inhibit axon regeneration (Mukhopadhyay et al. 1994; Shen et al. 1998). 

Accordingly, our analysis of EED regulated genes did not identify known genes involved in 

autophagy or phagocytosis (with the notable exception of Megf10), nor did we see altered 

expression of genes required for macrophage infiltration (e.g. Ccl2/Mcp1). In addition, there 

was no impact on induction of the JUN transcription factor, which is important for several 

facets of nerve injury responses (Arthur-Farraj et al. 2012).

Given the augmented and early induction of some nerve injury genes, we did look for 

evidence of accelerated nerve injury processes, but early stages after nerve injury were 

apparently unaffected. We speculate the normal demethylation of H3K27, at least in young 

mice, may be sufficient to drive expression of adequate amounts of critical nerve repair 

genes. However, the ultrastructural analysis revealed that the function of Schwann cell EED 

is critical for timely axon regeneration, a function likely to be critical for efficient nerve 

regeneration since the survival and capacity of Schwann cells decrease at more distal sites 

that are chronically denervated (Benito et al. 2017; Eggers et al. 2010; Höke et al. 2002; 

Jessen and Mirsky 1999; Jonsson et al. 2013; Li et al. 1997; Michalski et al. 2008; Ronchi et 

al. 2017; Sulaiman and Gordon 2009).

The RNA-seq analysis together with H3K27me3-mapping revealed many injury-activated 

genes targeted by the PRC2 complex. Loss of polycomb repression was sufficient for a 

subset of injury genes to be activated in uninjured nerves (e.g., Shh, Gdnf, and Ngf). 
Activation of genes presumably involves coordination of loss of polycomb repression with 

activation of specific transcription factor pathways, and a substantial number of EED-

repressed genes were identified only after injury. Some displayed a premature induction in 

injured Eed cKO nerves (Bdnf, Sox2, Artemin), indicating the needs of injury-signaling 

pathways in addition to loss of H3K27me3. It is striking that many injury-induced genes 

with H3K27me3 are efficiently induced within 24 hours of injury, and therefore the total 

number of PRC2-regulated genes may only become apparent from ongoing experiments 

examining the role of H3K27 demethylases in the injury response.
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The slowed axon regeneration at 14 d prompted an examination of genes that could explain 

this phenotype. One potential cause is the substantial decrease in ciliary neurotrophic factor 
(Cntf). The neuropoietic cytokine CNTF is highly expressed by Schwann cells at the end of 

the first postnatal week, and studies demonstrated its neuroprotective and axon-growth 

promoting effect using animal models of neuropathy and peripheral nerve injury with 

genetic ablation of Cntf (Homs et al. 2011; Masu et al. 1993; Sendtner et al. 1991; Sendtner 

et al. 1992). In addition, the inhibition of CNTF by antibody-mediated receptor blocking 

significantly decreased the growth rate and number of regenerating axons (Vega-Meléndez et 

al. 2014). Likewise, exogenous CNTF improved axon regeneration after central and 

peripheral nerve injury (Homs et al. 2011; Hoyng et al. 2014; Müller et al. 2009; Vega-

Meléndez et al. 2014). CNTF binding to neuronal receptors activates STAT3 that stimulates 

regeneration-associated genes and microtubule assembly, which play an important role in 

axonal stability and growth (Gu et al. 2016; Leibinger et al. 2013; Pellegrino and Habecker 

2013; Selvaraj et al. 2012; Vigneswara et al. 2014). Furthermore, Eed cKO resulted in a 

significant downregulation of semaphorin 4F (Sema4f) that was greatly induced in injured 

control nerves. Depletion of SEMA4F in co-culture assays caused disruption of Schwann 

cell-axonal interactions (Parrinello et al. 2008). Injured Jun cKO nerves also exhibited a 

significant decrease in Sema4f expression and manifested slow axon regeneration (Arthur-

Farraj et al. 2012). Therefore, deficient expression of Cntf and Sema4f may be responsible 

for delayed in axon regeneration in Eed cKO nerves during nerve repair.

