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Abstract

Background: Neonates with congenital heart disease (CHD) are at high risk of punctate white 

matter injury (WMI) and impaired brain development. We hypothesized that WMI in CHD 

neonates occurs in a characteristic distribution that shares topology with preterm WMI and that 

lower birth gestational age (GA) is associated with larger WMI volume.

Objective: (1) To quantitatively assess the volume and location of WMI in CHD neonates across 

three centres. (2) To compare the volume and spatial distribution of WMI between term CHD 

neonates and preterm neonates using lesion mapping.

Methods: In 216 term born CHD neonates from three prospective cohorts (mean birth GA: 39 

weeks), WMI was identified in 86 neonates (UBC: 29; UCSF: 43; UCZ: 14) on pre- and/or post-

operative T1 weighted MRI. WMI was manually segmented and volumes were calculated. A 

standard brain template was generated. Probabilistic WMI maps (total, pre- and post-operative) 

were developed in this common space. Using these maps, WMI in the term CHD neonates was 
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compared with that in preterm neonates: 58 at early-in-life (mean postmenstrual age at scan 32.2 

weeks); 41 at term-equivalent age (mean postmenstrual age at scan 40.1 weeks).

Results: The total WMI volumes of CHD neonates across centres did not differ (p=0.068): UBC 

(median=84.6mm3, IQR=26–174.7mm3); UCSF (median=104mm3, IQR=44–243mm3); UCZ 

(median=121 mm3, IQR=68–200.8mm3). The spatial distribution of WMI in CHD neonates 

showed strong concordance across centres with predilection for anterior and posterior rather than 

central lesions. Predominance of anterior lesions was apparent on the post-operative WMI map 

relative to the pre-operative map. Lower GA at birth predicted an increasing volume of WMI 

across the full cohort (41.1mm3 increase of WMI per week decrease in gestational age; 95% CI 

11.5–70.8; p=0.007), when accounting for centre and heart lesion. While WMI in term CHD and 

preterm neonates occurs most commonly in the intermediate zone/outer subventricular zone there 

is a paucity of central lesions in the CHD neonates relative to preterms.

Conclusions: WMI in term neonates with CHD occurs in a characteristic topology. The spatial 

distribution of WMI in term neonates with CHD reflects the expected maturation of pre-

oligodendrocytes such that the central regions are less vulnerable than in the preterm neonates.
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1. INTRODUCTION

Congenital heart disease (CHD) is now the most common birth defect impacting almost 1% 

of live births (Marelli2016). Although the survival of neonates with critical CHD has been 

dramatically improved over the past three decades, the neurodevelopmental morbidity of this 

population remains high (Marelli2016). Advances in neuroimaging have enabled the 

detection of brain injury and delayed brain development and maturation reflected in reduced 

brain volumes and altered brain microstructure and metabolism in the term CHD population 

(Andropoulos2010, Clouchoux2013, Dimitropoulos2013, Karmacharya2018, Licht2009, 

Miller2007, Partridge2006, von Rhein2015). The impaired oxygen and nutrient delivery 

secondary to the disordered fetal and post-natal circulation associated with the congenital 

heart lesion contributes to brain injury and impaired brain development in newborns with 

CHD (Lim2016, Limperopoulos2010, Rudolph2016, Sun2015). Yet, the mechanism of 

neurodevelopmental disability in children with CHD is likely multifactorial, with a 

cumulative and complex interplay of cardiovascular physiology and brain abnormalities 

(Marelli2016, Morton2017).

Brain injuries, particularly white matter injury (WMI) and small strokes are now routinely 

reported in neonates with CHD (Beca2013, Dimitropoulos2013, McQuillen2007). WMI is 

the most consistently identified pattern of brain injury in the term neonates with CHD 

