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ABSTRACT: Machine learning methods have revolutionized
modern science, providing fast and accurate solutions to
multiple problems. However, they are commonly treated as
“black boxes”. Therefore, in important scientific fields such as
medicinal chemistry and drug discovery, machine learning
methods are restricted almost exclusively to the task of
performing predictions of large and heterogeneous data sets of
chemicals. The lack of interpretability prevents the full
exploitation of the machine learning models as generators of
new chemical knowledge. This work focuses on the
development of an ensemble learning model for the prediction
and design of potent dual heat shock protein 90 (Hsp90)
inhibitors. The model displays accuracy higher than 80% in both training and test sets. To use the ensemble model as a
generator of new chemical knowledge, three steps were followed. First, a physicochemical and/or structural interpretation was
provided for each molecular descriptor present in the ensemble learning model. Second, the term “pseudolinear equation” was
introduced within the context of machine learning to calculate the relative quantitative contributions of different molecular
fragments to the inhibitory activity against the two Hsp90 isoforms studied here. Finally, by assembling the fragments with
positive contributions, new molecules were designed, being predicted as potent Hsp90 inhibitors. According to Lipinski’s rule of
five, the designed molecules were found to exhibit potentially good oral bioavailability, a primordial property that chemicals
must have to pass early stages in drug discovery. The present approach based on the combination of ensemble learning and
fragment-based topological design holds great promise in drug discovery, and it can be adapted and applied to many different
scientific disciplines.

1. INTRODUCTION
Machine learning (ML) methods have revolutionized modern
science, providing deeper insights into the understanding of
multiple phenomena and generating plausible solutions to
different problems. In medicinal chemistry and drug discovery,
ML methods have played an essential role in areas such as data
mining and virtual screening.1−3 However, with the use of ML
methods, several issues emerge. From one side, there is a
tendency of the ML models to overfitting the data, a
detrimental property where the ML models unknowingly
extract certain residual information (i.e., the noise), assuming
that such information represents the underlying model
structure. An accepted solution to this situation (among
some potential options that exist) is to use ensemble learning,
a process focused on generating multiple ML models that are
strategically combined to solve a particular problem by
providing a consensus response. It is also known that the
models based on ensemble learning can provide better
prediction results than single ML models.4−10

On the other hand, the greatest concern is that, to date, the
ML models are frequently treated as black boxes regardless of

the ML method employed, the purpose for their creation, and
the approaches used to assess the reliability of the predictions.
Consequently, this prevents the use of the ML models as
generators of new chemical knowledge in medicinal chemistry
and drug discovery. Some successful attempts have been made
in the sense of applying programming/codification approaches
and rules within the ML models, which allow the generation of
new chemical structures that are accurately predicted to exhibit
desired properties.11−14 However, it can take too much time to
master the necessary programming skills, and in the end, the
lack of a phenomenological interpretation in the ML models
remains; most of the ML models are not capable of providing
an interpretation of the physicochemical and/or structural
features of the chemicals in the databases, which they intend to
analyze and predict.
In an attempt to solve all of the aforementioned restrictions,

this work reports a multitarget ensemble learning model for
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quantitative structure−activity relationships (mt-QSAR-EL),
which is applied in combination with a fragment-based
topological approach for the de novo design and prediction
of inhibitors of the α and β isoforms of the heat shock protein
90, namely, Hsp90α and Hsp90β, respectively. These
biomolecular targets have been used as cases of study due to
their direct implication in genetic and epigenetic variations,15

which are associated with high mortality causing diseases such
as cancers.16 Here, plausible physicochemical/structural
interpretations of the variables (molecular descriptors) of the
mt-QSAR-EL model are given. In addition, the term
“pseudolinear equation” is introduced within the context of
ML methods. By using this pseudolinear equation derived from
the mt-QSAR-EL model, the relative quantitative contributions
of different molecular fragments to the inhibitory activity
against the Hsp90 isoforms are calculated. It is shown that
from the joint use of the fragments with positive contributions
and the physicochemical/structural interpretation of the mt-
QSAR-EL model, completely new molecules can be designed
as potentially dual Hsp90 inhibitors.

2. RESULTS AND DISCUSSION

2.1. Mt-QSAR-EL Model. The mt-QSAR-EL model was
built by considering both sets of molecular descriptors. The
notation of the best mt-QSAR-EL model found is Output 5:
[5]:1, meaning that the ensemble model is composed of five
molecular descriptors used as inputs, five artificial neural
networks (ANNs) based on the radial basis function (RBF)
architecture, and one output that is the predicted value of the
categorical variable of inhibitory activity [Pred_APi(bt)]. All of
the chemical and assay data used in this study are reported in
the Supporting Information 1. The molecular descriptors used
to develop the mt-QSAR-EL model are reported in Table 1,
including their corresponding definitions.
In terms of the internal quality and predictive power, the mt-

QSAR-EL model exhibited accuracy [Ac(%)] values of 83.07
and 83.2% for the training and test sets, respectively. In Table
2, the statistics sensitivity [Sn(%)] and specificity [Sp(%)]
define the percentages of correct classification for active and
inactive compounds, respectively. In this sense, both Sn(%)
and Sp(%) surpass the value of 80%, and therefore, the mt-
QSAR-EL model has a very good performance in classifying/
predicting active and inactive molecules. Also, the local
counterparts of Sn(%) and Sp(%) were calculated. Such
statistics are [Sn(%)]bt and [Sp(%)]bt, and they depend only
on those compounds assayed against a specific Hsp90 isoform.
According to the Supporting Information 2, these percentage-
based statistics display values in the interval 75−93% in the
training set, while in the test set, the range 76−90% is reported.
Finally, in Table 2, the Matthews correlation coefficient

