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Abstract

Cyanidin is polyphenolic pigment found in plants. We have previously demonstrated that cyanidin protects nerve cells against AB,s 3s-
induced toxicity by decreasing oxidative stress and attenuating apoptosis mediated by both the mitochondrial apoptotic pathway and the
ER stress pathway. To further elucidate the molecular mechanisms underlying the neuroprotective effects of cyanidin, we investigated
the effects of cyanidin on neuroinflammation mediated by the TLR4/NOX4 pathway in AB,s.ss-treated human neuroblastoma cell line
(SK-N-SH). SK-N-SH cells were exposed to AB,s.35 (10 umol/L) for 24 h. Pretreatment with cyanidin (20 ymol/L) or NAC (20 umol/L)
strongly inhibited the NF-kB signaling pathway in the cells evidenced by suppressing the degradation of IkBa, translocation of the p65
subunit of NF-kB from the cytoplasm to the nucleus, and thereby reducing the expression of iNOS protein and the production of NO.
Furthermore, pretreatment with cyanidin greatly promoted the translocation of the Nrf2 protein from the cytoplasm to the nucleus;
upregulating cytoprotective enzymes, including HO-1, NQO-1 and GCLC; and increased the activity of SOD enzymes. Pretreatment with
cyanidin also decreased the expression of TLR4, directly improved intracellular ROS levels and regulated the activity of inflammation-
related downstream pathways including NO production and SOD activity through TLR4/NOX4 signaling. These results demonstrate
that TLR4 is a primary receptor in SK-N-SH cells, by which AB,s.35 triggers neuroinflammation, and cyanidin attenuates AB-induced
inflammation and ROS production mediated by the TLR4/NOX4 pathway, suggesting that inhibition of TLR4 by cyanidin could be
beneficial in preventing neuronal cell death in the process of Alzheimer’s disease.
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Introduction

Neuroinflammation is a key process in Alzheimer’s disease
(AD), which suggests that AP acts as a major trigger of neuro-
nal and glial pro-inflammatory activation. Following activa-
tion, both neurons and glial cells produce pro-inflammatory
molecules including cytokines and chemokines"?. Toll-like
receptor 4 (TLR4) has been implicated in the pathogenesis
of AD because of its association with Ap-triggered inflam-
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matory activation, which results in the activation of NF-xB
and production of pro-inflammatory cytokines and/or anti-
inflammatory cytokines™. TLRs activate a common signal-
ing pathway which culminates in the activation of NF-xB
transcription factors and the PI3K/ Akt pathway®®?. Tt has
been suggested that A binds to Toll-like receptor 4 (TLR4),
causing augmented intracellular oxidative stress and the
release of inflammatory factors"™. In addition, Ap has been
shown to specifically activate the ROS-producing enzyme
NADPH oxidase (NOX) and to induce neuronal cell death™
The PI3K/ Akt pathway has been shown to control a variety
of cellular processes, including cell survival and proliferation.
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PI3K can function as either a positive or a negative regulator
of TLR signaling™. Previous studies have demonstrated that
AP induces inflammation by regulation of the TLR4/NOX4/
PI3K/ AKT/NF-«B signaling pathway!™*'?. On the other hand,
the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling
pathway is vital in the brain’s defense against oxidative insults
through its upregulation of antioxidants”. Under oxidative
conditions, Nrf2 dissociates from Keapl and translocates to
the nucleus, where it binds to antioxidant response elements
(AREs) and stimulates the transcription of phase II genes such
as heme oxygenase (HO-1), glutamate-cysteine ligase catalytic
subunit (GCLC), quinone oxidoreductase 1 (NQO-1), and
superoxide dismutase (SOD) to protect the cell from oxidative
stress!'”™.  All of the above demonstrate that Ap is a neuro-
toxin and that it causes damage to nerve cells, primarily by
inducing cell stress, before leading to cellular dysfunction and
death. Hence, it is necessary to develop effective therapeutic
strategies for AD that focus on reversing neurotoxicity by
attenuating inflammation.

Cyanidin is polyphenolic pigment found in plants. It has a
characteristic red to purple color and confers a wide range of
pharmacological benefits, including as a potent antioxidant
and a metal-chelating agent, in addition to its anti-inflamma-
tory, antiviral, and anticarcinogenic properties*?. Our pre-
vious studies have demonstrated that cyanidin protects nerve
cells against APy ss-induced toxicity by decreasing oxidative
stress and attenuating apoptosis mediated by both the mito-
chondrial apoptotic pathway and the ER stress pathway™>,
In the interest of better understanding the protective role of
cyanidin in AD prevention, it is important to investigate the
mechanisms whereby cyanidin causes these effects. Therefore,
it is of special interest to investigate the protective effect of
cyanidin against A,s 3s-induced neuroinflammation mediated
by the TLR4/NOX4 pathway.