(Licht2004, Mahle2002, McQuillen2007, Miller2004). Previous studies have demonstrated 

that lower birth GA in term neonates with CHD is associated with higher mortality and 

worse neurodevelopmental outcomes (Goff2012, Steurer2017). Yet, the link between the 

extent of WMI in the term neonate with CHD and birth GA is uncertain.
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WMI in term neonates with CHD seems to resemble that identified commonly in preterm 

neonates (Beca2013, Dimitropoulos2013, Guo2017, McQuillen & Miller2010, 

Peyvandi2016). In preterm neonates, WMI is readily visualized on T1-weighted MRI 

acquired in the first weeks of life as areas of hyper-intensity, with a predilection for the 

central periventricular white matter (Guo2017, Miller & Back2014, Raybaud2013). WMI in 

preterm neonates is related to the selective vulnerability and maturation arrest of the pre-

oligodendrocyte (pre-OL), with the topography of WMI predicted by the spatial distribution 

of these vulnerable cells (Riddle2006). However, the spatial distribution of WMI in these 

two populations has never been rigorously compared. As the relationship of WMI with 18-

month neurodevelopmental outcomes in preterm neonates is mediated by lesion volume as 

well as by lesion location, understanding the spatial distribution of WMI in the term neonate 

with CHD is an important next step (Guo2017).

To fully characterize WMI in term neonates with CHD, we quantitatively assessed the 

volume and location of WMI and developed probabilistic WMI maps. We examined clinical 

risk factors for WMI volumes, hypothesizing that younger gestational age at birth would 

predict greater WMI volume, independent of other established clinical risk factors for WMI. 

Oligodendrocyte progenitor cells in supratentorial white matter demonstrate regional 

variability in their maturation: earlier maturation in central regions, followed by posterior 

and then anterior white matter (Volpe2000). Therefore, we compared the pre- and post-

operative WMI in CHD neonates and hypothesized that these neonates would exhibit a 

posterior to anterior predominance of WMI that coincides with the expected progression of 

oligodendrocyte lineage maturation. We then compared the probabilistic maps in neonates 

with CHD relative to maps developed in preterm neonates scanned with similar parameters. 

We hypothesized that WMI in term neonates with CHD would be most prevalent in anterior 

and posterior, rather than central white matter.

2. METHODS

2.1 Study Population

225 term born neonates with congenital heart diseases (CHD) (149 boys, 66.2%, mean birth 

GA: 39 weeks) who were admitted to British Columbia’s Women’s Hospital, University of 

British Columbia (UBC), the University of California San Francisco Benioff Children’s 

Hospital (UCSF), or University Children’s Hospital Zurich (UCZ) were enrolled in 

prospective cohort studies at each centre. Of these newborns, nine were excluded for 

congenital infections or genetic disorders, or because surgery was delayed beyond 3 months 

of life, for a final cohort of 216 neonates. Clinical data of these CHD neonates were 

collected prospectively and are summarized in Table 1. Cardiac diagnoses included patients 

with D-Transposition of the great arteries (n=118), single ventricle physiology (n=64), and 

others lesions (n=29) such as double outlet right ventricle (DORV), ventricular septal defect 

(VSD), and tetralogy of Fallot (TOF).

Written informed consents were obtained from the legal guardians of enrolled neonates. The 

Clinical Research Ethics Board at each study site reviewed and approved the study.
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2.2 Brain Imaging and Injury Scoring

A total of 186 (UBC: 69, UCSF: 106, UCZ: 11) pre-operative (median age: 39.7 weeks; 

IQR=38.7–40.8) and 172 (UBC: 58, UCSF: 101, UCZ: 13) post-operative (median age: 42.1 

weeks; IQR=40.7–43.4) scans were acquired during the study period using optimized 
scanning protocols with dedicated neonatal head coils at UBC and UCSF. 161 neonates had 

both pre- and post-operative scans. Brain MRI acquisition were carried out on a 1.5T 

Siemens Avanto scanner (Erlangen, Germany) at UBC, on a 1.5T GE Signa Echo-Speed 

system and a 3T GE Signa Discovery MR750 system (Waukesha, USA) at UCSF, and on a 

3T GE Signa HDxt (Waukesha, USA) at UCZ. The following MRI parameters were used for 

the 3D volumetric T1-weighted acquisitions (TR/TE/FOV/slice thickness/Gap/flip angle): 

UBC: 36ms/9.2ms/20cm/1mm/0mm/30°/; UCSF: 1.5T 35ms/6ms/22cm/1mm/0mm/35°, 3T 

10.4ms/4.3ms/18–20cm/1mm/0mm/15°/TI: 450ms; UCZ: 11.4ms/4.8ms/18–

20cm/1mm/0mm/13°/TI: 450ms.

Brain abnormalities on each MRI were scored by experienced neuroradiologists blinded to 

the clinical history of each neonate (Dimitropoulos2013) with demonstrated high inter-rater 

reliability of the scores used to assess on the severity of brain injury (Block2010).