Efficient remyelination of injured nerves requires the de novo activation of Nrg1 type I in 

denervated Schwann cells (Stassart et al. 2013). By analyzing the promoters of the type I 

and type III transcripts of Nrg1, we found that H3K27me3 mediates repression of Nrg1 and 

there is increased expression of the type I Nrg1 transcript in the uninjured Eed cKO nerves, 

indicating a mechanism by which type I Nrg1 is repressed in uninjured nerve. Interestingly, 

NRG1 increases the expression of nuc-ErbB3 (a nuclear variant of the NRG1 receptor, 

ErbB3), which has transcriptional activity by modulating H3K27me3 level in Schwann cells 

(Adilakshmi et al. 2011; Ness et al. 2016). However, nuc-ErbB3 likely has other activities 

since the phenotype and gene expression changes that we observe in the Eed knockout differ 

in several respects.

As has been shown in other systems (Chen et al. 2009; Conway et al. 2015; Ezhkova et al. 

2011; He et al. 2012), PRC2 activity prevents inappropriate activation of lineage-defining 

transcription factors, as there was a low level activation of neuronal transcription factors 

(Pax6, Isl1, etc.). The derepressed level of these transcription factors was not sufficient to 

drive significant levels of neuronal gene expression, however. A number of homeobox genes 

(Hoxa7, Hoxa10, Hoxd13) and neural crest transcription factors (Pax3, Tfap2a, Tfap2b) that 

are expressed in early SC development (Balakrishnan et al. 2016; Doddrell et al. 2012) were 

also induced at a low level. Interestingly, a number of transcription factors involved in 

oligodendrocyte development (Nkx6.2, Nkx6.1, Myrf) were also somewhat elevated (Mitew 

et al. 2013), but did not drive induction of unique oligodendrocyte genes (Lopez-Anido et al. 

2015) in the Eed cKO.

The polycomb pathway represses the Cdkn2a gene encoding cell cycle inhibitors INK4a/p16 

and ARF/p19 (Biehs et al. 2013; Bracken et al. 2007; Chen et al. 2009; He et al. 2012; 
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Voncken et al. 2003), and loss of EED or other PRC2 subunits resulted in derepression of 

Cdkn2a that was correlated to the proliferation-defective phenotype. Importantly, INK4a/p16 

and ARF/p19 are implicated in controlling Schwann cell over-proliferation during nerve 

regeneration after injury-induced expression (Atanasoski et al. 2006a; Gomez-Sanchez et al. 

2013). Eed cKO nerves display a slower rate of Schwann cell proliferation after injury with a 

premature and augmented expression of both transcripts for p16/Ink4a and p19/Arf, 

although this did not impair the regenerative process. Our observations are consistent with 

previous reports that nerve regeneration is not dependent upon Schwann cell proliferation 

(Kim et al. 2000; Yang et al. 2008).

Neurofibromatosis is a syndrome with Schwann cell-derived tumors caused by loss of either 

the NF1 or NF2 tumor suppressors (Carroll 2016). Loss of NF1 is associated with an 

increased risk that the disease progresses from benign neurofibromas to malignant peripheral 

nerve sheath tumors (MPNST’s). Interestingly, a very high percentage of MPNST’s have 

lost function of PRC2 through deletion/mutation of EED or SUZ12, or less frequent 

mutations of PRC2-associated proteins: e.g. AEBP2 and RBBP7 (De Raedt et al. 2014; Lee 

et al. 2014; Zhang et al. 2014). As shown here, proliferation in the absence of PRC2 function 

would be inhibited by induction of CDKN2A, but the PRC2 subunit mutations in MPNST’s 

are often associated with loss of function mutations in CDKN2A (Lee et al. 2014). The 

predominant co-occurrence of PRC2 alterations and CDKN2A mutation in MPNST’s with 

NF1 mutation suggests that these mutations coordinate to drive development of the 

malignant form of the disease. Furthermore, the findings of our study address some 

molecular pathways to MPNST’s mediated by the dysregulated polycomb repression. 

Previous studies have identified gene expression changes in MPNST’s with loss of PRC2 

function (Lee et al. 2014), and we found some of the same changes in our Eed cKO mice. 

More specifically, Eed cKO led to an upregulation of Nrg1, which is also observed in 

neoplastic Schwann cells within human neurofibromas and MPNST’s (Stonecypher et al. 

2005), and aberrant NRG1 signaling contributes to the pathogenesis of neurofibromas and 

MPNST’s in mouse models (Brosius et al. 2014; Gomez-Sanchez et al. 2013; Huijbregts et 

al. 2003; Kazmi et al. 2013). In addition, SEMA4F-deficiency was also identified in models 

of Neurofibromatosis type 1 and human neurofibromas, and appears to be a mechanism of 

loss of Schwann cell-axonal interaction, which contributes to tumorigenesis (Parrinello et al. 