Materials and methods

Materials

Apys35 cyanidin-3-glucoside (cyanidin) and N-acetylcysteine
(NAC) were obtained from Sigma (St Louis, MO, USA). Pre-
stoBlue™ was purchased from Invitrogen (Carlsbad, CA,
USA). H,DCFDA was purchased from Calbiochem, USA.
Minimum essential medium (MEM), fetal bovine serum (FBS),
penicillin, and streptomycin were purchased from Gibco BRL
(Gaithersburg, MD, USA). The following antibodies were
used for the Western blot analysis: anti-p65, anti-mouse IgG
peroxidase-conjugated secondary antibody, anti-rabbit IgG
peroxidase-conjugated secondary antibody (Millipore, Bed-
ford, MA, USA), anti-p-actin, anti-lamin B, anti-p-Akt, anti-
Akt, anti-IkBa (Cell Signaling Technology, MA, USA), anti-
TLR4, anti-Nrf2, anti-NQO-1, anti-GCLC (Abcam, Cambridge,
UK), anti-HO-1, and anti-iNOS (Calbiochem, MA, USA). A
superoxide dismutase assay kit was purchased from Cayman
Chemical Company (Cayman, MI, USA). LY294002 (PI3K
inhibitor) was obtained from Abcam (Cambridge, UK). SH-5
(Akt inhibitor), TAK-242 (TLR4 inhibitor), ochratoxin A and
GKT137831 (NOX4 inhibitor) were obtained from Sigma (St.
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Louis, MO, USA).

Cell culture and treatment

The human neuroblastoma cell line (SK-N-SH) was a gift from
Dr Damratsamon SURANGKUL (Faculty of Medical Science,
Naresuan University, Thailand) (ATCC, Manassas, VA, USA).
SK-N-SH cells were grown to confluence in 60-mm culture
plates (Nunc, Denmark) with minimum essential medium
(MEM) containing 10% heat-inactivated fetal bovine serum
(FBS) and 1% penicillin-streptomycin (100 units/mL penicil-
lin and 100 pg/mL streptomycin) (GIBCO-BRL, Gaithersburg,
MD, USA) and incubated at 37°C in a humidified 5% CO,
atmosphere. NAC is a strong antioxidant, anti-inflammatory
and free radical scavenger in several neurodegenerative dis-
order models; thus, it was used as a positive control in this
study®®. To investigate the neuroprotective effect of cyani-
din, we divided the cells into 4 groups for the experiments:
non-treated control, AP,s35 (10 pmol/L), APysss plus cyanidin
(20 pmol/L) and Ays35 plus NAC (20 pmol/L). Experiments
were executed for 24 h after the cells were seeded. Cyanidin
or NAC was added for 2 h prior to the treatment with AB,s 5,
and then the cells were co-incubated with Ay 35 and cyanidin
for another 24 h.

Western blot analysis

For analysis of protein levels by Western blotting, the cells
were cultured at a density of 5x10° cells/mL in a 60-mm cul-
ture dish at 37°C. The cells were pretreated with cyanidin
(20 pmol/L) or NAC (20 pmol/L) for 2 h in the presence of
10 pmol/L Apysss for 24 h. Our previous study found that
cyanidin (20 pmol/L) and NAC (20 pmol/L) significantly
reduced apoptosis caused by APy a5 in SK-N-SH cells®™ Thus,
cyanidin (20 pmol/L) and NAC (20 pmol/L) were used in the
present study. The cells were lysed in a lysis buffer contain-
ing 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl
sulfate, 40 mmol/L -glycerophosphate, 50 mmol/L sodium
fluoride, 2 mmol/L sodium orthovanadate, and 1x protease
inhibitors at 4°C by vigorous shaking for 15 min. The lysates
were centrifuged at 4°C at 13 000 r/min for 20 min, and the
supernatants were stored at —80°C. By contrast, the cytoplas-
mic proteins were prepared as follows: cells were added into
ice-cold hypotonic lysis buffer containing 10 mmol/L HEPES
(pH 7.9), 1.5 mmol/L magnesium chloride, 10 mmol/L potas-
sium chloride, 0.5 mmol/L phenylmethylsulfonyl fluoride,
0.5 mmol/L dithiothreitol, and 1xprotease inhibitors at 4°C
for 15 min. The homogenates were centrifuged at 13 000
r/min for 30 s and stored at —80°C. The nuclear pellets were
resuspended in ice-cold hypotonic extraction buffer containing
10 mmol/L HEPES (pH 7.9), 0.42 mol/L sodium chloride, 1.5
mmol/L magnesium chloride, 10 mmol/L potassium chloride,
0.5 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L dithio-
threitol, and 1x protease inhibitors at 4 °C for 40 min. The
homogenates were centrifuged at 13 000 r/min at 4°C for 10
min, and the supernatants were stored at =80 °C; thereafter, the
protein concentrations were measured by the Bradford protein
assay (BioRad, USA). The proteins in each of the fractions (50



