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Abstract

Purpose—Uneven flow distribution in patients with Fontan circulation is suspected to lead to 

complications. 4D flow MRI offers evaluation using time-resolved pathlines; however, the 

potential error is not well understood. The aim of this study was to systematically assess 

variability in flow distribution caused by well-known sources of error.

Methods—4D flow MRI was acquired in 14 patients with Fontan circulation. Flow distribution 

was quantified by the % of caval venous flow pathlines reaching the left and right pulmonary 

arteries. Impact of data acquisition and data processing uncertainties were investigated by 1) 

probabilistic 4D blood flow tracking at varying noise levels; 2) down-sampling to mimic 

acquisition at different spatial resolutions; 3) pathline calculation with and without eddy current 

correction and; 4) varied segmentation of the Fontan geometry to mimic analysis errors.

Results—Averaged among the cohort, uncertainties accounted for flow distribution errors from 

noise ≤3.2%, low spatial resolution ≤2.3–3.8%, eddy currents ≤6.4% and inaccurate segmentation 

≤3.9–9.1% (dilation and erosion, respectively). In a worst case scenario (maximum additive errors 

for all 4 sources) flow distribution errors were as high as 22.5%.

Conclusion—Inaccuracies related to postprocessing (segmentation, eddy currents) resulted in 

the largest potential error (≤15.5% combined) while errors related to data acquisition (noise, low 

spatial resolution) had a lower impact (≤5.5%–7.0% combined). While it is unlikely that these 

errors will be additive or affect the identification of severe asymmetry, these results illustrate the 
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importance of eddy current correction and accurate segmentation to minimize Fontan flow 

distribution errors.
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Introduction

Congenital heart disease (CHD) is the most common birth defect, affecting 0.9% of all live 

births (1). Single ventricle physiology is one of the most severe forms of CHD. These 

patients are born with only one fully functioning ventricle (e.g. hypoplastic heart syndrome, 

tricuspid atresia, double inlet left ventricle) and typically undergo multiple palliative 

vascular surgical procedures to achieve the Fontan circulation (2,3): venous return from the 

upper and lower body, i.e. superior vena cava (SVC) flow and inferior vena cava (IVC) flow, 

is routed directly to the lungs via connections with the left and right pulmonary arteries 

(LPA, RPA). Despite surgical success, it is unclear why some patients develop “failing 

Fontan” (impaired cardiac output, oxygen saturation, exercise capacity) while others remain 

asymptomatic (4). In this context, uneven distribution of venous return from the lower body 

(i.e. via the IVC) to the LPA and RPA is suspected to cause pulmonary arteriovenous 

malformations, leading to negative outcomes (5–10). Specifically, IVC blood carries a 

“hepatic factor” produced in the liver, hypothesized to protect against the development of 

complications in the lung vasculature. Malformations tend to form in the lungs when hepatic 

venous blood flow has been excluded from the pulmonary circulation (e.g. after the Glenn or 

Kawashima procedure) and tend to resolve after the re-inclusion of hepatic venous flow (i.e. 

after Fontan completion surgery). Recent studies (11–13) have shown that 4D flow MRI is 

uniquely suited to study this complex disease and to quantify uneven flow distribution 

asymmetry (% flow to LPA or RPA) at the Fontan connection. However, previous 4D flow 

MRI studies have assessed Fontan flow distribution using blood flow visualization based on 

time-resolved 3D pathlines and did not account for underlying inaccuracies associated with 

data acquisition and postprocessing as summarized in Table 1.

The purpose of the study was to systematically assess the effects of noise and other potential 

error sources on the quantification of flow distribution measurements in patients with Fontan 

circulation. Recently, a new approach utilizing probabilistic 4D blood flow tracking (14,15) 

has been presented that directly integrates local estimates of velocity noise into the analysis 

to report the level of statistical accuracy in flow visualization. In addition to noise-related 

uncertainties, we selected error sources (see Table 1) that had an unknown impact on Fontan 

flow distribution and were feasible to test with the given data (i.e. low spatial resolution, 

background phase errors (16) and Fontan segmentation). We hypothesized that 4D flow MRI 

can be reliably employed to quantify Fontan flow distribution even with these potential 

errors taken into account.
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Methods

Theory

Pathlines are time-resolved particle traces that display the spatial trajectory (X, Y, Z) of an 

emitted virtual mass-less particle in a time-resolved 3D velocity vector field (ux, uy,uz) as it 

flows along at time t (Figure 1a). The change in the position of the particle over some time 

interval Δt is described as (17)

