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Abstract

Fluid registration is widely used in medical imaging to track anatomical changes, to correct image 

distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image 

deforms smoothly into the target, without tearing or folding, even when large deformations are 

required for accurate matching.

Here we implemented an intensity-based fluid registration algorithm,7 accelerated by using a filter 

designed by Bro-Nielsen and Gramkow.3 We validated the algorithm on 2D and 3D geometric 

phantoms using the mean square difference between the final registered image and target as a 

measure of the accuracy of the registration. In tests on phantom images with different levels of 

overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method 

outperformed a more commonly used elastic registration method, both in terms of accuracy and in 

avoiding topological errors during deformation. We also studied the effect of varying the viscosity 

coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the 

fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric 

brain MRIs from 14 healthy individuals to assess its accuracy and robustness.
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1. INTRODUCTION

Non-linear registration involves the matching of a template image T to a study S, typically 

by applying a deformation vector field to T so that its features are geometrically aligned 

with those in S. Its numerous applications in medical image analysis include the alignment 

of images from different subjects, time-points and modalities, and the study of deformations 

to understand morphometric differences, such as brain development or degeneration.

To register a pair of 2D or 3D images, a displacement vector field u ( r ) is found such that 

T( r − u ) corresponds with S( r ). Here r  denotes the voxel location. Anatomical 

correspondence between the images is found based on features such as common anatomical 

landmarks between the two image datasets, or, more commonly, from intensity-based cost 
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functions such as the mean square intensity difference between images, cross-correlation, or 

information-theoretic measures such as normalized mutual information or the Jensen-Rényi 

divergence.5

In the commonly used elastic registration,8 the image is treated as an elastic medium. A 

force is applied at each voxel that drives the template image towards increased anatomical 

similarity to the study image, against the restoring forces of the medium. The deformation 

fields are generated by the elastic registration equation:

F = μ∇2 u ( r ) + (μ + λ)∇(∇T · u ( r )) . (1)

Here F  is the image-derived force that drives the transformation, and µ and λ are the Lamé 

coefficients. This method works well for small deformations. However, as distances increase 

between the initial and final images, so do the restoring forces, so that large deformations 

can not be generated without shearing or tearing of the image medium.

For viscous fluid registration, a continuum mechanical law is again applied to the 

registration. In this case the image is treated as a viscous fluid and the velocity field 

v ( r , t) = d u ( r , t)
dt  is computed at each time step along the path to obtain the final 

deformation field, using the Navier-Stokes equation for v that was derived by Christensen7 

as

F = μ∇2 v ( r , t) + (μ + λ)∇(∇T · v ( r , t)) . (2)

This equation is solved using sliding boundary conditions.6 The Lamé coefficients µ and λ 
are chosen by the user. The force field F is the gradient of the cost function, selected here as 

the mean square difference between the registered template and study intensities, that is

F = ( x , u ( r , t)) = − [T( r − u ( r , t)) − S( r )]∇T
r − u ( r , t)

. (3)

In both the fluid and elastic cases, the mechanical equations regularize the deformation, 

enforcing the smoothness of the mapping. Though the elastic regularization breaks down at 

large distances, the fluid registration generates smooth maps even for large deformations.

Other velocity-based approaches exist such as the Large Deformation Diffeomorphic Metric 

Mapping10 and symmetric normalization,2 for which the full path between images is 

optimized to generate the deformation. In,4 the viscous fluid regularizer was replaced by a 

Log-Euclidean1 regularizer which is sensitive to local directional or anisotropic 

deformations of the image.

Computational speed is an issue in finding a numerical solution of the viscous equation, as 

the local velocity depends on the force field over the entire volume. A filter solution to this 
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equation based on the Green’s function solution of the fluid equation was originally derived 

by Bro-Nielsen and Gramkow,3 and significantly decreases computational time.