ug) were electrophoresed in a 10%-15% SDS polyacrylamide
gel and then transferred to a PVDF membrane (Immobilon-
P, Millipore, Bedford, MA, USA) at 400 mA for 35 min. The
blots were blocked for 3 h at room temperature in fresh block-
ing buffer (containing 5% skim milk in 0.1% Tween 20 in Tris-
buffered saline, pH 7.4). The membranes were incubated with
primary antibody (anti-TLR4 [1:1000], anti-Akt [1:1000], anti-
p-Akt [1:1000], anti-p65 [1:1000], anti-IkBa [1:500], anti-iINOS
[1:1000], anti-Nrf2 [1:1000], anti-HO-1 [1:1000], anti-NQO-1
[1:1000], and anti-GCLC [1:1000]) at 4 °C overnight, then
probed with horseradish peroxidase-conjugated secondary
antibodies (Millipore, MA, USA) for 2 h at room temperature.
The blots were incubated with ECL substrate solution for 5
min. The chemiluminescent bands were detected using blue
X-ray films, and the optical density of each band was analyzed
by using the software Image] (National Institutes of Health,
Bethesda, MD, USA).

Measurement of nitric oxide (NO)

The most commonly used indirect method relies on the Griess
reagent; this method is based on measurement of NO?%, which
is the stable nitrogen oxide formed following NO decomposi-
tion in aqueous solution in vitro. The cells were cultured at
a density of 2x10* cells/well in 96-well plates at 37 °C over-
night. The cells were pretreated with cyanidin or NAC for
2 h and were then treated with 10 pmol/L Ap,s;; for 24 h.
After the treatment, the cells were added to the Griess reagent
(a mixture of 1% sulfanilamide in 5% phosphoric acid and
0.1% N-1-naphthylethylenediamine dihydrochloride) and
further incubated at 37°C for 10 min. The formation of nitrite
was measured at 540 nm using a microplate reader (BioTek
Instruments, Inc, USA).

Measurement of superoxide dismutase (SOD) activity

The specific activity of SOD in each sample was determined
using an SOD assay kit in accordance with the manufacturer’s
instructions (BioAssay, MI, USA). The cells were cultured at
a density of 5x10° cells/mL in a 60-mm culture dish at 37°C
overnight. The cells were pretreated with cyanidin or NAC
for 2 h and treated with 10 umol/L Ay ;5 for 24 h. After the
treatment, the cells were lysed and the supernatant was col-
lected for an assay to determine the SOD activity. The enzyme
activity was measured at 420 nm using a microplate reader
(BioTek Instruments, Inc, USA).

Measurement of reactive oxygen species (ROS)

Nonpolar H,DCFDA was allowed to penetrate the cell mem-
brane, and it was de-esterified by intracellular esterase to
2',7'-dichlorofluorescin (DCFH). In the presence of ROS,
DCFH was oxidized to fluorescent 2',7'-dichlorofluorescein
(DCF). The cells were cultured at a density of 2x10*cells/ well
in 96-well plates at 37°C overnight and exposed to cyanidin
or NAC for 2 h, after which they were treated with 10 pumol/L
APy 55 for 24 h. Prior to the detection of ROS, the medium was
removed and 20 pmol/L of H,DCFDA was added to each of
the wells, followed by incubation at 37°C for 2 h. The fluores-
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cence was measured using a fluorescence microplate reader
(DTX800, Beckman Coulter, Austria) at an excitation wave-
length of 485 nm and an emission wavelength of 535 nm.

Statistical analysis

All the values are presented as the meantSEM. The statistical
significance was determined by one-way analysis of variance
(ANOVA) followed by a post hoc Dunnett’s test to compare the
means of individual groups. The difference was considered
significant when P<0.05, as P values <0.05 are considered sta-
tistically significant.

Results

Cyanidin inhibits AB-induced NF-kB pathway activation and NO
production

Previous studies have reported that AB-induces neuroinflam-
mation. Thus, to explore the mechanism underlying the ability
of cyanidin to prevent AfB-induced neuroinflammation medi-
ated by NF-xB pathway activation, we investigated the expres-
sion levels of proteins related to the NF-xB pathway (includ-
ing the expressions of the total p65, cytosolic p65, nuclear p65,
IxBa, and iNOS proteins) by Western blotting analysis. The
results showed that A, ;5 significantly increased the total pro-
tein expression of p65 and increased the translocation of p65
from the cytosol into the nucleus (Figure 1A), which is closely
related to the finding that the degradation of IxBa significantly
decreased (Figure 1B). At the same time, the expression of
iNOS was also found to have increased compared with that of
the control group (Figure 1C). Upon pretreatment with cyani-
din or NAC before Ap,s;5 treatment, the expression levels of
these proteins related to the NF-kB pathway were significantly
reversed compared with the levels in the group treated with
AP35 alone (Figure 1A-C). Next, we investigated the level of
nitrite by using the Griess test. Treatment with Ap,s 35 resulted
in a significant increase in the nitrite production of the treated
group compared with that of the control group (Figure 1D).
Upon pretreatment with cyanidin or NAC before Apys 35 treat-
ment, the level of NO production was observed to decrease
significantly compared with that of the group treated with
ApPys.s5 alone (Figure 1D). These results indicate that cyanidin
attenuates Ap-induced NF-xB pathway activation by inhibit-
ing proteins related to the NF-xB pathway and thereby sup-
pressing the NO production.