2008). It is interesting to note that mature myelinating Schwann cells are normally resistant 

to tumor formation in NF1 deficient mice, but after injury, neurofibromas develop at the 

wound site (Ribeiro et al. 2013). Thus, loss of polycomb repression after injury may 

contribute to neurofibroma development, but permanent loss of PRC2 may be required for 

transition to the MPNST stage. We did not find any evidence of neoplasia in EED deficient 

mice even after injury, presumably due to the induction of Cdkn2a and the lack of 

deregulated Ras signaling. A recent study used a shRNA screen to identify driver genes for 

MPNST development (Patel et al. 2016). Seven such genes were identified, and Meis1 was 

functionally validated. Another gene in this set, Pitx2, is highly upregulated in EED 

deficient nerves, and three of the seven have moderate to high levels of H3K27me3 on the 

promoters (Meis1, Pitx2, Prrx1), suggesting that loss of PRC2 function would play a role in 

their induction in MPNST’s.
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Our study elucidated a novel regulation of repair Schwann cell genes mediated by the 

polycomb pathway and biological implications of EED deficiency in nerve regeneration and 

Schwann cell proliferation. The findings are of clinical importance and may lead to 

identification of therapeutic measures to facilitate peripheral axon regeneration and also to 

inhibit MPNST-pathogenesis with loss of the PRC2 subunits SUZ12 or EED.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Main Points

Polycomb repressive complex 2 (PRC2) prevents premature induction of several 

Schwann cell injury genes, including neuregulin 1, type I.

Loss of PRC2 impairs Schwann cell proliferation after injury, and also leads to a delay in 

axon regeneration.
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Figure 1. Schwann cell EED is required for timely axon regeneration.
A, Electron micrographs of the sciatic nerves at the indicated time points after crush and 

uninjured nerves of Eed cKO mice and littermate controls. The arrows and inset show 

macrophages engulfing myelin debris. Scale bars of uninjured and injured nerve images are 

5 μm and 8 μm, respectively. B, C, Myelinated and amyelinated axons (> 1μm in diameter), 

myelin debris, macrophages, and engulfed myelin by macrophages were counted in 

randomly selected fields that accounted for over 40% of an entire sciatic nerve cross section 

from each animal and normalized per surface area (10,000 μm2). Data: mean ± STDEV; **p 
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< 0.005, *p < 0.05; n=3 per genotype (one-way ANOVA). D, For g-ratio analysis (axon 

diameter/diameter of myelinated fiber), the diameter of axon and outer diameter of 

myelinated fiber were measured on over 500 randomly selected fibers per genotype. Data: 

weighted mean ± pooled STDEV; ***p < 0.0005, **p < 0.005, *p < 0.05; n=3 per genotype 

and age (one-way ANOVA). E, qRT-PCR analysis was used to identify the expression level 

of myelin genes from 2 month Eed cKO and control sciatic nerves in uninjured condition or 

14 day after crush. Expression levels were normalized with Gapdh. Asterisks indicate p-
value between genotypes in the respective condition. Data: mean ± SD; **p < 0.005, ***p < 

0.0005; n=4 for control and n=3 for Eed cKO (one-way ANOVA).
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Figure 2. Increased activation of AKT in Eed cKO nerves after injury.
Western blot analysis of lysates from distal stumps of control and Eed cKO sciatic nerves 1 

d after cut was performed using the indicated antibodies. n=5 for control and n=3 for Eed 
cKO nerves. Data: mean ± STDEV; **p < 0.005, *p < 0.05 (one-way ANOVA).
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Figure 3. Schwann cell Nrg1 type I is regulated by PRC2.
A, ChIP-seq mapping of H3K27me3 was performed in uninjured rat sciatic nerves. The 

transcription start site (TSS) is on the left. Statistical (Stat) Enrichment indicates regions 

with more sequencing reads than random chance. B, H3K27me3-ChIP assays were 

performed with distal stumps of rat sciatic nerves 1 d post-cut or sham surgery, and percent 

recovery relative to input was calculated by qPCR analysis. Data: mean ± SD; *p < 0.05; 

n=5 for sham and n=6 for 1 d post-cut (one-way ANOVA). C, qRT-PCR analysis was used 

to identify the expression level of Nrg1 type I and type III from 2 month Eed cKO and 

control sciatic nerves of uninjured condition or 1 day after cut. Expression levels were 