Here, sets of 2D and 3D phantom images with varying shapes, levels of Gaussian noise, 

intensity gradients and overlap were created in order to assess the validity and robustness of 

the viscous fluid algorithm, and optimize its free parameters. We also compared its 

performance to that of the more commonly used elastic registration method. To assess the 

algorithm’s ability to recover morphometric differences in real data, we also tested our 

algorithm on a 3D MRI dataset from 14 healthy individuals. To examine the 2D case, we 

used binary corpus callosum images, while whole-brain volumetric MRIs were used for the 

3D experiments.

2. METHOD

The viscous fluid registration algorithm was implemented using a multi-resolution scheme.9 

The free parameters of the algorithm are the Lamé coefficients µ and λ, as well as the 

number of iterations at each resolution, the time step and filter size. These parameters were 

set for each registration problem in order to optimize the final result.

2D disk and C-shaped phantoms and 3D rectangular phantoms were created under various 

conditions of Gaussian noise, overlap and intensities (see Figures 2 to 6). To test the 

algorithm on 2D and 3D brain MRI data, we used a group of 14 healthy controls who 

received 3D spoiled gradient recovery (SPGR) anatomical brain MRI scans (256×256×124 

matrix, TR = 25 ms, TE = 5ms; 24-cm field of view; 1.5-mm slices, zero gap; flip angle = 

40°). Extracerebral tissues (e.g., scalp, meninges, brainstem and cerebellum) were removed 

using the software BrainSuite.11 The corpus callosum for each subject was hand-traced 

according to previously published criteria,12 using interactive segmentation software.

Here throughout we use the mean square difference (MSD) as a measure of the residual 

registration error between the registered template and target image intensities:

MSD = ∫ (T( r − u ( r , t)) − S( r ))2dnr (4)

3. RESULTS

In Figure 1, we show the result of using the viscous fluid code compared to the more 

commonly used elastic registration method for 2D phantoms. Since the two phantoms differ 

greatly in shape, we expect the elastic registration to be unable to produce the required 

deformation. As expected, the elastic registration fails completely in this example. By 

contrast, the fluid registration performs quite well. This is because the elastic regularizer 

penalizes large displacements, while the fluid regularizer only penalizes the gradients of the 

velocity field, so that arbitrarily large displacements can be recovered. This suggests that the 

latter method should be used whenever large anatomical differences are expected.
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We also examined how adding Gaussian noise to one of the images affects registration 

performance, for values of the noise variance σ ranging from 0.05 to 0.5 (see Figure 2). The 

noise only significantly affects registration quality for the highest value of σ = 0.5. This is 

reasonable because the force driving the registration depends on spatial gradients in the 

image, and the magnitude and direction of these gradients is stable unless the noise is 

relatively high.

Figure 3 shows the results of varying the level of overlap between the initial images. The 

code performs well, even when the initial overlap is as small as 10%, though it becomes 

much worse when the images do not overlap at all.

In Figure 4, we varied the viscosity coefficients λ and µ in the fluid equation. The fluid 

viscosity increases with µ and λ, and it becomes increasingly hard for the the forces to drive 

the flow. The MSD increases dramatically for large viscosity coeffcients. However, for the 

lower values of the viscosity coefficients, registration quality varies little with the choice of 

these parameters over a wide range. Thus, the registration is not very sensitive to the 

particular choice of λ and µ, so long as these values are not set too high.

Figure 5 and 6 show the results of varying the level of intensity between the initial images 

on 2D and 3D phantoms. Though the overall shape is preserved, the final MSD is much 

higher than for the binary images, and there is quite a bit of distortion in the intensity 

distribution in the registered images.

Examples of registration on a pair of 2D corpus callosum images and volumetric 3D whole-

brain images are shown in Figures 7 and 8. For both the 2D and 3D examples, the registered 

image is in good agreement with the target image.

4. CONCLUSIONS

Here we studied the performance of a viscous fluid registration algorithm on different types 

of geometric phantoms in 2D and 3D, and on medical data from 2D binarized corpus 

callosum images and 3D brain MRIs. The fluid algorithm performs well for all levels of 

noise and overlap tested, as well as for images with varying intensities. We also showed that 

registration performance was stable for a wide range of choices of the viscosity coefficients. 