Cyanidin inhibits AB-reduced Nrf2 pathway activation and SOD
activity in SK-N-SH cells

We next examined whether cyanidin activates antioxidant-
pathway-mediated Nrf2 pathway activation. The Nrf2 path-
way, the antagonist mechanism of NF-kB, provides defense
against oxidative insults through its upregulation of antioxi-
dants. The expression levels of proteins related to the Nrf2
pathway, including total Nrf2, cytosolic Nrf2, nuclear Nrf2,
HO-1, NQO-1, and GCLC proteins, were analyzed by Western
blot. Compared with the control group, the Ap,s;s-treated
group showed decreased total protein expression of Nrf2 and
decreased Nrf2 translocation from the cytosol into the nucleus
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Figure 1. Cyanidin attenuates AB-induced NF-kB pathway activation and NO production in SK-N-SH cells. The SK-N-SH cells were pretreated with 20
pmol/L of cyanidin or 20 umol/L of NAC for 2 h prior to treatment with 10 pymol/L AB,s35 for 24 h. The expression levels of proteins related to the NF-
kB pathway were analyzed by Western blot. Western blotting analysis was performed to measure the total, cytosolic, and nuclear protein levels of p65
(A); IkBax (B) and iNOS (C); cytosolic proteins were normalized to actin, the nuclear proteins were normalized to lamin B1. The Griess reaction assay was
performed to determine the level of nitrite production (D). The data are expressed as the mean+SEM (n=3). "“P<0.01 vs the control. **P<0.01 vs the

AB,s ss-treated group.

(Figure 2A). We further examined the expression of antioxi-
dant enzyme genes including HO-1, NQO-1, and GCLC. As
shown in Figure 2B, AP,s35 significantly decreased the pro-
tein expression levels of HO-1, NQO-1, and GCLC compared
with the levels in the control group. Upon pretreatment with
cyanidin or NAC followed by treatment with APy ,s, the
expression levels of these proteins related to the Nrf2 pathway
were observed to have significantly reversed compared with
those in the group treated with AP,s,5 alone (Figure 2A-2B).
Furthermore, we investigated SOD activity by using a SOD
activity assay. Treatment with A5 was found to result in a
significant decrease in SOD activity compared with that of the
control group (Figure 2C). Upon pretreatment with cyanidin
or NAC, it was found that there was a significant increase in
SOD activity compared with that of the group treated with
ABys.3s alone (Figure 2C). Pretreatment with cyanidin or
NAC decreased NO production. To confirm that the effect of
cyanidin against Ap-induced toxicity is due to the activation
of the Nrf2 signaling pathway, we applied the Nrf2 inhibitor
ochratoxin A (OTA). Our results demonstrated that inhibi-
tion of Nrf2 significantly decreased NO levels compared with
AP alone group. Similar results were observed with cyanidin
and NAC treatment (Figure 2D). These results suggest that
the suppression of NO production by cyanidin or NAC may
be due to enhancement of the Nrf2 pathway. These results
indicate that cyanidin enhances Nrf2 pathway activation by
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activating proteins related to the Nrf2 pathway and stimulat-
ing SOD activity in cells treated with APyss.

Cyanidin inhibits AB,s ss-induced PI3K/Akt pathway activation

The PI3K/ Akt pathway is one of the major pathways involved
in progressive inflammation; it promotes NF-xB pathway
activity and inhibits the cellular defense system, especially
the Nrf2 pathway, in neurons activated by AP35 To clarify
the protective effect of cyanidin on AB-induced neuronal
inflammation by determining whether it acts directly against
the PI3K/ Akt pathway, we applied LY294002 (PI3K inhibi-
tor) and SH-5 (Akt inhibitor) in this experiment. As shown in
Figure 3A, treatment with Apys3sincreased the expression of
p-Akt compared with the level in the control group, whereas
pretreatment with cyanidin was found to decrease the expres-
sion of p-Akt below the level associated with Ay 35 treatment
alone. Moreover, treatment with LY294002 and cyanidin
showed a similar pattern to the cyanidin pretreatment (Figure
3A). This is clearly indicative of the fact that cyanidin pro-
tects against A5 regarding the expression of p-Akt through
a mechanism that does not involve PI3K activity. Next, we
investigated whether cyanidin inhibited Ap-induced NF-«B
activation and suppressed the Nrf2 via mechanism mediated
by the PI3K/ Akt pathway. The results showed that co-admin-
istration of LY294002 or SH5 with cyanidin before treatment
with Ays3s produced similar effects to cyanidin on the expres-
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vation and SOD activity in SK-N-SH cells. The SK-N-SH cells were pretreated

with 20 pmol/L of cyanidin or 20 pmol/L of NAC for 2 h prior to treatment with 10 umol/L AB,s.3s for 24 h. The expression levels of proteins related to

the Nrf2 pathway were analyzed by Western blot. Western blotting analysi
Nrf2 (A); the expression of the antioxidant enzyme genes including HO-1,

s was performed to measure the total, cytosolic, and nuclear protein levels of
NQO-1, and GCLC (B); actin to normalize the cytosolic proteins; and lamin B1

to normalize the nuclear proteins. A SOD activity assay was carried out to determine the level of SOD activity (C). The SK-N-SH cells were pretreated
with 20 pymol/L OTA for 1 h; preincubation was carried out with cyanidin (20 umol/L) or NAC (20 pmol/L) for 2 h, and the cells were exposed to ABs.3s5
(10 umol/L) for another 24 h. The Griess reaction assay was performed to determine the level of nitrite production (D). The data are expressed as the
mean+SEM (n=3). “P<0.01 vs the control. *P<0.05, *#P<0.01 vs the AB.,sss-treated group.