2.3 Quantitative Assessment of WMI

Punctate WMI was characterized as areas of T1 hyperintensity and was manually delineated 

on 109 scans: 50 pre-operative [median age: 40 weeks, IQR: 38.6–41.2] and 59 post-

operative [median age: 41.9 weeks, IQR: 40.5–43.2]) 3D T1-weighted images of 86 term 

CHD neonates by a trained rater (TG) and reviewed by an experienced neonatal neurologist 

(SPM). Display software (http://www.bic.mni.mcgill.ca/ServicesSoftwareVisualization) that 
allows simultaneous view of the brain on coronal, axial, and sagittal planes was used for 
manual WMI segmentation. Tricubic interpolation permitted consistent differentiation of 
WMI from surrounding tissue and only those voxels containing over 50% of WMI were 
considered. High inter-rater reliability was achieved in WMI segmentation with an average 
Dice’s Kappa value of 0.81. The total WMI volume and the percentage of WMI volume to 
total brain volume of each neonate were calculated based on the manual segmentation of all 
punctate WMI lesions on the brain image (number of lesions ≥1). Detailed methods were 

previously described (Guo2017). If WMI was identified on both the pre- and postoperative 

T1-weighted images of a neonate, the largest total WMI volume was included in the 

statistical analysis.

2.4 White Matter Injury Maps for Term Neonates with CHD

To assess the WMI pattern in the brain of the term CHD population, probabilistic WMI 

maps were developed: (1) the total probabilistic WMI map, and (2) the pre- and post-

operative WMI maps. A brain template of term CHD neonates was specifically built as the 

common space for the development of the WMI maps. MICe-build-model (Friedel2014) was 

used to create the template with 64 quality-inspected and age-appropriate T1-weighted 

images (median age: 40.3 weeks, IQR=39.7–40.7).

The total WMI map was generated by nonlinearly mapping (Avants2008) the manually 

segmented WMI from each neonate brain image to the CHD brain template, incorporating 
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the WMI of all 86 neonates. The colour of each voxel on the map reflects the cumulative 

number of patients who had WMI lesions at the homologous brain region. This map depicts 

the spatial distribution pattern of WMI across patients within the common brain space and 

demonstrates the brain regions that are vulnerable to WMI in term CHD neonates. Using the 

same method, a separate WMI map was also created for the neonates from each centre 

(UBC: 29 neonates, UCSF: 43 neonates, UCZ: 14 neonates).

Since the maturation of the oligodendrocyte progenitor cells in supratentorial white matter 

follows a central to posterior to anterior trajectory (Volpe2000), we developed two separate 

WMI maps representing the pre- and post-operative WMI respectively to assess if any 

distinguished spatial distribution pattern exits between the pre- and post-operatively 

identified WMI. The WMI lesion areas that are common to both pre- and post-operative 

images and unique to each group are represented in different colours (Common: white; pre-

operative only: magenta; post-operative only: blue).

A high-performance nonlinear registration algorithm (Avants2008) was used to ensure 

accurate mapping of WMI from each neonate to the brain template. Registration results were 

assessed by visually examining the overlap of homologous regions of the CHD brain 

template and the brain image of each neonate registered to the template. Furthermore, to 

account for potential anatomical variability, punctate WMI that occurred in two or more 

term CHD neonates at a homologous region on each WMI map were considered and WMI 

lesions seen only in a single neonate were omitted.

2.5 Comparison of WMI between Term CHD and Very Preterm Neonates

As WMI is the characteristic brain injury pattern in preterm neonates (Miller & Back2014, 

Guo2017), we compared the total WMI volumes of the 86 CHD neonates (median birth GA: 

39.6 weeks, IQR: 38.6–40.9) with those of the 58 preterm neonates (median birth GA: 28.6 

weeks, IQR: 26.3–29.8), adjusting for birth GA, sex, age at scan, and total brain volume. 

The 58 preterm neonates were from a single centre study and their T1-weighted images were 
acquired on the same scanner as those of the 29 CHD neonates from UBC using similar 
imaging protocols. The detailed information of these 58 preterm neonates was described 

previously (Guo2017). The probabilistic WMI maps of the preterm neonates at early-in-life 

and term-equivalent age (TEA) were nonlinearly transformed from the preterm brain to the 

term CHD brain space to allow direct voxel-wise comparison of WMI distribution in these 

two high-risk populations. Three distinguished colours were used to represent the lesions 

that were either common and unique to preterm and CHD neonates to better visualize the 

cross-population comparison.