For phantoms of widely different shapes, as in the C to disk example, we obtained a 

reasonable agreement from the fluid registration, while the elastic registration failed 

completely. The registration was also shown to be relatively independent of the Lamé 

coefficients for a wide range of values of these parameters.

The performance of the viscous fluid algorithm may depend on the cost function used to 

drive the registration. In a future study, it would be interesting to compare differences in 

performance from various cost functions such as the Jensen-Rényi divergence5 using the 

different tests presented here. Furthermore, the viscous registration algorithm described here 

is not sensitive to the directionality of the deformation. It would be interesting to compare its 

performance to the registration from algorithms such as the one described in Brun et al. 

(2007),4 where the regularization was done in the Log-Euclidean space to account for 

anisotropic deformations.
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Figure 1. 
Top left: the moving image. Top right: the fixed image. Bottom left: registered image 

using the viscous fluid transformation model with viscosity coefficients µ = 1.7, λ = 0.1. 

Bottom right: registered image using the elastic model, which performs much worse than 

the fluid model in matching the target image.
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Figure 2. 
The moving image is a disk and the fixed image is a C with added Gaussian noise of 

different standard deviations σ (from top to bottom: σ = 0.05, 0.1, 0.2, 0.3, 0.5). The central 

column shows the registered images and the difference images are shown in the right 

column. Initial MSD values from top to bottom are: 2204.2, 2175.8, 2137.9, 2081.6, 1981.6. 

Final ones are: 469.9, 980.0, 1890.7, 2762.2, 4481.4; registration performance only degrades 

substantially with high amplitude additive noise.
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Figure 3. 
2D registration of objects with different level of overlap. Column 1 through 4 show the 

moving images, fixed images, registered images and difference images, respectively. Levels 

of overlap from top to bottom are taken at 10% intervals from 90% to 10%. The initial 

MSDs are, from top to bottom: 2613, 2413.72279.7, 2315.3, 2323.2, and the final ones are: 

2585.7, 1307.4, 246.9, 96.0, 36.4.
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Figure 4. 
Values of image dissimilarity (MSD), after registration of C to O, as a function of the 

viscosity coefficients λ (0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 

1000) and µ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 

1.9, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0, 30.0, 40.0, 50.0, 100.0).
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Figure 5. 
Registration using different phantoms with gradations (0 to 255) in intensity. The moving 

image consisted of a circle (leftmost image) and the fixed image consisted of a C (second 

image to the left). The third image is the result of deforming the circle into the C with the 

viscosity coefficient λ = 0.1; µ = 1.7 and the value of image dis-similarity between the 

registered image and the fixed image is 156.6 using MSD. Next is the difference image 

between the registered and fixed images.
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Figure 6. 
This figure shows the results of viscous fluid registration applied to 3D binary phantoms 

(64x64x64) with levels of intensities varying from 0 to 255, and µ = 0.1, λ = 0.7. The 

columns correspond to x, y and z slices, respectively. The moving image consisted of a cubic 

shown in the first row (x slice, y slice and z slice). The fixed image is shown in the second 

row and the registered image is shown in the third row. The 4th row shows the difference 

image of the fixed image and the moving image. The 5th row is the difference image of the 

registered image and the fixed image.
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Figure 7. 
2D registration of binary traces of the corpus callosum, a midline structure in the brain: Top 
left: Fixed image. Top middle: Moving image, from a different subject. Top right: 
Difference image before registration. Bottom left: Registered image. Bottom middle: 
Deformation grid. Bottom middle: Difference image after registration.
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Figure 8. 
3D registration of pairs of brain MRIs from several randomly selected control subjects. 

Images were downsampled by a factor of 2 along each axis, to a resolution of 128x128x128. 

Parameters for the code were λ = 1, µ = 1, and the filter size was D = 30, with 30 iterations. 

From top to bottom: moving image, fixed image, registered image, overlap (red: fixed 

image, blue: moving image), overlap (red: fixed image, blue: registered image).
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