(MCC) is higher than 0.66. This statistical index can have

values from −1 (total divergence between prediction and
observation) to 1 (perfect prediction/classification), while 0
indicates the performance of a random predictor. As the MCC
values are closer to 1 than to 0, then it is fair to say that the
MCC values reported for the mt-QSAR-EL model reflect a
strong correlation between the observed and predicted values
of the categorical variable of activity APi(bt).
In any computational model exhibiting potential predictive

capabilities, it is very important to assess the reliability of the
predictions. In this sense, the applicability domain is a well-
known concept, which defines an interpolation region where a
model is thought to perform the most reliable predictions.
Thus, many applicability domain approaches have been
reported in the scientific literature.17 In the present study, a
consensus approach is used to exploit the potentialities of the
mt-QSAR-EL model in predicting chemicals. Consensus
approaches have also been studied, and in contrast to the
applicability domain concept, they can be used for both
interpolation and extrapolation.17 Here, a consensus approach
has been applied. The mt-QSAR-EL model is based on an
ensemble of ANNs, and when classifying/predicting chemicals,
each ANN in the ensemble gives a classification response, and
then, the different responses of the ANNs are combined to
yield the final output classification. At its essence, an ensemble
of ANNs works very similarly to the ML method known as
random forests.17 In addition, the applicability domain based
on the descriptor space was assessed; all of the chemicals
whose values of their molecular descriptors fell beyond the
maximum and minimum values in the training set composed of
the compounds correctly classified by the mt-QSAR-EL model
were considered to be outside the applicability domain
(Supporting Information 3). We note that the maximum and
minimum values of each molecular descriptor define the upper
and lower boundaries in the descriptor space. To provide a
better explanation of the applicability domain employed here,

Table 1. Molecular Descriptors Present in the mt-QSAR-EL Model and Their Corresponding Definitions

molecular descriptor concept

D[TnsAq3(E)_MX]bt deviation of the total nonstochastic atom-based quadratic index of order 3 weighted by the electronegativity, modified by the maximum
value as mathematical operator, depending on the chemical structure and the target

D[TmpAq7(E)_MN]bt deviation of the total mutual probability atom-based quadratic index of order 7 weighted by the electronegativity, modified by the
minimum value as mathematical operator, depending on the chemical structure and the target

D[TmpAq0(PSA)_AM]bt deviation of the total mutual probability atom-based quadratic index of order 0 weighted by the polar surface area, modified by the
arithmetic mean as mathematical operator, depending on the chemical structure and the target

D[TmpAq3(PSA)_MX]bt deviation of the total mutual probability atom-based quadratic index of order 3 weighted by the polar surface area, modified by the
maximum value as mathematical operator, depending on the chemical structure and the target

D[Xv(C)5]bt deviation of the atom-based valence connectivity index of type cluster and order 5, depending on the chemical structure and the target

Table 2. Performance of the mt-QSAR-EL Model

symbolsa training set test set

Nactive 373 121
CCactive 312 104
Sn(%) 83.65 85.95
Ninactive 401 134
CCinactive 331 109
Sp(%) 82.54 81.34
MCC 0.662 0.672

aNactive: total number of active molecules; Ninactive: total number of
inactive molecules; CCactive: molecules correctly classified as active;
CCinactive: molecules correctly classified as inactive; Sn(%): sensitivity
expressed as the percentage of molecules correctly classified as active;
Sp(%): specificity expressed as the percentage of molecules correctly
classified as inactive; MCC: Matthews correlation coefficient.
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the information of the maximum and minimum values of each
molecular descriptor was used to calculate local scores. If a
defined descriptor value of a new molecule was between the
aforementioned boundaries, the local score took the value of 1;
otherwise, the local score took the value of 0. Consequently,
for the mt-QSAR-EL model, as it was constructed from five
variables, the total score (sum of the local scores) must have a
value of 5 to ensure the complete agreement with the
applicability domain.
2.2. Physicochemical Interpretation of the Molecular

Descriptors in the mt-QSAR-EL Model. Currently, most of
the chemoinformatic models (including those based on mt-
QSAR approaches) are focused on predicting large and
heterogeneous databases of drugs/chemicals. Consequently,
the phenomenological information that the predictive models
may provide is often neglected and underestimated.18 Here,
the different molecular descriptors present in the mt-QSAR-EL
model will be interpreted from a physicochemical and/or
structural point of view. Such interpretations will provide
deeper insights into the features that a molecule should have to
inhibit the two Hsp90 isoforms. While analyzing the different
molecular descriptors in a physicochemical/structural context,
the interpretations will be elucidated on the basis of their
importance values SV (also known as sensitivity values), which
are depicted in Figure 1. The higher the SV of a molecular
descriptor, the greater will be its significance in the mt-QSAR-
EL model.

To give a reasonable physicochemical/structural interpreta-
tion of the molecular descriptors, it is important to know how
their values should vary to increase the inhibitory activity
against the Hsp90 isoforms. However, ML models are very
difficult to interpret due to their nonlinear nature. For this
reason, Speck-Planche and co-workers proposed an approach
to interpret the molecular descriptors of an ML model.19 This
approach will be used here to explain the information content
of the molecular descriptors present in the mt-QSAR-EL
model. The approach focuses on the calculation of the class-
based mean values (Table 3), and it is applied only to those
molecules in the training set that were correctly predicted/
classified. This indicates that for each molecular descriptor,
two mean values will be calculated, one for the class of
molecules annotated and correctly predicted as active and the

other for those molecules assigned and correctly predicted as
inactive.
As separated classes, active and inactive molecules correctly

predicted by the mt-QSAR-EL model display different
physicochemical properties and structural characteristics,
which will be reflected in some way in the mean values of
each molecular descriptor for each category/class. The
comparison between the mean values of the two classes for a
defined molecular descriptor permits to establish a tendency,
indicating how the physicochemical properties and the
structural features should be modified to improve the
inhibitory potency against the Hsp90 isoforms. Of course,
such a tendency is relative due to the nonlinearity of the mt-
QSAR-EL model, but it is rigorous enough to ensure a correct
interpretation of the molecular descriptors.19

It should be noted that all of the molecular descriptors used
in this work consider the bond order; the higher the value of
this bond property, the higher will be the values of these
molecular descriptors. There are two molecular descriptors
with electronic information in the mt-QSAR-EL model. One of
them is D[TnsAq3(E)_MX]bt. Being the most significant
descriptor in the model, D[TnsAq3(E)_MX]bt characterizes
the diminution of the electronegativity of the atoms that are
separated at a topological distance equal to 3. This means that
the electronegative atoms should be dispersed throughout the
entire molecule, preferably at topological distances larger than
3. Substituted aromatic and aliphatic rings and their
corresponding heteroatom-based counterparts, as well as linear
and ramified aliphatic portions, can contribute to the
diminution of the aforementioned molecular descriptor. The
other molecular descriptor embodying electronic information
is D[TmpAq7(E)_MN]bt, which indicates the decrease of the
electronegativity of the atoms that are separated at a
topological distance equal to 7. This descriptor has the second
highest importance in the mt-QSAR-EL, and its value can be
diminished by placing polysubstituted aromatic and hetero-
aromatic rings in the periphery of the molecules, while
aliphatic and heteroaliphatic portions (rings included) should
be placed between any two rings (if possible) regardless of
whether the rings are aromatic or aliphatic. In addition,
D[TmpAq7(E)_MN]bt also considers the frequency with
which the electronegative atoms appear in the molecules at
the topological distance equal to 7; the lower the frequency of
appearance of a defined electronegative atom, the lower the
value of D[TmpAq7(E)_MN]bt. It should be emphasized that
fused rings can contribute to the diminution of both
D[TnsAq3(E)_MX]bt and D[TmpAq7(E)_MN]bt.