2.6 Data Analyses

Statistical analyses were carried out using the Statistical Package for the Social Sciences 

(SPSS, v24, IBM). Clinical and demographic variables between the three centres were 

compared using Kruskal-Wallis tests (continuous data) and Chi-square or Fisher’s exact tests 

(categorical data). P values <0.05 were considered statistically significant.

The association between total WMI volume and gestational age at birth was examined using 

multivariable linear regression to account for heart lesion and centre. We then examined 
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whether this relationship was independent of established clinical risk factors for WMI: 

lowest pre-operative arterial saturation, total cardiopulmonary bypass time, and lowest mean 

blood pressure post-operatively.

3. RESULTS

3.1 Study Participants and Clinical Evaluation

Despite differences in several clinical variables across centres, the timing of MRI and the 
incidence of stroke did not differ (see Table 1 for cross centre comparisons).

86 of 216 term newborns with CHD from three centres had WMI on their pre- and/or post-

operative MRI: 26.9% pre-operatively and 34.3% post-operatively (new lesions 20.9%). 

Ranging from minimum of 7 mm3 to maximum of 3212 mm3 (median 88 mm3), the total 
WMI volumes of neonates from the three centres were comparable (p=0.068) (Figure 1). 
The total WMI volume (219.4 ± 490.0 mm3) identified on the 50 pre-operative images was 

similar to the total WMI volume (199.2 ± 346.4 mm3) on the 59 post-operative images.

We then examined the clinical factors associated with WMI volumes in this cohort of term 

neonates with CHD. An increasing volume of WMI across the full cohort (three centres) was 

predicted by lower gestational age at birth (41.1mm3 increase per week decrease gestational 

age; 95% CI 11.5–70.8; p=0.007), when accounting for centre and heart lesion. To account 

for differences in brain size across gestational ages, we also examined the volume of WMI 

as a percentage of total brain volume with similar findings (0.015% increase WMI per week 

decrease gestational age; 95% CI 0.0055%−0.025%; p=0.002), accounting for centre and 

heart lesion.

We then examined whether this relationship was confounded by established clinical 

predictors of WMI in term neonates with CHD, such as lowest arterial saturation, total 

cardiopulmonary bypass time, and lowest mean blood pressure. Even when accounting for 

these other clinical factors, lower gestational age at birth remains a robust predictor of total 

WMI volume, and WMI volume as a percent of total brain volume (Table 2a). The 

relationship of lower gestational age at birth predicting higher maximum WMI volumes 

remains significant, even when accounting for the day of life at surgery in this multivariable 

model (24.6mm3 increase in WMI per week decrease in birth GA, P=0.013, 95% CI 5.4 

−43.7). Finally, we restricted our analysis to the volume of WMI pre-operatively, and find 

that lower gestational age at birth is even more robustly associated with larger WMI 

volumes, even when accounting for potential confounding variables (Table 2b).

3.2 WMI Distribution Pattern in the 3D Brain Space of Term CHD Neonates

The probabilistic WMI map of the 86 CHD neonates with WMI demonstrated that the 

occurrence of WMI follows a characteristic spatial pattern with predilection for anterior and 

posterior rather than central lesions (Figure 2a). Accurate registration of all images to the 
brain template was achieved and excellent overlap was found in homologous regions of the 
template and the brain image registered to the template. The registration accuracy is 
particularly optimized in the subcortical regions, where WMI is located. Strong concordance 

in WMI spatial distribution was observed across the three centres (Figure 2b). WMI in term 
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neonates with CHD were mainly distributed in the intermediate zone (IZ) and/or 

subventricular zone (SVZ) (Figure 2c). The post-operatively identified WMI had 

predominance in the anterior regions relative to the pre-operative WMI (Figure 3).

3.3 WMI in Term CHD Neonates relative to Preterm Neonates

The total WMI volumes in 86 CHD neonates and 58 preterm neonates was not significantly 

different, controlling for birth GA, sex, and age at scan, and total brain volume. As shown on 

Figure 1, WMI evolves from birth to term with the volume of WMI at TEA in the majority 

of preterm neonates being smaller than that at early-in-life. When the WMI of 86 term CHD 

neonates was compared with that of preterm neonates (58 at early-in-life and 41 at TEA) in 

the same brain template (Figure 4), it was apparent that WMI of CHD neonates extended 

more anteriorly and posteriorly with a paucity of central lesions relative to that of preterm 

neonates.