sion of proteins related to both the NF-kB and the Nrf2 path-
ways (Figure 3B-3K). These data suggest that the NF-xB and
Nrf2 pathways are not involved with the PI3K/ Akt pathway.
In addition, it can be concluded that the inhibition of inflam-
mation by cyanidin was also not through this pathway.

Cyanidin inhibits AB-induced TLR4 signaling

We further investigated the role of cyanidin in AB-induced
inflammation to determine whether it was mediated by the
TLR4 signaling pathway. As shown in Figure 4A, treatment
with Afy,5 was found to significantly increase the expression
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Figure 3A-D. Cyanidin protects against Ap-induced PI3K/Akt pathway activation but the effect has no relation to inflammation in SK-N-SH cells. SK-N-
SH cells were pretreated with or without 25 pmol/L LY294002 for 1 h. Then, the cells were pretreated with 20 pmol/L cyanidin or 20 umol/L NAC for
2 h prior to treatment with 10 pmol/L ABs.3s for 24 h. Western blotting analysis was performed to measure the protein expression levels of p-Akt and
Akt, and protein loading was normalized to Akt (A). The SK-N-SH cells were pretreated with 25 ymol/L LY294002 for 1 h; preincubation was carried out
with cyanidin (20 pmol/L) or NAC (20 umol/L) for 2 h, and the cells were exposed to ABs.35 (10 pmol/L) for another 24 h. Western blotting analysis was
performed to measure the total, cytosolic, and nuclear protein levels of p65 (B), IkBa (C), iNOS (D). The data are expressed as the mean+SEM (n=3).
““P<0.01 vs the control. *P<0.05, #P<0.01 vs the AB,sss-treated group. **P<0.01 vs the AB.s ss-plus-inhibitor-treated group.

of TLR4 compared with that of the control group. Pretreat- firm whether cyanidin ameliorates Ay ;s-induced inflamma-
ment with cyanidin or NAC significantly decreased the expres- tion in association with TLR4 signaling, we applied TAK-242,
sion of TLR4 compared with A, ;5 treatment alone. To con- a TLR4 inhibitor. The results showed that cotreatment with
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Figure 3E-G. Western blotting analysis was performed to measure the total, cytosolic, and nuclear protein levels of Nrf2 (E), HO-1, NQO-1, and GCLC
(F). The SK-N-SH cells were pretreated with 50 umol/L SH-5 for 1 h; preincubation was carried out with cyanidin (20 umol/L) or NAC (20 umol/L) for 2 h,
and the cells were exposed to AB.,s.35 (10 pmol/L) for another 24 h. Western blotting analysis was performed to measure the total, cytosolic, and nuclear
protein levels of p65 (G). The data are expressed as the mean+SEM (n=3). ""P<0.01 vs the control. *P<0.01 vs the AR, ss-treated group. $$p<0.01 vs

the AB,s.3s-plus-inhibitor-treated group.

TAK-242 and cyanidin or NAC ameliorated Ap,ss-induced
inflammation by significantly decreasing the translocation of
NF-kB into the nucleus (Figure 4B) and that it decreased the
protein expression of IkBa (Figure 4C) and iNOS (Figure 4D).
In addition, the translocation of Nrf2 protein into the nucleus

and the expression of proteins related to the Nrf2 pathway
were also observed to have significantly increased, as in the
cyanidin-treated group (Figure 4E, 4F). These data suggest
that cyanidin protects against Aysss-induced inflammation in
SK-N-SH cells, that this protection is partly mediated by TLR4,
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Figure 3H-K. Western blotting analysis was performed to measure the total, cytosolic, and nuclear protein levels of IkBa (H), iNOS (I), Nrf2 (J), HO-1,
NQO-1, and GCLC (K); the cytosolic proteins were normalized to actin, and the nuclear proteins were normalized to lamin B1. The data are expressed as

the mean+SEM (n=3).

and that it results in suppression of the NF-«B signaling path-
way and activation of the Nrf2 signaling pathway.

Cyanidin protects against AB-induced oxidative stress and inflam-
mation through the TLR/NOX4 signaling pathway

To elucidate the effect of cyanidin in protecting against
Ap-induced oxidative stress in terms of whether it acts directly
against TLR/NOX4 signaling, we used the TLR4 inhibitor
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“P<0.01 vs the control. *#P<0.01 vs the AB,s.ss-treated group. **P<0.01 vs the AB.,sss-plus-inhibitor-treated group.