Figure 1. Relative importance of each molecular descriptor in the mt-
QSAR-EL model.

Table 3. Relative Tendency of the Molecular Descriptors in
the mt-QSAR-EL Model Expressed through to the Class-
Based Means

means

descriptors active inactive
relative

tendencya

D[TnsAq3(E)_MX]bt −8.133 × 10−3 0.022 decrease
D[TmpAq7(E)_MN]bt −7.866 × 10−3 0.102 decrease
D[TmpAq0(PSA)_AM]bt −1.14 × 10−3 0.044 decrease
D[TmpAq3(PSA)_MX]bt −4.502 × 10−3 0.023 decrease
D[Xv(C)5]bt 2.388 × 10−3 −0.057 increase

aRelative tendency indicates the type of variation (increase or
diminution) that a descriptor should undergo.
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There are two other molecular descriptors, which account
for the hydrophilic aspects of the molecules. In this sense,
D[TmpAq0(PSA)_AM]bt describes the decrease of the total
polar surface area. Therefore, the number of atoms able to
form hydrogen bonds should be diminished. In convergence
w i t h D [TmpAq 0 (PSA )_AM ]b t , t h e d e s c r i p t o r
D[TmpAq3(PSA)_MX]bt also characterizes the decrease of
the polar surface area, but only in regions where any two atoms
are placed at a topological distance equal to 3. Consequently,
atoms able to form hydrogen bonds should be placed at a
topological distance different from 3. One should note that
D[TmpAq0(PSA)_AM]bt and D[TmpAq3(PSA)_MX]bt con-
tain information regarding the frequency of appearance of
specific types of atoms able to form hydrogen bonds; the lower
the frequency, the lower the values of both molecular
descriptors. It should be pointed out that D[TmpAq0(PSA)
_AM]bt is the fourth most influent descriptor in the mt-QSAR-
EL model, while D[TmpAq3(PSA)_MX]bt has the lowest
significance.
Finally, D[Xv(C)5]bt is the third most influent descriptor in

the mt-QSAR-EL model. This descriptor accounts for the
steric factor known as molecular accessibility, which defines the
regions in a molecule that are available to interact with the
surrounding medium (in this case, the protein). More
specifically, D[Xv(C)5]bt contains information regarding the
increment of the number of fragments composed of five bonds,
where each bond of the fragment act as a ramification.
Consequently, in all of the molecules containing regions that
topologically resemble 2,3-dimethylbutane, the value of
D[Xv(C)5]bt will increase.
2.3. Relative Quantitative Contributions of the

Fragments to the Inhibitory Activity. When inhibiting a

target, a molecule acts as a whole. Nevertheless, due to their
structural characteristics and physicochemical properties,
certain regions of a molecule will be more suited than others
to interact with the target in an effective manner. Such regions
or fragments will have a higher influence in the interaction and
consequently a higher contribution to the inhibition against a
target. Therefore, it is very important to quantify how much a
fragment can contribute to the inhibitory activity.
It has been established that any topological (graph-based)

index of a molecule can be represented as a linear combination
of the frequency with which diverse fragments (connected and
disconnected) appear in the molecule.20 Therefore, if we have
a linear QSAR equation (e.g., as those obtained from multiple
linear regression or linear discriminant analysis) involving
several topological indices, it is possible to calculate these
indices for a fragment of interest and substitute them in the
linear equation, yielding an activity score for the fragment.
There are many examples in the scientific literature that have
employed this idea to calculate the quantitative contributions
of the molecular fragments to multiple biological effects, such
as activity, toxicity, and ADME properties.18,21−25 In this study,
to calculate the quantitative contributions of the different
fragments to the inhibitory activity against the Hsp90 isoforms,
the data set used to generate the mt-QSAR-EL model was
manually inspected, and 35 molecular fragments were selected
by considering the activity values of the molecules to which
they belong, as well as their frequency in the data set (Figure
2). Then, the molecular descriptors present in the mt-QSAR-
EL model were calculated for these fragments.
In this work, however, an ML-based model has been

developed instead of one focused on linear regression methods.
Consequently, a “pure linear equation” cannot be generated. In

Figure 2. Molecular fragments extracted from the data set.
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ideal conditions, an equation derived from linear regression

methods will have standardized independent variables

(molecular descriptors), so the coefficients accompanying

these independent variables will express in some degree the

relative importance of each variable. In addition, it is always

possible to know the sign of the coefficients, and therefore,

how the value of a defined independent variable should change

to increase the value of the response variable. In the case of the

mt-QSAR-EL model, we have the importance/sensitivity

values (Figure 1), which express the significance of the

molecular descriptors, and therefore, they can serve as

coefficients. At the same time, in Table 3, the relative tendency

gives us information regarding the direction (positive or

negative) with which each molecular descriptor should vary to

increase the biological activity. Thus, a pseudolinear equation

can be written in the following form:

SAP b D TnsAq E MX b

D TmpAq E MN b

D TmpAq PSA AM b

D TmpAq PSA MX b

D Xv C b

( ) 1.205 ( )

1.188 ( )

1.171 ( )

1.123 ( )

1.185 ( )

i t t

t

t

t

t

3

7

0

3

5

= − [ _ ]

− [ _ ]

− [ _ ]

− [ _ ]

+ [ ] (1)

In eq 1, SAPi(bt) defines the activity score of a fragment
depending on the Hsp90 isoform against which the analysis is
realized. Now, the molecular descriptors calculated for the
different fragments can be substituted in eq 1, yielding the
corresponding activity scores as reported by the previous
works.18,21−25 We note that now, one can in principle compare
the molecular fragments according to their quantitative
contributions estimated by using eq 1, or any other linear
equation. However, the local physicochemical and structural
information will be diluted within the global activity scores. So,
it becomes more difficult to know the position in which a

Table 4. Local Quantitative Contributions (LQCs) of the Molecular Fragments Depending on Each Molecular Descriptor and
the Hsp90 Isoforms