4. DISCUSSION

In this multi-centre study, we demonstrate that WMI in term neonates with CHD has a 

characteristic volume and distribution pattern in the brain. Importantly, there was strong 

concordance in the spatial distribution and burden of WMI across the three centres. The 

topology of pre- and post-operatively identified WMI coincides with the expected regional 

maturation of the oligodendrocyte lineage and supports the selective vulnerability of the 

oligodendrocyte progenitor cells in the pathophysiology of WMI (Volpe2000). A voxel-wise 

comparison of WMI between preterm neonates and those with CHD was enabled by 

nonlinearly accommodating anatomical variability. In support of this idea, term neonates 

with CHD have WMI with a predilection for posterior and anterior white matter in contrast 

with the central predominance of WMI in the neonate born preterm.

Over the last two decades, WMI has emerged as the most prevalent pattern of brain injury in 

the term neonate with CHD (Beca2013, McQuillen2007, Petit2009). WMI is the expected 

pattern of brain injury in the preterm neonate given that the white matter in the third 

trimester of gestation has an abundance of pre-oligodendrocytes (pre-OLs). Pre-OLs are 

recognized to be exquisitely sensitive to hypoxia-ischemia, inflammation, and energy 

deprivation (Back2014; Buser2012). By term-equivalent age, the white matter pre-OLs have 

largely matured to immature oligodendrocytes, a more resistant cell type, explaining the 

much less frequent occurrence of WMI in term neonates exposed to hypoxia ischemia 

(Li2009). Thus, the unexpected frequency of WMI in term neonates with CHD suggested a 

delay in brain maturation (i.e. dysmaturation) such that these term neonates respond to a 

brain insult with a pattern of brain injury expected in preterms.

Brain dysmaturation in term neonates with CHD is now recognized pre-operatively as 

reflected in abnormal brain maturation (Licht2009), volume (von Rhein2015), 

microstructure and metabolism (Miller2007). The onset of this brain dysmaturation begins 

in the third trimester of gestation as demonstrated by fetal MRI and MRS 

(Limperopoulos2010). Thus, we infer that brain dysmaturation provides the substrate for 

WMI in the term neonate with CHD. Given the later occurrence of WMI in the term 

neonates with CHD, relative to the preterm neonates in whom the frequency of WMI peaks 
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at 28 weeks gestation, we hypothesized that we would see a paucity of central WMI as the 

pre-OLs in this area mature before those in posterior and anterior brain regions. Our findings 

support this hypothesis and the link between delayed brain maturation and WMI in the 

neonate with CHD.

As demonstrated previously, WMI in preterm neonates has its prevalence in the intermediate 

zone (IZ) and/or subventricular zone (SVZ) (Kostovic2002, Guo2017). Although clear 
differentiation of IZ and SVZ remains challenging without specific histological markers 
(Fietz2010, Martinez-Cerdeno2012), based on the cross-population comparison, the WMI in 
CHD neonates appears to be similarly distributed to preterms in regards to the “white matter 
layers” (Figure 4). Multiple neuroimaging studies have found association of WMI with 
impaired white matter maturation, microstructure, and connectivity in both preterm neonates 
(Adams2010, Bassi2011, He2015, Smyser2013, Tusor2017) and term neonates with CHD 
(Andropoulos2010, Dimitropoulos2013, Mulkey2014, Partridge2006, von Rhein2015). WM 
microstructure in the corticospinal tract was particularly affected by WMI in preterm 
neonates at TEA (Bassi2011) and newborns with CHD (Mulkey2014, Partridge2006) as 
reflected in reduced fractional anisotropy (FA) values. Our findings suggest that the Corona 
radiata/centrum semiovale and posterior periventricular WM are the most vulnerable to 
WMI in CHD newborns. WMI is emerging as a strong predictor of adverse 
neurodevelopmental outcome at 30 months in term CHD neonates (Peyvandi2018) and 
increased WMI volume was associated with worse motor outcomes at 18 months in preterm 
neonates (Guo2017). As WMI occurs at regions that overlap with important projection and 
association fibres, such as the cortico-spinal tract and superior longitudinal fasciculus (SLF), 
it is not surprising that WMI poses greater risk to neurodevelopmental functions that are 
primarily subserved by these regions. This hypothesis is supported by the quantitative WMI 
assessment in preterm neonates which revealed that WMI lesion locations rather than 
volumes on early scans have greater predictive value to adverse cognitive and motor 
outcomes (Guo2017). It is also important to recognize the complex interplay of delayed 

brain development and injury in this population, such that the injuries themselves are 

associated with further impairments in subsequent brain maturation (Andropoulous2010, 

Dimitropoulos2013, Patridge2006).