TAK-242 and the NOX inhibitor GKT137831 to confirm the
involvement of the TLR/NOX4 signaling pathway. As shown
in Figure 5A, pretreatment with TAK-242 alone or TAK-242
prior to cyanidin treatment caused the levels of ROS and NO
production to decrease significantly, whereas SOD activity was
found to be significantly increased compared with its activity
in cells treated with AP,s35 alone (Figure 5A, 5B, 5C). At the
same time, pretreatment with GKT137831 alone or GKT137831
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Figure 4A-D. Cyanidin inhibits AB-induced TLR4 signaling and is related to inflammation in SK-N-SH cells. SK-N-SH cells were pretreated with 20 umol/L
of cyanidin or 20 pmol/L of NAC for 2 h before being stimulated with 10 ymol/L ABs.35 for 24 h. The expression of TLR4 was detected by antibodies
against TLR4 and then analyzed by Western blot (A). The SK-N-SH cells were pretreated with 100 nmol/L TAK-242 for 1 h; the cells were preincubated
with cyanidin (20 pmol/L) or NAC (20 pmol/L) for 2 h and exposed to AB,s35 (10 pmol/L) for another 24 h. Western blotting analysis was performed
to measure the total, cytosolic, and nuclear protein levels of p65 (B), IkBa (C), iNOS (D). The data are expressed as the mean+SEM (n=3). “P<0.05,
““P<0.01 vs the control. #P<0.01 vs the AB,sss-treated group. **P<0.01 vs the A, ss-plus-cyanidin-treated group.

prior to cyanidin treatment caused the levels of ROS and NO
production to decrease significantly, whereas SOD activity was
found to be significantly increased compared with its activ-
ity under cyanidin treatment alone (Figure 5A, 5B, 5C). These
data suggest that cyanidin attenuates Apys;s-induced oxidative
stress mediated by the TLR/NOX4 signaling pathway.

Discussion
AP induces inflammation via stimulation of glial cells and

neurons to produce pro-inflammatory cytokines such as
interleukin-1p (IL-1f) and tumor necrosis factor-a (TNF-a)?*.,
In AD brains, increased NF-xB activity has been reported.
Upon activation, the IkBa protein, which is the inhibitory
subunit of the NF-xB complex, undergoes phosphorylation
and degradation processes that enable the translocation of
the NF-xB p65 protein from the cytosol into the nucleus and
generates several cytokines including NO®**1. Previous stud-
ies have demonstrated that the anti-inflammatory activity
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Figure 4E-F. Western blotting analysis was performed to measure the total, cytosolic, and nuclear protein levels of Nrf2 (E), HO-1, NQO-1, and GCLC (F);
the cytosolic proteins were normalized to actin, and the nuclear proteins were normalized to lamin B1. The data are expressed as the mean+SEM (n=3).
“P<0.05, “P<0.01 vs the control. *P<0.01 vs the AB,sss-treated group. **P<0.01 vs the AB.sss-plus-cyanidin-treated group.

of cyanidin-3-O-glucoside from fruits or vegetables occurs demonstrated that cyanidin decreased the expression of total
partially through suppression of NO production and TNF-a p65 which indicated that p65 translocation from the cytosol
levels in several cell types including J774 cells and human into the nucleus, which is closely related to the degradation
microvascular endothelial cells®™®. Therefore, suppressing of IkBa, was decreased, whereas the expression of iNOS and
NF-xB signaling in AD could prevent amplification of the the production of NO decreased. The major findings indicate
inflammatory cascade and neurodegeneration. Our results that cyanidin inhibits NF-«B activation in terms of both activ-
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Figure 5. Cyanidin protects against AB-induced oxidation and inflammation through the TLR4/NOX4 signaling pathway. SK-N-SH cells were pretreated
with 100 nmol/L TAK-242 or GKT137831 for 1 h; the cells were preincubated with cyanidin (20 pymol/L) or NAC (20 umol/L) for 2 h and exposed to
ABas.35 (10 pmol/L) for another 24 h. A DCF assay was carried out to determine the level of ROS (A). The Griess reaction assay was performed to
determine the level of nitrite production (B). An SOD activity assay was conducted to determine the level of SOD activity (C). The data are expressed as
the mean+SEM (n=3). “"P<0.01 vs the control. #P<0.01 vs the AB,s.ss-treated group. **P<0.01 vs the AB,s.ss-plus-cyanidin-treated group.
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ity and expression through downregulation of the p65 protein,
which, in turn, decreases the expression of iNOS and the pro-
duction of NO. Moreover, the Nrf2 pathway is important for
cellular defense against oxidative stress”"®. Nrf2-Keapl dis-
sociation is triggered, with consequent translocation of Nrf2 to
the nucleus, where the heterodimer formed with Maf binds to
the ARE sequence in the promoter regions of genes involved
in phase II detoxification and antioxidant defense including
HO-1, NQO-1, GCLC, and SOD". Previous studies have
reported that cyanidin modulates the redox mechanism via the
Nrf2 pathway, which plays an important role in the expres-
sion of antioxidant enzymes®?!. Our results confirm that
cyanidin increases the translocation of Nrf2 into the nucleus;
additionally, the activation of the phase II enzymes shows that
cyanidin upregulated the production of HO-1, NQO-1, GCLC,
and SOD. Nrf2 activation can have tremendous effects on the
antioxidant capacity of a cell because it is a transcription factor
for many genes coding for antioxidant enzymes!"®. Cyani-
din can both scavenge free radicals and induce antioxidant
enzyme upregulation; in neurodegenerative diseases, anti-
oxidant enzymes have the potential for therapeutic use?>*".
Through its ability to induce the expression of important
enzymes involved in defense against ROS, Nrf2 in particular
plays a major role in the pathogenesis of various diseases that
are known to be accompanied by elevated ROS levels!" ",
Most diseases are characterized by extensive inflammation
and tissue destruction leading to the formation of ROS, which
subsequently causes sustained stress and tissue injury. In AD
brains, suppressed levels of Nrf2 have been reported, despite
the highly oxidative environment characteristic of the disease;
this suppression suggests down-regulation of the Nrf2-ARE
pathway® .. APP/PS1 mouse models have been observed
to demonstrate reduced expression of Nrf2 and GCLC, which
are directly synthesized by the Nrf2-ARE pathway™!. Many
studies have demonstrated the neuroprotective effects of Nrf2,
including its protective effect against Ap pathology found in
AD and increased oxidative stress observed in hippocampal
slices from Nrf2 knockout mice™*.