LQC_C1 LQC_C2 LQC_C3 LQC_C4 LQC_C5

IDa,b Hsp90α Hsp90β Hsp90α Hsp90β Hsp90α Hsp90β Hsp90α Hsp90β Hsp90α Hsp90β

F1 0.378 0.938 −1.868 −2.771 0.988 0.969 0.318 1.007 −0.73 −0.612
F2 −0.515 −0.145 0.439 0.183 0.926 0.911 0.275 0.827 −0.73 −0.612
F3 −1.183 −1.021 1.177 1.135 0.644 0.680 −0.143 −0.197 1.552 1.551
F4 −0.689 −0.255 −0.508 −1.033 0.988 0.969 0.318 1.007 −0.73 −0.612
F5 −0.822 −0.403 −0.110 −0.524 −2.752 −1.872 −1.852 −3.601 −0.73 −0.612
F6 −0.383 −0.055 0.494 0.258 −0.193 0.053 0.247 0.707 1.492 1.495
F7 −1.224 −0.960 0.738 0.567 −0.718 −0.341 0.265 0.782 1.411 1.42
F8 −0.890 −0.540 0.368 0.091 −0.132 0.110 −0.647 −1.105 −0.73 −0.612
F9 −0.566 −0.179 0.166 −0.167 −1.207 −0.706 −0.252 −0.268 −0.73 −0.612
F10 0.586 0.977 0.456 0.212 0.825 0.820 0.222 0.597 −0.73 −0.612
F11 −0.211 0.280 0.292 −0.010 0.028 0.240 0.148 0.647 −0.73 −0.612
F12 0.283 0.611 0.782 0.631 0.804 0.800 0.198 0.518 1.555 1.552
F13 0.742 1.204 0.156 −0.175 0.648 0.692 0.134 0.466 −0.73 −0.612
F14 0.814 1.269 −0.066 −0.457 −0.084 0.134 0.240 0.675 −0.73 −0.612
F15 −0.760 −0.460 1.060 0.980 0.607 0.663 0.166 0.552 −0.73 −0.612
F16 −0.292 0.229 −2.253 −3.265 0.102 0.301 −1.040 −1.836 −0.73 −0.612
F17 −1.018 −0.827 1.144 1.092 0.198 0.342 0.079 0.284 1.54 1.539
F18 −0.662 −0.310 0.647 0.449 0.361 0.482 −0.121 −0.014 −0.73 −0.612
F19 −0.553 −0.307 0.936 0.826 0.498 0.570 0.217 0.576 −0.73 −0.612
F20 −1.215 −1.001 1.163 1.114 0.373 0.481 0.240 0.675 1.389 1.399
F21 1.119 1.682 −0.688 −1.257 −1.753 −1.124 −0.922 −1.717 1.472 1.477
F22 0.254 0.767 0.416 0.150 0.851 0.861 0.301 0.938 −0.73 −0.612
F23 1.844 2.493 −0.584 −1.124 −1.452 −0.896 0.275 0.827 −0.73 −0.612
F24 −0.513 −0.164 0.865 0.729 −2.018 −1.328 0.265 0.782 −0.73 −0.612
F25 −1.269 −0.989 0.610 0.402 −0.331 −0.044 0.275 0.827 1.387 1.387
F26 1.609 2.530 −2.214 −3.226 1.144 1.115 0.423 1.457 −0.73 −0.612
F27 −0.416 −0.075 0.467 0.222 −2.816 −1.937 −1.017 −1.960 1.443 1.45
F28 −0.555 −0.105 −0.079 −0.485 0.988 0.969 0.318 1.007 −0.73 −0.612
F29 1.314 1.844 0.085 −0.265 0.598 0.654 0.247 0.707 −0.73 −0.612
F30 −1.182 −0.932 0.868 0.734 0.436 0.533 0.255 0.742 1.441 1.447
F31 −1.597 −1.396 0.295 0.001 0.684 0.721 −0.169 −0.160 1.395 1.404
F32 −0.761 −0.396 0.407 0.141 −2.117 −1.398 −0.382 −0.543 −0.73 −0.612
F33 0.952 1.496 −0.584 −1.124 −1.452 −0.896 0.275 0.827 −0.73 −0.612
F34 1.189 1.689 0.148 −0.184 0.412 0.511 0.240 0.675 −0.73 −0.612
F35 −0.827 −0.471 0.570 0.350 −0.189 0.067 −2.039 −4.062 −0.73 −0.612

aThe terminology “LQC_” stands for the “local quantitative contribution”. bC1: descriptor D[TnsAq3(E)_MX]bt; C2: descriptor D[TmpAq7(E)
_MN]bt; C3: descriptor D[TmpAq0(PSA)_AM]bt; C4: descriptor D[TmpAq3(PSA)_MX]bt; C5: descriptor D[Xv(C)5]bt.
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fragment should be placed in a molecule to effectively
contribute to the increase of the biological activity. Here,
local activity scores have been calculated according to the
following procedure.
First, a defined descriptor (e.g., D[TnsAq3(E)_MX]bt) and

its coefficient and the corresponding sign in eq 1 were
considered as a local physicochemical/structural component.
The substitution of the values of D[TnsAq3(E)_MX]bt for the
35 fragments depicted in Figure 2 in this component yielded
35 local activity scores for each of the two Hsp90 isoforms.
Therefore, in total, 70 local activity scores were calculated.
Second, each local activity score was divided by the total
number of atoms that constituted each fragment, and as a
result, 70 normalized local activity scores were generated. The
purpose here was to eliminate the effect of the size of the
fragments. Third, the mean and the standard deviation of the
70 normalized local activity scores were calculated. Finally, the
normalized local activity scores were standardized; from each
normalized local activity score, the mean was subtracted, and
the result was divided by the standard deviation. The
standardized local activity scores represent the relative
quantitative contributions of the molecular fragments to the
inhibitory activity against the two Hsp90 isoforms (Table 4).
All of these steps were applied to the other molecular
descriptors in eq 1.
One should note that in the specific case of the descriptor

D[Xv(C)5]bt, instead of dividing the local activity scores by the
total number of atoms in a fragment, they were divided by the
denominator (nC + 1), nC being the total number of those
atoms (including the hydrogen atoms attached to them)
involved in the formation of clusters of order 5. That is because
while the other molecular descriptors account for the
distribution of physicochemical properties, D[Xv(C)5]bt is
more focused on indicating the presence or absence of a very
specific kind of fragment. Consequently, if the clusters of order