normalized with Gapdh. Data: mean ± SD; Asterisks indicate p-value between genotypes in 

the respective condition. *p < 0.05, ***p < 0.0005; n=5 per genotype and condition (one-

way ANOVA). D, Rat sciatic nerve explants were cultured for 1 d in the presence of GSK-J4 
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at indicated concentrations or DMSO vehicle and subjected to qRT-PCR together with 

immediately frozen nerve segments after dissection (indicated as uninjured). Uninjured level 

of Nrg1 is set as 1. Expression levels were normalized to 18S rRNA. Data: mean ± SD; n=5 

per condition (one-way ANOVA). E, Nerve lysates were obtained from uninjured control 

and Eed cKO nerves, and were blotted with an antibody to the extracellular domain of 

NRG1. The 30 kd band was normalized to α-tubulin, and the bar graph shows the average of 

the 3 replicates per condition.
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Figure 4. H3K27me3-occupied silent genes induced in the Eed cKO.
A, Box-and-Whisker plot shows RPKM distribution of genes in uninjured wildtype nerves, 

grouped by H3K27me3 peak score, which was determined by ChIP-seq analysis (n=2) using 

Hypergeometric optimization of motif enrichment (HOMER) (Heinz et al., 2010). B, 
Distribution of genes by RPKM values of indicated genotypes. Genes with the H3K27me3 

score greater than 10 were indicated by red dots. RPKM, Reads Per Kilobase of transcript 

per Million mapped reads. RPKM values are averaged across three samples per genotypes (p 

< 0.05).

Ma et al. Page 29

Glia. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Polycomb activity regulates early transcriptional response after nerve injury.
A, RNA-seq analysis identified a number of genes dysregulated by Eed cKO in uninjured or 

1 d after injury conditions. Gene expression was determined by RNA-seq analysis of 3 

samples per genotype and condition (p-value, < 0.05). The brackets indicate the number of 

genes associated with H3K27me3 around the transcription start site (±7 Kb). B, C, RNA-seq 

analysis was used to identify the expression level of early and late injury genes in Eed cKO 

nerves and control nerves at 1 d post-cut relative to uninjured control nerves. Note that the y-

axis is on a log scale. Data: mean of n=3 with p-value, < 0.05 per genotype. The late injury 

genes were identified from microarray analysis of peripheral nerves 3, 5 or 7 d after injury 

(> 2 fold) (GEO accession: GSE22291, GSE38693, GSE33454) (Barrette et al., 2010; 

Arthur-Farraj et al., 2012; Kim et al., 2012)(Kim et al. 2012). See Supporting Information 

Table 3 and 4 for the complete list of genes analyzed in Figure 5.
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Figure 6. The expression of critical axonal growth genes semaphorin 4F and ciliary neurotrophic 
factor is dependent on EED-mediated transcriptional regulation during nerve repair.
A, RNA-seq analysis identified a number of genes dysregulated by Eed cKO among genes 

differentially expressed during nerve regeneration at 14 d post-crush compared to uninjured 

nerves. See Supporting Information Table 2 and 5 for the list of dysregulated genes by Eed 
cKO in overall transcriptome and in the injury responsive transcriptome 14 d post-crush, 

respectively (n=3 per condition for control and n=2 for Eed cKO 14 d post-crush). B, 
Immunohistochemistry on transverse sections of distal stumps displays the JUN expression 

in nerves of indicated genotypes 5 d after cut. Scale bars, 40 μm. C, D, qRT-PCR analysis 

was used to identify the expression level of injury-responsive genes from 2 month Eed cKO 

and control sciatic nerves in uninjured condition or 14 day after crush. Expression levels 

were normalized with Gapdh. Data: mean ± SD; Asterisks indicate p-value between 

genotypes in the respective condition. *p < 0.05, **p < 0.005, ***p < 0.0005; n=4 for 

control and n=3 for Eed cKO (one-way ANOVA).
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Figure 7. Eed cKO exhibits impaired proliferation in injured nerves.
A, mRNA expression relative to uninjured control level set as 1 (not shown) at indicated 

time points was assessed by qRT-PCR with primer sequences specific to p16/Ink4a and 

p19/Arf transcripts of Cdkn2a. Expression levels were normalized with Gapdh. Data: mean 

± SD; ***p < 0.0005; n=5 and n=4 per genotype and condition at 1 d post-cut and 7 d post-

crush, respectively, and n=4 for control and n=3 for Eed cKO at 14 d-post crush (one-way 