Interestingly, the maximal volume of WMI was robustly predicted by lower gestational age 

at birth, even when accounting for heart lesion and previously established clinical risk 

factors for WMI. Lower gestational age at birth superseded these other clinical risk factors in 

magnitude for predicting the extent of WMI. This relationship persisted when accounting for 

age at surgery. As expected, the relationship between lower gestational age and increasing 

WMI volume was particularly apparent when examining of pre-operative WMI. The 

importance of lower gestational age as a predictor of WMI is consistent with the hypothesis 

that brain dysmaturation is the key substrate for the occurrence of this “preterm pattern” of 

brain injury in the term newborn with CHD (Miller & Back 2014). This finding is also 

consistent with observations that lower gestational age at birth in the term neonate with 

CHD predicts higher mortality (Steurer2017) and worse neurodevelopmental outcomes 

(Goff2012). These findings complement descriptions of impaired in utero brain maturation 

related to reductions in cerebral oxygen delivery from CHD (Sun2015). Our findings suggest 

two main sources contributing brain dysmaturation in term neonates with CHD: the in utero 
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effects of CHD and slightly earlier delivery. Determining how these two competing factors 

interact requires further study in cohorts with fetal imaging.

We included the maximum WMI volume of each CHD neonate in our analyses when WMI 

was identified on multiple images of the same participant. The age at MRI for these neonates 
across the three centres was comparable. The quantitative comparison between CHD and 

preterm neonates on WMI load was made with the WMI volumes measured early-in-life for 

the preterm population to allow more accurate representation of the burden of WMI at its 

peak vulnerability (Martinez-Biarge2016). The quantification of WMI is limited by the 

spatial resolution of the brain MRI yet our findings reflect clinically accessible imaging 

resolution. Long-term follow-up of these cohorts is warranted to comprehensively assess 

functional outcomes that are tightly linked to anterior (e.g. executive function, motor 

planning) and posterior brain regions (e.g. vision, facial recognition). Longer term follow-up 

of cohorts with neonatal imaging are also needed to determine how early brain injuries 

contribute to the relationship of brain volumes and functional outcomes reported in 

adolescence (von Rhein2014). Although in our initial analysis, we did not find any 
significant association between the presence of the WMI and the total cerebral volume 
(TCV) (p=0.35), the relationship between WMI and regional gray matter volume deserves a 

thorough investigation for future research. We also recognize that other pathways to adverse 

outcomes exist in CHD neonates, including genetic etiologies. Understanding the genetic 

contributions to WMI risk is an important area for future research.

In conclusion, our findings support the hypothesis that WMI in the term neonate with CHD 

occurs on a substrate of delayed brain maturation and points to the urgent need for 

preventive strategies of this prevalent brain injury.
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Figure 1. Total WMI Volumes in UBC, UCSF, and UCZ Term CHD Neonates and UBC Preterm 
Neonates at Early MRI and Term MRI (mm3)
The total WMI volumes of 29 UBC, 43 UCSF, and 14 UCZ term neonates with CHD, and 

those of UBC preterm newborns at early-in-life (58 images, median postmenstrual age 

[PMA]: 32.2 weeks) and TEA (41 images, median PMA: 41 weeks). UBC-CHD 

(median=84.6mm3, IQR=26–174.7mm3); UCSF-CHD (median=104mm3, IQR=44–

243mm3); UCZ-CHD (median=121mm3, IQR=68–200.8mm3); UBC-Prem at early-in-life 

(median: 43.4mm3, IQR=19.5–361.3mm3); UBC-Prem at TEA (median: 175.8mm3, 

IQR=73.8– 306.0mm3).
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Figure 2. The Probabilistic WMI Map of 86 CHD Neonates and WMI Maps of Three Centres
(a) The probabilistic WMI map of 86 term neonates with CHD overlaid on the T1-weighted 

term brain template, (b) the WMI maps of 29 UBC, 43 UCSF, and 14 UCZ CHD neonates 

respectively, (c) the WMI map of 86 CHD neonates overlaid on a T2-weighted image 

(punctate WMI that occurred in two or more term CHD neonates at a homologous region are 

shown in this colour map and WMI seen only in a single neonate are omitted). a: The 

cumulative (summed) WMI map of 86 neonates is overlaid on the term brain template 