5 are absent in a fragment, then the local activity score of the
fragment will have the same constant negative value; otherwise,
the local activity score will have a positive value, being this
proportional to the number of cluster of order 5 and the
chemical environment of each atom in the aforementioned
clusters.
It is very important to point out that the fragments with

positive contributions can be present in molecules annotated
and correctly classified as inactive, while the fragments with
negative contributions can be present in molecules assigned
and correctly predicted as active. The presence of a given
fragment is not a sufficient condition for the enhancement of
the biological activity. Therefore, the local quantitative
contributions depicted in Table 4 reflect the relative tendency
of the fragments to influence the activity of the fragments to
influence the activity of a molecule according to its intrinsic
physicochemical properties when properly connected to other
fragments; the suitability with which a fragment should be
connected strongly depends on the physicochemical/structural
interpretations of the molecular descriptors in the mt-QSAR-
EL model, which have been explained in the previous section.
In addition, even though these local contributions will be

restricted to the chemico-biological space defined by the
molecules in the data set, they can guide medicinal chemists
toward the detection of two-dimensional (2D) pharmaco-
phores.21,23

A careful inspection of Table 4 suggests that the molecular
fragments with positive local quantitative contributions with
respect to three or more physicochemical/structural compo-
nents (or with six or more positive values) are desirable for the
future design of highly active molecules against both Hsp90
isoforms. Such contributions are represented with bold values.
Therefore, they may appear in different positions in the
molecules, favorably contributing to enhancing the inhibitory
activity. This desirability of some of these fragments is reflected

Figure 3. Molecules containing some of the most desirable fragments associated with the increment of the inhibitory activity against the Hps90
isoforms.
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in the molecules depicted in Figure 3, which are among the
most active in the database used in this study, and they contain
more than one of these positive fragments. For instance,
fragments F3 and F22 appear in the first three molecules,
which are structurally related. Regardless of the other
fragments present in these molecules, it is clear that F3 and
F22 play an important role in the inhibitory potency of the
molecules to which they belong. Other important fragments
present in the molecules illustrated in Figure 3 are F1, F2, F7,
F12, F17, and F19. Special attention must be paid to the
fragment F12 , which is present in the molecule
CHEMBL3234777. This is the only molecular fragment with
positive local contributions against all of the physicochemical/
structural components. Because of that, when properly
connected, F12 can be used in any region of a molecule
because it will always contribute positively to the increment of
the inhibitory activity. Of course, all of the ideas explained here
converge with the interpretations of the molecular descriptors
present in the mt-QSAR-EL model, which allow the
aforementioned fragments to be properly connected to the
others. We note that if one considers only the intrinsic
physicochemical properties of the different fragments while
neglecting how properly they should be connected, a huge
amount of random molecules can be generated, and they may
not be active.
On the other hand, fragments with negative local

quantitative contributions with respect to three or more
physicochemical/structural components can be detrimental to
the inhibitory activity. Some of these fragments are F5, F8, F9,
F16, F32, and F35, and a similar analysis to that performed for
the positive fragments can be made. For example, it can be
deduced that if these fragments have negative local
contributions with respect to the physicochemical components
C1 and C2 depicted in Table 4, then, if present in a molecule,
they should be kept isolated (preferably in the central region of
the molecule) from other fragments with electronegative atoms
in such a way that the topological distance between
electronegative atoms is different from 3 and 7. In any case,
the most interesting aspect is that according to Table 4, the
molecular fragment F5 is the most undesirable of all due to its
negative contribution against all of the physicochemical/
structural components regardless of the Hsp90 isoform. And
yet, F5 appears in the most active molecules of the data set
(Figure 3). This has an explanation, and once again, everything
obeys the physicochemical/structural interpretations of the
molecular descriptors in the mt-QSAR-EL model. We note
that despite having negative contributions against all of the
components, F5 is placed in the periphery of the first three
molecules represented in Figure 3, and according to the
physicochemical interpretation of the molecular descriptor
D[TmpAq7(E)_MN]bt, that is a desirable aspect. At the same
time, in most of the cases, the electronegative atoms of F5 are
placed at topological distances different from 3 with respect to
atoms belonging to other fragments. This favors the
diminution of the descriptor D[TnsAq3(E)_MX]bt, contribu-
ting to increasing the activity. Finally, F5 has an atom
(specifically a halogen) attached to an aromatic carbon
adjacent to one of the pyridinic nitrogens. In addition, F5 is
fused with another ring. These two aspects generate two
clusters of order 5 increasing the value of D[Xv(C)5]bt, which
is also required for the enhancement of the inhibitory activity
against the Hsp90 isoforms. With F5, a similar situation
happens in the case of the compounds CHEMBL3675258,

CHEMBL3675272, and CHEMBL3360305, which are not
shown in Figure 3 but are present in the Supporting
Information 1, having been correctly classified by the mt-
QSAR-EL model.
Another example is the molecular fragment F18, which,

being seemingly negative, appears in the molecule
CHEMBL560895 (Figure 3). In F18, its pyridinic nitrogen
is placed at a topological distance equal to 3 with respect to the
fluorine atoms (increasing D[TnsAq3(E)_MX]bt), which is
detrimental to the inhibitory activity. Nevertheless, by being
connected to F7 while fused with F19 (both of them
predominantly positive fragments), F18 is involved in the
formation of four clusters of order 5, which are very favorable
for the enhancement of the inhibitory activity against the
Hsp90 isoforms.
In the end, it can be seen that the application of the

approach involving the calculation of class-based mean values
for each molecular descriptor and the subsequent generation of
a pseudolinear equation for the calculation of fragment
contributions have pros and cons. From one side, a clear
advantage of using this approach is that the pseudolinear
equation allows the rapid calculation of quantitative con-
tributions, enabling the comparison between fragments to
select those that are more suitable for the design of virtually
potent dual Hsp90 inhibitors. Thus, by combining the analysis
of the different quantitative contributions of the fragments and
the physicochemical interpretations of the molecular descrip-
tors in the mt-QSR-EL model, it is possible to establish a set of
rules to define steric and electronic features responsible for the
enhancement of the inhibitory activity. A second advantage is
that a pseudolinear equation can in principle be generated
from any ML model as long as the molecular descriptors will
be somehow normalized and the software used to develop the
ML model will yield the values indicating the significance of
the different descriptors. For instance, as shown in the present
study, the program STATISTICA v6.0 calculates sensitivity
values, which serve as weights of the pseudolinear equation,
indicating the influence of the molecular descriptors in the mt-
QSAR-EL model. If other techniques such as random forest or
support vector machine were used by the same program, then,
the so-called “importance values” would be calculated, also
serving as weights for the pseudolinear equation; as in the
present study, the means of the different classes/categories for
each molecular descriptor would also be compared to
determine its tendency (increment of diminution) in the
model.
On the other hand, an important limitation in the use of the