The PI3K-Akt pathway has been shown to control a variety
of cellular processes, including cell survival and proliferation.
Activated PI3K catalyzes the phosphorylation of phosphati-
dylinositol 3,4-bisphosphate (PIP2) to phosphatidylinositol
3,4,5-triphosphate (PIP3)[41]. Akt is a serine/threonine kinase,
necessary for neuronal survival during normal and stress-
inducing conditions, especially under conditions involving
oxidative stress!*l. Our results showed that pretreatment
with cyanidin decreased the expression of p-Akt. Moreover,
a specific PI3K inhibitor, LY294002, was found to completely
abolish the effect of cyanidin on p-Akt expression. Our results
are consistent with those of other studies as regards the
mechanism of AP induced neurotoxicity, which was used to
identify the role of PI3K/ Akt in transducing cell death signals
after treatment with APy ;5. There are several reports demon-
strating the pro-inflammatory role of the PI3K/ Akt signaling
pathway!*. Activation of the Akt survival signaling path-
ways leads to phosphorylation of IkBa, and this allows NF-xB
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to enter the nucleus and regulate NF-xB-dependent gene
expression, as well as suppress Nrf2 translocation, resulting
in cell oxidative stress™**. We found that cyanidin prevented
Ay s5-induced NF-kB signaling and enhanced the Nrf2 path-
way and that this did not occur through the PI3K/ Akt path-
way. These results were in contrast with those of other studies
in that the mechanism of AP involved neurotoxicity only via
PI3K/ Akt/GSK3 signaling and not through the PI3K/Akt/
NF-kB/Nrf2 pathway. Several studies have reported abnor-
mal upregulation of the PI3K/ Akt signaling pathway in AD,
which could be involved in the development of insulin resis-
tance through feedback mechanisms!*’l. Increased activity of
mTOR, a downstream target of PI3K/Akt, also appears to be
associated with AD progression™. In this regard, mTOR can
upregulate both tau and APP"®. Further, mTOR negatively
modulates autophagy and clearance of protein aggregates,
which may contribute to neurodegeneration. Importantly, Akt
can phosphorylate GSK3a/ B, strongly inhibiting the activity
of this multifaceted enzyme!®*. The PI3K/Akt/GSK3 axis is
consistently described as being deregulated in AD. GSK3 can
regulate the expression of several inflammatory mediators,
usually by promoting the expression of pro-inflammatory mol-
ecules while decreasing anti-inflammatory factors™**®. It has
been established that this effect depends on the regulatory role
of PI3K/Akt/GSK3 in the activation of multiple transcription
factors and interaction with signaling pathways, including the
NF-xB, STAT3, and JNK pathways[55'56]. In microglia, GSK3-
dependent activation of NF-xB results in increased expression
of iNOS and pro-inflammatory cytokines and chemokines,
such as TNFa and IL-6*. It has been demonstrated that
GSK3p can directly activate the transcription factors, such as
STAT3 and p65 NF-kB, that are involved in the expression of
pro-inflammatory genes by phosphorylating those transcrip-
tion factors®™®®). Thus, this finding suggests that cyanidin pro-
tects against Ap-induced neuroinflammation and that it does
not involve the PI3K/ Akt pathway.