ANOVA). B, C, The expression of a proliferation marker Ki-67 and p19/ARF among 

SOX10-positive nuclei at 5 d after denervation was assessed by immunohistochemistry on 

transverse sections of indicated genotypes. Scale bars, 20 μm. n=3 per genotype. Data: mean 

± STDEV; **p < 0.005 (one-way ANOVA). D, Representative genes that were commonly 

upregulated in PRC2-deficient MPNSTs relative to non-deficient MPNSTs (> 3 fold, RNA-

seq) (Lee et al., 2014) and Eed cKO nerves relative to wildtype nerves of uninjured or 1d, 

Ma et al. Page 32

Glia. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14d post-injury conditions (> 2 fold, RNA-seq) are listed (FC, fold change). Gray shading 

indicates H3K27me3 occupancy of genes in peripheral nerves of uninjured or post-injury 

conditions. See Supporting Information Table 6 for expression fold changes by Eed cKO 

among PRC2-deficient MPNST genes and H3K27me3 peak score.
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Table 1.

Primer sequences used for qRT-PCR and ChIP-qPCR experiments

qRT-PCR primer sequence (rat)

Nrg1 type I
Forward CCGCGTAGAGCGCTCATC

Reverse CTTGCCTCTGCCTTCTTTGC

qRT-PCR primer sequence (mouse)

Nrg1 type I
Forward GGGAAGGGCAAGAAGAAGG

Reverse TTTCACACCGAAGCACGAGC

Nrg1 type III
Forward ACTCAGCCACAAACAACAGAAAC

Reverse GAAGCACTCGCCTCCATT

Egr2
Forward TGCTAGCCCTTTCCGTTGA

Reverse TCTTTTCCGCTGTCCTCGAT

Mpz
Forward CCCTGGCCATTGTGGTTTAC

Reverse CCATTCACTGGACCAGAAGGAG

Pmp22
Forward CACGGTCGGAGCATCAGG

Reverse TCCTTGGAGGCACAGAACACT

Mbp
Forward GAGGAAGAGACAGCCGCTCTG

Reverse CAGGATTCGGGAAGGCTGAG

Sema4f
Forward TGCTGACGGCGACCAAT

Reverse TGGCTTTTTCCTGGGTGTTC

Runx2
Forward ACCAAGTAGCCAGGTTCAAC

Reverse GAGGATTTGTGAAGACTGTTATGG

Olig1
Forward AGCGATGTAGTTGCTTGGGAT

Reverse CTGGCTCTAAACAGGTGGGAT

Fgf5
Forward AAAAGCCACCGGTGAAACC

Reverse TCACTGGGCTGGGACTTCTG

Shh
Forward CAGCGACTTCCTCACCTTCCT

Reverse AGCGTCTCGATCACGTAGAAGAC

Gdnf
Forward TCTCGAGCAGGTTCGAATGG

Reverse AAGAACCGTCGCAAACTTTACC

Bdnf
Forward GGTATCCAAAGGCCAACTGA

Reverse GCAGCCTTCCTTGGTGTAAC

Jun
Forward CGGCTACAGTAACCCTAAGATCCT

Reverse GCCAGGTTCAAGGTCATGCT

Epha5
Forward TGGTCAACAGCCAATTATTCTGA

Reverse GCCCCCATCCACACATACC

Cntf
Forward TGCTGAGATTCCCATGTGATG

Reverse TTGGAGATGGTGGCCTCTTT

Ink4a/p16
Forward GAATCTCCGCGAGGAAAGC

Reverse TGTCTGCAGCGGACTCCAT
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qRT-PCR primer sequence (rat)

Arf/p19
Forward CACCGGAATCCTGGACCAGG

Reverse CACCGTAGTTGAGCAGAAGAGCT

Glia. Author manuscript; available in PMC 2019 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 36

Table 2.

Antibodies used for immunohistochemistry, Western blots and ChIP

Antibodies Catalog number Company

p(T308)-AKT 13038 Cell Signaling

p(S473)-AKT 4060 Cell Signaling

AKT 4691 Cell Signaling

pERK 1/2 4370 Cell Signaling

ERK 1/2 4695 Cell Signaling

H3K27me3 AM39155 Active Motif

JUN SC-1694, H-79 Santa Cruz

SOX10 AF2864 R & D Systems

Ki67 Ab16667 Abcam

NRG1 MABN42 Millipore

p19/ARF sc-32748 Santa Cruz
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