pseudolinear equation is that this will strongly depend on the
performance of the mt-QSAR model-EL. The approach based
on the generation of a pseudolinear equation is only valid
because the model developed in this work shows a very good
performance; the percentages of correct classification for active
and inactive molecules are higher than 70%. With a poorer
performance, it would not make any sense at all to generate an
equation based on the tendencies of variation in the means of
the molecular descriptors in the mt-QSAR-EL model. A second
disadvantage is that because of the nonlinear nature of the mt-
QSAR-EL model, the pseudolinear equation may be useful in a
seemingly restricted region of the chemical space covered by
this model. Nevertheless, the physicochemical properties and
structural features needed to inhibit the Hsp90 isoforms is
plausibly explained by the analysis of the molecular fragments
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and their local quantitative contributions as depicted in Figures
2 and 3 and Table 4.
2.4. In Silico Design of Dual Hsp90 Inhibitors.

Currently, most of the QSAR models and related chemo-
informatic tools constructed from heterogeneous data sets of
compounds are mainly employed with the aim of performing
virtual screening of large libraries of chemicals. Nevertheless,
most of the time, the experimental data used to develop the
models can have a great uncertainty because they come from
different laboratories. Additionally, it should be considered that
the molecular descriptors used to construct the models can
characterize only a limited fraction of the diversity and
complexity codified within the molecules.
When a model performs predictions of a certain property/

activity, it does that according to predetermined values of the
molecular descriptors used to construct it. When predicted,
many molecules may not follow the rules under which the
model has been developed. Here, it is not about how well a
model will perform according to any applicability domain
approach or method focused on determining the reliability of
the predictions. This is based on the fact that in any model,
there is a degree of hierarchy among the molecular descriptors,
which embody a phenomenological meaning in the sense of
describing the physicochemical and structural features needed
for the improvement of the biological effect under study (in
this particular case, the inhibitory activity). Therefore,
compounds whose molecular descriptors follow such degree
of hierarchy (as shown in Figure 1) will be predicted with
better accuracy, where the prediction will be expected to
converge to a greater extent with the experimental results. All

of this is usually neglected by the current models devoted to
screening vast chemical databases, but it was considered here
when generating new molecules.
To properly design new molecules, a series of steps were

followed. First, in most of the cases, only those fragments with
local quantitative contributions against three or more
physicochemical components were selected. Second, the new
molecules were assembled by connecting and/or fusing
different fragments. Third, when needed, certain atoms and/
or bioisosteric replacements were added to the structure of the
molecule. Last and most important, all of these chemical
modifications mentioned in the three previous aspects strictly
obeyed the physicochemical and structural interpretations of
the molecular descriptors in the mt-QSAR-EL model. In
addition, the predominantly negative fragment F18 was added
to different positions in the structure of the designed molecules
with the aim of analyzing the effect of the position and the
connectivity on the potential inhibitory activity.
Eight molecules were designed (Figure 4), and all of them

fell within the applicability domain (Supporting Information
4). By considering the cutoff value of inhibitory activity
employed in this work (half-maximal inhibitory concentration
(IC50) ≤230 nM), six of these molecules (IP-01 to IP-05 and
IP-07) were predicted by the mt-QSAR-EL model as inhibitors
of both Hsp90 isoforms, while the molecules IP-06 and IP-08
were predicted as active against Hsp90α but inactive with
respect to Hsp90β (Supporting Information 4). We note that
the presence of the fragment F18 does not define if a molecule
will be active against the Hsp90 isoforms. However, the
fragment F18 has been fused with positive fragments such as

Figure 4. New molecules designed by using the mt-QSAR-EL model.
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F3 and F17 in the way of minimizing as much as possible the
number of electronegative atoms placed at the topological
distances equal to three and seven (diminution of the
descriptors D[TnsAq3(E)_MX]bt and D[TmpAq7(E)_MN]
bt). This fusion also increases the number of clusters of order 5
(increasing the value of descriptor D[Xv(C)5]bt).
If one compares IP-05 with IP-06, it is easy to see that they

are similar molecules. Nevertheless, they have two differences.
One of them is the replacement of fragment F11 in IP-05 by a
fragment similar to F18 in the molecule IP-06. In this sense,
the fragment F18 has been correctly placed in the molecule IP-
06 according to its positive contribution to the physicochem-
ical component C2 while favoring the physicochemical
component C5. Still, this is not enough for the molecule IP-
05 to be predicted as an inhibitor of both Hsp90 isoforms. The
second divergent aspect is the key because a fragment similar
to F17 is present in the two aforementioned molecules, but
while there is an additional substitution between the two
hydroxyl groups in the molecule IP-05, such substitution is
absent in IP-06. This simple additional substitution dramat-
ically favors the physicochemical component C5, resulting in
the difference of potential inhibitory activity between IP-05
and IP-06. In terms of additional substitutions present in an
aromatic ring, a similar situation to that involving IP-05 and
IP-06 can be explained for the case of the molecules IP-07 and
IP-08.
Finally, it should be noted that the eight designed molecules

were not reported in the data set used to develop the mt-
QSAR-EL model. In this sense, ChEMBL and ZINC26 were
used to search for chemical similarities. The search did not
produce any exact match, and even when the similarity cutoff
was set to be ≥0.8, no results were found.
2.5. Assessing the Druglikeness. An essential stage in

any drug discovery campaign is the estimation of the
druglikeness of a molecule, i.e., how desirable is a chemical
in terms of its bioavailability. In this sense, Lipinski’s rule of
five is a classically accepted approach for the assessment of the
bioavailability of the organic compounds.27 According to this
rule, a chemical will have good oral bioavailability if it
simultaneously complies with all of the following properties:
molecular weight (MW) less than 500 Da, logarithm of the
octanol−water partition coefficient (C log P) lower than 5, no
more than five hydrogen bond donors (HBDs), and no more
than 10 hydrogen bond acceptors (HBAs). However, Lipinski’s
rule of five has received some criticism regarding the cutoff
value of MW, and according to Veber and co-workers, the
polar surface area (PSA) and the number of rotatable bonds
(RBNs) have been found to better discriminate between
compounds that are orally active from those that are not.28 In
this sense, it has been established that the molecules with RBN
≤ 10 and PSA < 140 Å2 are expected to have good oral
availability.
All of these physicochemical properties were estimated for

the eight designed molecules (Table 5). The properties HBD
and HBA were calculated manually; fluorine atoms were
considered as hydrogen bond acceptors while pyrrolic
nitrogens were not. The C log P was calculated by the program
ChemDraw Ultra v8.0,29 and the other properties were
calculated by the software Marvin Sketch v15.11.16.0 from
ChemAxon.30 The eight molecules comply with Lipinski’s rule
of five as well as with the Veber’s guidelines.