(median age: 40.3 weeks, IQR=39.7–40.7) in axial (top), sagittal (middle), and coronal 

(bottom) planes. The colour bar on the left indicates the colour coding of the WMI 

summation. The maximum value on the map is 10. The cross on the three planes of the brain 

template in the same column of the WMI map is placed at the exactly identical location. b: 
The cumulative WMI maps of 29 UBC, 43 UCSF, and 14 UCZ term CHD neonates overlaid 

on the same term brain template respectively. c: The probabilistic WMI map of 86 term 

CHD neonates nonlinearly transformed and overlaid on the high-resolution T2-weighted 

image of a CHD neonate (postmenstrual age [PMA]: 40.7 weeks). The lesions are seen in 

subventricular zone and intermediate zone. The axial planes along the superior to inferior 

direction are displayed from left to right in the figure.
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Figure 3. Comparison of Pre- and Post-operatively Identified WMI in CHD Neonates
The probabilistic WMI maps of 50 pre-operative (1st column, median age: 40 weeks, IQR: 

38.6–41.2) and 59 post-operative (2nd column, median age: 41.9 weeks, IQR: 40.5–43.2) 

images of CHD neonates, and the comparison of the pre- and post-operatively identified 

WMI (3rd column). The colour bar on the left indicates the colour coding of the WMI 

summation. The maximum values on the pre- and post-operative maps are 6 and 9 

respectively. 3rd column: Voxels in magenta: WMI identified only on pre-op images; Voxels 

in blue: WMI identified only on post-op images; Voxels in white: WMI identified in both 

pre- and post-operative images. Punctate WMI that occurred in two or more term CHD 

neonates at a homologous region are shown in the colour maps and WMI seen only in a 

single neonate are omitted.
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Figure 4. Comparison of WMI Distribution between Term CHD Neonates and Preterm Neonates
a) Comparison of the WMI map of 86 term CHD neonates and that of 58 preterm newborns 

scanned early-in-life overlaid on the T1-weighted term brain template, (b) Comparison of 

the WMI map of 86 term CHD neonates and that of 41 preterm newborns scanned at TEA 

overlaid on the T1-weighted term brain template. Punctate WMI that occurred in two or 

more term CHD neonates at a homologous region are shown in the colour maps and WMI 

seen only in a single neonate are omitted. a-1st column: The cumulative (summed) WMI 

map of 86 term CHD neonates is overlaid on the term brain template in axial (top), sagittal 

(middle), and coronal (bottom) planes; a-2nd column: The cumulative WMI map of 58 

preterm newborns scanned early-in-life; a-3rd column: Comparison of term CHD WMI and 

preterm WMI at early-in-life. b-1st column: The cumulative (summed) WMI map of 86 term 

CHD neonates is overlaid on the term brain template in axial (top), sagittal (middle), and 

coronal (bottom) planes; b-2nd column: The cumulative WMI map of 41 preterm newborns 

scanned at TEA; b-3rd column: Comparison of term CHD WMI and preterm WMI at TEA. 

In a-3rd and b-3rd columns, Magenta: WMI identified only in CHD neonates; Blue: WMI 

identified only in preterm neonates; White: WMI common to both CHD and preterm 

neonates. The colour bar on the left indicates the colour coding of the WMI summation. The 

maximum values on the term CHD, preterm at early-in-life, and preterm at TEA maps are 

10, 14, and 12 respectively. The cross on the three planes of the brain template in the same 

column of the WMI map is placed at the exactly identical location.
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Table 1.