A large number of studies have been performed to explore
the role that TLRs play in AP recognition; these studies have
pointed to the involvement of two specific TLRs: TLR2 and
TLR4M. Among the cell-surface TLRs present in glia and neu-
rons, several studies in vitro and in vivo have confirmed that
TLR4 mediates the induction of neurotoxicity by glia and neu-
rons">'%%61 " The binding of AP to these receptors is respon-
sible for the secretion of inflammatory molecules through the
activation of signaling cascades such as NF-xB. Furthermore,
it has been established through research that TLR4 mediates
the binding of AP to microglial cells, regulating phagocytosis
(in BV-2 microglial cells) and ROS production (in primary
murine microglia)®>'**l. In primary murine cortical neurons,
TLR4 has been demonstrated to mediate Ap-induced apopto-
sis via JNK- and caspase-3-dependent mechanisms""?. Thus,
modulation of neuroinflammation via TLRs is a potentially
beneficial technique for the treatment of AD. In this study,
our results clearly show that A,s3;induced the expression of
TLR4, while pretreatment with cyanidin caused the expression
of TLR4 to decrease. The present results support the findings
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of previous studies that TLR4 promotes the production of
major inflammatory mediators that are associated with neu-
ronal death. The result showed that cyanidin could prevent
APy s5-induced neuroinflammation directly through the TLR4
pathway. Although our results have shown that NF-xB sig-
naling represents one of the downstream pathways of TLR4-
induced production of inflammatory factors, there exists the
possibility that other pathways such as the MAPK and PI3K/
Akt/GSK3 pathways are involved. Moreover, there is evi-
dence of a direct link between Nrf2 and TLR in regulation of
inflammatory response and production of ROS. In our study,
cyanidin activates the Nrf2 pathway through direct TLR4
pathway activity.

In addition, ROS plays a central role in both the upstream
and downstream NF-xB and Nrf2 pathways, which are located
at the center of the inflammatory response. It has been shown
that NOX4 interacts with TLR4 and induced ROS produc-
6641 Tt has also been found that stimulation of TLR4/
NOX4 increases the generation of ROS. Therefore, we sug-
gested that A,s;5 could stimulate TLR4/NOX4 interaction
and then increase the generation of ROSI®*. Our results
show that A5 induced neuronal ROS production mediated
by TLR4/NOX4 activation. Inhibition of the receptor TLR4
by TAK-242 caused the production of ROS to significantly
decrease, whereas inhibition of NOX4 by GKT137831 Ap,s.
35 failed to activate ROS production. Our results showed that
cyanidin could prevent Ap,s;s-induced oxidation through
the TLR/NOX4 signaling pathway. TLR activation has been
shown to induce ROS production and NF-kB activation
through a direct interaction between TLR and NOX. ROS
can activate transcription factors including NF-«xB, which, in
turn, leads to activation of downstream pathways such as NO
production and can suppress the antioxidant pathway via
Nrf2, which, in turn, leads to inhibition of downstream tar-
gets such as SOD, indicating that the inflammatory response
has been activated. Thus, we determined whether the effects
of the TLR/NOX4 signaling pathway could involve NO pro-
duction and SOD activity. We found that both TAK-242 and
GKT13783 completely abolished the effects induced by Af,s.
35 our results show that cyanidin protects against Ap-induced
inflammation directly through the TLR4/NOX4 signaling
pathway by suppression of NO production and promotion of
SOD activity. In the present study, it was found that inhibi-
tion of TLR4 signaling led to suppression of NOX4 induction
and reduced oxidative stress, resulting in decreased inflam-
matory response. Taken together, these findings indicate that
cyanidin attenuates Ap-induced inflammation and ROS pro-
duction mediated by the TLR4/NOX4 signaling pathway.

In summary, our findings demonstrate that cyanidin has a
potent neuroprotective effect that slows down inflammatory
progression and delays transition from the early stage of AD
to the clinical state. Cyanidin is able to attenuate Ap-induced

tion!

insults in SK-N-SH cells through the regulation of several
mechanisms including 1) suppressing oxidative stress medi-
ated by the TLR4/NOX4 pathway, 2) suppressing NF-«B-
mediated TLR4/NOX4 signaling, 3) and activating anti-
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inflammation by upregulation of the Nrf2 pathway mediated
by the TLR4/NOX4 pathway. Thus, TLR4 is a primary recep-
tor for AP to trigger neuroinflammation, and our findings
suggest that inhibition of TLR4 by cyanidin in SK-N-SH cells
could be beneficial in preventing neuronal cell death in the
process of Alzheimer's disease. However, our study is focused
on cellular, biochemical, and molecular mechanisms in vitro.
Therefore, further study should investigate the protective
effect of cyanidin in in vivo models and compare them with in
vitro models in terms of the molecular mechanisms involved
in AD pathogenesis.

Conclusion

The protective effect of cyanidin against Ay ss-induced neu-
roinflammation-mediated TLR4/NOX4 signaling in SK-N-SH
cells occurs via inhibition of the NF-kB pathway and activation
of the Nrf2 pathway. Furthermore, these findings indicate that
inhibition of TLR4/NOX4 signaling is a promising approach
to the treatment of AD. Therefore, administration of cyanidin
may be a potential pharmacological or functional food therapy
against oxidative stress for protection against AD because of
the strong antioxidant ability and unique characteristics of
cyanidin. It is therefore a priority to investigate further in vivo.
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