3. CONCLUSIONS
The Hsp90 family has become a focus of attention in drug
discovery. Particularly, the search for inhibitors simultaneously
targeting several Hsp90 isoforms is of great interest because it
opens new horizons toward the discovery of new chemicals
capable of therapeutically modulating many biochemical
pathways involved in the emergence and development of
complex diseases. In this work, the present approach focused
on multitarget modeling represents a promising alternative
toward the discovery of dual Hsp90 inhibitors. By combining
the good performance of the mt-QSAR-EL model with the
clear physicochemical/structural interpretations of the molec-
ular descriptors, it has been possible to estimate the
quantitative contributions of the fragments to the inhibitory
activity. This has permitted the guided design of eight new
molecules, six of them being predicted as potential dual Hsp90
inhibitors, and all of them displaying very good druglikeness.
The multitarget modeling methodology focused on the joint
use of an ML model with a fragment-based topological design
approach can serve as a powerful alternative to speed up early
drug discovery by considering important biomolecular targets
such as the Hsp90 isoforms, whose roles have been linked to
genetic and epigenetic variations.

4. MATERIALS AND METHODS
4.1. Generation of the Database and Calculation of

the Molecular Descriptors. The methodology involved in
the development of the mt-QSAR models has been reported in
detail in the scientific literature.31−33 So, only the principal
aspects will be discussed here. All of the chemical and
biological data reported in this work were retrieved from
ChEBML,34 an online source containing more than 15 million
assay endpoints against more than 1.8 million compounds. The
data set used here was formed by 983 molecules experimentally
tested against at least one of the two Hsp90 isoforms. In each
assay, the in vitro potency against the proteins was measured as
IC50, i.e., the inhibitory concentration causing 50% inhibition.
When a molecule was assayed more than one time against the
same Hsp90 isoform, its IC50 values were averaged. It should
be pointed out that not all of the molecules present in the data
set were assayed against both Hsp90 isoforms. Nevertheless,
some molecules were tested against the two Hsp90 isoforms.
Consequently, the data set employed here contains 1030
statistical cases.
Each statistical case was assigned as active [APi(bt) = 1] or

inactive [APi(bt) = −1], with APi(bt) being a binary categorical

Table 5. Physicochemical Properties of the Designed
Molecules

IDa,b MW (Da) HBD HBA C log P PSA (Å2) RBN

IP-01 452.55 3 7 2.37 109.5 7
IP-02 411.5 3 7 1.754 95.67 7
IP-03 392.45 4 7 0.698 105.28 5
IP-04 393.44 3 7 1.92 99.49 5
IP-05 436.5 3 7 2.509 99.85 6
IP-06 422.48 3 7 2.38 99.85 6
IP-07 410.46 4 7 2.466 118.72 8
IP-08 410.46 4 7 2.806 118.72 8

aHydrogen bond donors (HBDs) and hydrogen bond acceptors
(HBAs) were calculated manually. In addition, pyrrolic nitrogen was
not considered as a hydrogen bond acceptor. bRBN stands for the
number of rotatable bonds.
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variable that described the inhibitory activity of the ith case/
molecule with respect to a defined biological target (in this
case, an Hsp90 isoform). Such annotations were realized by
considering IC50 ≤ 230 nM as the cutoff value. Thus,
regardless of the Hsp90 isoform used in the assay, a molecule
was annotated as active if its activity was IC50 ≤ 230 nM;
otherwise, the molecule was assigned as inactive. It is
important to note that in medicinal chemistry and drug
discovery campaigns, the search for hit compounds starts at the
micromolar range (depending on the target under analysis).35

As one can see, the selected cutoff value appears in the
medium nanomolar range, which will improve the strictness of
the model in the sense of rapidly searching for (or designing)
more potent inhibitors. Also, from a statistical point of view,
the cutoff value selected here avoids any excessive imbalance
between the number of molecules annotated as active and
those labeled as inactive.
All of the chemical information was stored as SMILES codes

in a *.txt file, which was manually changed to *.smi. Then, to
get information regarding the 2D connectivity of the
molecules, the program Standardizer v15.11.16.0 was em-
ployed to convert the *.smi file to *.sdf.36 Two sets of
molecular descriptors were calculated. From one side, the
software QUBILs-MAS v1.0 was used to calculate the
molecular descriptors known as nonstochastic and mutual
probability atom-based quadratic indices.37 In general terms,
quadratic indices have been used in different fields of research
associated with drug discovery,37−40 and currently, more
advanced versions of these descriptors can be calculated
according to the following equations:

L q x a x x( )i k
j

n
k

ij i j
1

∑[ ] = · ·
= (2)

In eq 2, Li[qk(x)] represents the local nonstochastic quadratic
index of order k, which considers an atom i and its chemical
environment (formed by their jth neighbors) at the topological
distance d = k. The element x refers to any atomic
physicochemical property such as hydrophobicity (HYD),
electronegativity (E), atomic weight, polar surface area (PSA),
and atomic refractivity (AR), among others. At the same time,
the element kaij characterizes the adjacency between any two
atoms of the molecule. It should be emphasized that eq 2 is
applied always to each atom of a molecule. Then, the total
nonstochastic atom-based quadratic indices [TnsAqk(x)_MO]
for a molecule having n atoms can be calculated by applying
different mathematical/statistical operators (MO) to the set of
local quadratic indices Li[qk(x)]. Some examples are shown in
the following equations:
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In eqs 3−6, the symbol Tnsqk(x) represents the total
nonstochastic quadratic index, while the MOs include (but