Clinical Factors and Demographics for Term CHD Neonates in UBC, UCSF, UCZ

UBC
n=76

UCSF
n=125

UCZ
n=15 p

Males, No. (%) 54 (71.1%) 79 (63.2%) 11 (73.3%) 0.442

Heart lesion type (%)
1. Transposition of the

great arteries

52 (68.4%) 55 (45.8%) 11 (73.3%)

0.008*2. Single ventricle
physiology

14 (18.4%) 48 (40%) 2 (13.3%)

3. Others 10 (13.2%) 17 (14.2%) 2 (13.3%)

Birth gestational age, weeks
Median [IQR]

39 [38–40] 39 [38–40] 39.2 [38.8–40.1] 0.446

Birth weight, kg
Median [IQR]

3.23 [2.94–3.76] 3.25 [2.98–3.58] 3 [2.79–3.46] 0.607

Birth head circumference cm
Median [IQR]

34 [33–35] 34 [33–35.4] 34 [33.5–35.5] 0.851

Inborn (%) 45 (59.2%) 49 (39.5%) 6 (40%) 0.022*

Small for gestational age (%) 3 (3.9%) 8 (7.0%) 3 (20%) 0.079

Prenatal diagnosis (%) 41 (53.9%) 55 (44.4%) 2 (13.3%) 0.014*

Apgar score at 5 minutes
Median [IQR]

10 [9–10] 10 [9–10] 9 [8–9] 0.002*

SNAP-PE
Median [IQR]

19 [7.5–27.5] 15 [11–19.3] NA 0.226

Lowest saturation level pre-
operative (Arterial)

Median [IQR]

72 [54–83] 71.5 [57.8–82] 57.5 [32–68.3] 0.008*

Balloon atrial septostomy (%) 42 (55.3%) 34 (28.3%) 9 (60%) <0.001*

Cardiopulmonary bypass time,
minutes

Median [IQR]

157 [132–206] 124 [101.3–146] 187 [170.3–207.5] <0.001*

Deep hypothermic circulatory
arrest, minutes
Median [IQR]

0 [0–5.5] 0 [0–6] 0 [0–0] 0.009

Lowest mean blood pressure
post-operative day 1, mmHg

Median [IQR]

40 [36.3–43] NA 38 [35–39] 0.028*

Age at MRI, weeks
Median [IQR]

40.3 [39.3–41.6] 40.4 [39.4–41.7] 40.6[39.8–42.6] 0.591

Stroke (%) 17 (23.3%) 25 (23.4%) 3 (33.3%) 0.79
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Table 2a.

Association of Birth Gestational Age with Maximum Total WMI volume and WMI percentage in Term CHD 

Neonates

WMI volume Percent of WMI to Total Cerebral Volume

Coef. 95% CI p Coef. 95% CI p

Birth gestational age (GA) −20.06 −34.46 - −5.67 0.006* −0.008 −0.013 - −0.003 0.003*

Centre_1 −36.29 −116.19 – 43.62 0.373 −0.006 −0.034 – 0.022 0.69

Centre_2 − 2.92 −85.12 – 79.28 0.944 0.010 −0.02 – 0.039 0.518

Centre_3 Reference Reference

TGA −77.96 −156.05 – 0.14 0.05 −0.031 −0.06 - −0.002 0.034*

SVP −62.37 −141.12 – 16.39 0.121 −0.028 −0.057 – 0.001 0.055

Other Reference Reference

Lowest arterial saturation level pre-operative −1.24 −2.42 - −0.07 0.038* −0.001 −0.001 – 0 0.008*

Total bypass time 0.38 0.03 – 0.74 0.035* 0.0001 1.12E-5 – 0.0001 0.03*

Lowest mean blood pressure post-operative −1.13 −4.21 – 1.95 0.471 0.0001 −0.002 – 0.001 0.378
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Table 2b.

Association of Birth Gestational Age with Pre-operative Total WMI volume and WMI percentage in Term 

CHD Neonates

Pre-op WMI volume Percent of Pre-op WMI to Total Cerebral Volume

Coef. 95% CI p Coef. 95% CI p

Birth gestational age (GA) −42.19 −75.23 - −9.15 0.012* −0.015 −0.027 - −0.003 0.011*

Centre_1 −395.71 −577.96 - −213.46 <0.001* −0.131 −0.195 - −0.068 <0.001*

Centre_2 −405.12 −583.19 - −227.06 <0.001* −0.133 −0.195 - −0.07 <0.001*

Centre_3 Reference Reference

TGA 45.66 −106.83 – 198.14 0.557 0.017 −0.039 – 0.072 0.558

SVP 4.51 −146.95 – 155.97 0.953 0.001 −0.053 – 0.056 0.965

Other Reference Reference

Lowest arterial saturation level pre-
operative

0.512 −2.13 – 3.15 0.704 0.000 −0.001 – 0.001 0.83
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