are not limited to) the Manhattan distance (N1), the
Euclidean distance (N2), the geometric mean (GM), and the
range (RA), the latter considering the maximum (MX) and
minimum (MN) values. For the calculation of the mutual
probability counterparts of the nonstochastic quadratic indices,
the same equations can be used; the only difference is that in
eq 2, the element kaij of a nonstochastic matrix is replaced by
the element kpij of the mutual probability matrix.24,41 Thus,
while the general symbology of the total nonstochastic atom-
based quadratic indices is TnsAqk(x)_MO, the corresponding
total mutual probability atom-based quadratic indices will have
the symbol TmpAqk(x)_MO. It should be pointed out that the
local atom-type quadratic indices have also been reported in
the literature to account for the substructural patterns
contained within the chemicals’ databases.42−44 However, in
this study, only the total quadratic indices have been used
because, as depicted in eqs 3−6, through the application of the
diverse MOs, new classes of topological indices are created;
such hybrid molecular descriptors have an enhanced ability to
characterize local features in the molecules such as atom,
bonds, and fragments. Also, although seemingly simpler than
their global counterparts, the local atom-type quadratic indices
may add complexity to the models from a statistical point of
view because a greater number of molecular descriptors may be
needed to develop the models.
Traditional molecular descriptors such as the atom- and

bond-based connectivity indices, shape descriptors, and others
widely reported in the literature constituted the second set of
molecular descriptors used in this study;45 they were calculated
by the program ModesLab v1.5 using the SMILES codes
stored in the *.txt file.46 One should note that the molecular
descriptors reported in eqs 3 − 6 characterize only the
chemical structure of the molecules, being incapable of
discriminating the effect of the chemical structure of a
molecule when this is assayed against more than one target.
In this context, the Box−Jenkins approach can solve this
inconvenience.47 In time series, Box−Jenkins operators involve
the calculation of successive average values of a given property
of a system determined at different intervals of time.48 In the
mt-QSAR methodology, the Box−Jenkins operators are not
based on the time domain. Instead, in a first step, the average
of any molecular descriptor is calculated according to the
following mathematical formalism:49−51
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In eq 7, TIa refers to any of the topological indices mentioned
above, including those calculated via eqs 3−6, while avgTI(bt)
is the average of a topological index for all of the drugs/
chemicals that were assayed against the same protein and
annotated as active. Consequently, n(bt) represents the
number of molecules assayed against the same Hsp90 isoform
and annotated as active. After, in a second step, the following
formula is applied
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In eq 8, DTIa(bt) is a deviation topological index, measuring
how much a drug/chemical structurally deviates from a set of
compounds annotated as active and assayed against the same
Hsp90 isoform.52−56 On the other hand, TI(MX)(bt) and
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TI(MN)(bt) are the maximum and minimum values for a defined
molecular descriptor, respectively. In this case, TI(MX)(bt) and
TI(MN)(bt) depend on the Hsp90 isoform against which the
molecules were tested. We note that DTIa(bt) is also a
normalized descriptor due to the presence of an average in the
numerator, and a subtraction between maximum and
minimum values in the denominator. In addition, DTIa(bt) is
a multitarget descriptor because it considers both the chemical
structure and the Hsp90 isoform against which a molecule was
tested. It should be pointed out that eq 8 unifies the calculation
of the Box−Jenkins operators with the mean-based normal-
ization procedure.
4.2. Development of the mt-QSAR-EL Model. The

diverse steps involved in the development of the mt-QSAR-EL
model are summarized in Figure 5. The data set composed of
1030 statistical cases was randomly divided into training and
test sets. The training set was employed to find the best model,
and it contained 774 cases (75.14%), 373 annotated as active
and 401 assigned as inactive. The test set was used to validate
the model, with the purpose of demonstrating its predictive
power. The test set contained 256 cases (24.86%), 121
considered active and 134 annotated as inactive. The ML
method focused on ANNs was used to generate the mt-QSAR-
EL model. Particularly, the model was based on an ensemble of
ANNs.
Finding the best mt-QSAR-EL model was subjected to

finding the collection of ANNs that cooperate in performing
predictions in a consensus voting manner. Several ANNs
architectures were used in the search for the single models:
linear neural networks (LNN), radial basis function (RBF),
and multilayer perceptron (MLP).
The task of generating the best mt-QSAR-EL model was

performed by the Intelligent Problem Solver of the ANNs
package of the program STATISTICA v6.0.57 The first run was
used to determine the most important ANNs architectures and
the number of ANNs forming the ensembles, rank the most
significant molecular descriptors, and estimate the correlations
between them. The diversity among the ANNs models forming
the ensemble was considered. In this sense, all of the ANNs
models forming the ensemble were inspected in the sense that
they obligatorily needed to have different number of neurons

in their hidden layers, as well as different training and test
errors (as low as possible) while having different values (but as
high as possible) of the statistical indices Sn(%), and Sp(%),
Ac(%), and MCC.58 These statistical indices were used to
assess the internal quality (training set) and the predictive
power (test set) of the mt-QSAR-EL model.
On the other hand, the most significant molecular

descriptors were ranked according to the importance analysis
(also known as sensitivity analysis) available in the Intelligent
Problem Solver of the ANNs package of the program
STATISTICA v6.0. This procedure attempts to quantify the
effect of a defined molecular descriptor by calculating a ratio of
the error generated in the ANN when estimating the value of
the molecular descriptor using a missing value procedure, and
the error generated in the ANN by using the real value of a
molecular descriptor. The most influential molecular descrip-
tors are those with importance values (SV) higher than 1; only
these descriptors were chosen to enter the final model.
Consequently, the importance analysis served as a variable
selection strategy.
Finally, the correlations between the molecular descriptors

were estimated, and the cutoff interval −0.7 < PCC < 0.7 was
used as the criterion to determine the lack of redundancy, PCC
being the Pearson’s correlation coefficient.59 Those descriptors
that fell outside the aforementioned interval were not used in
the search for the best mt-QSAR-EL model.
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Model for Proteome Mining of B-Cell Epitopes and Theoretical-
Experimental Study of Bm86 Protein Sequences from Colima,
Mexico. J. Proteome Res. 2017, 16, 4093−4103.
(57) StatSoft-Team. STATISTICA, Data Analysis Software System,
version 6.0; StatSoft, Inc.: Tulsa, 2001.
(58) Matthews, B. W. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
1975, 405, 442−451.
(59) Pearson, K. Notes on regression and inheritance in the case of
two parents. Proc. R. Soc. London 1895, 58, 240−242.

ACS Omega Article

DOI: 10.1021/acsomega.8b02419
ACS Omega 2018, 3, 14704−14716

14716

http://dx.doi.org/10.1021/acscombsci.8b00090
http://dx.doi.org/10.1021/acscombsci.8b00090
http://dx.doi.org/10.1021/acs.jcim.8b00383
http://dx.doi.org/10.1021/acschemneuro.8b00083
http://dx.doi.org/10.1021/acsomega.8b02419