X(t + Δt) = X(t) + Δtux(X(t), Y(t), Z(t), t),
Y(t + Δt) = Y(t) + Δtuy(X(t), Y(t), Z(t), t),
Z(t + Δt) = Z(t) + Δtuz(X(t), Y(t), Z(t), t)

(1)

where the velocity components ux, uy and uz are determined by the position (X(t), Y(t), Z(t)) 
and time t. Thus, the position at time t + Δt depends on the previous position, at time t, plus 

some distance traveled during Δt. To visualize flow distribution at the Fontan connection, 

pathlines are released from multiple emitter points in the caval veins as shown for an 

example Fontan patient in Figure 2a–c.

When a pathline is released from emitter point (X(t0), Y(t0), Z(t0)) at initial time t0, only one 

unique flow trajectory is determined (Figure 1c: left). To fully account for the inherent 

noise-related uncertainties in 4D flow MRI data, 4D probabilistic flow tracking (14,15) is 

based on the distribution of possible flow trajectories. Since a theoretical derivation of the 

distribution is difficult due to high dimensionality and the recursive nature of pathlines, the 

alternative approach of Monte Carlo (18) simulation is utilized. Randomly sampled velocity 

noise is added to all voxels and time-frames of the velocity data field for multiple repeat 

trajectory calculations (experiments Nexp). When noise is taken into account at each spatio-

temporal step (Figure 1b), multiple resulting positions can be generated and a number of 

possible flow trajectories, or probabilistic pathlines, can originate from a single emitter point 

(Figure 1c: right). Importantly, variations in the trajectory of a probabilistic pathline can 

propagate through time because the location after any given time-step depends on the noise-

varying velocity vector of the voxels in all previous time-steps.

Study Cohort

4D flow MRI was acquired in 14 patients (age: 17±7, 8 to 30 years, 6 females) with Fontan 

circulation (8 extracardiac, 6 lateral tunnel). The time between Fontan completion and the 

4D flow MRI acquisition was 13±6, range=4–18 years. Institutional Review Board (IRB) 

approval was obtained for this HIPAA compliant study and informed consent was obtained 

from all participants for this prospective evaluation.

MR Image Acquisition

All patients underwent standard-of-care cardiac MRI (1.5 T, Avanto, Aera, Siemens, 

Germany) with administration of contrast agent (0.12 ml/kg gadofosveset trisodium, 

Lantheus Medical Imaging, Inc., N. Billerica, MA) as well as free-breathing navigator and 

cardiac gated 4D flow MRI (19). Imaging parameters for 4D flow MRI: spatial resolution = 
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1.9–3.6 × 1.3–2.5 × 1.9–3.3 mm3, whole heart coverage (FOV = 250–320 × 141–280 mm2, 

slab thickness = 96–147 mm), temporal resolution = 32.2–44.0 ms, TE = 2.4–3.2 ms, TR = 

4.6–5.7 ms, 10–24 phases, flip angle = 7–15°, bandwidth = 450–800 Hz/pixel, velocity 

sensitivity (venc) = 0.7–1.5 m/s. The venc was typically set to optimize flow in the Fontan 

baffle but would have been increased if stenosis was suspected for vessels in the imaging 

volume. Imaging acceleration by generalized auto-calibrating partially parallel acquisition 

(GRAPPA, R=2) (20) was used for 6 patients until spatio-temporal (k–t) GRAPPA (R=5) 

(21,22) became available for 8 patients. Total 4D flow MRI scan time was 10 ± 4 minutes, 

range = 4 to 18 minutes.

Image Analysis

The 4D flow MRI velocity data were analyzed according to a previously described pre-

processing workflow (23), i.e. corrected for Maxwell terms, eddy currents, noise masking of 

areas outside of flow regions, and velocity aliasing (24,25). A time-averaged 3D phase 

contrast angiogram (PC-MRA) was calculated to depict vessel anatomy (26). The Fontan 

volume was segmented from the PC-MRA and further divided into the SVC and IVC 

(Mimics Innovation Suite; Materialise, Leuven, Belgium). The SVC and IVC volumes were 

selected to include the entire region of caval flow leading up to the Fontan connection 

(Figure 2d). The manual steps in the data analysis workflow included selection of pre-

processing settings (i.e. thresholds for eddy current correction and noise-masking, level of 

antialiasing), segmentation of the Fontan volume from the PC-MRA and placement of 

analysis planes in the pulmonary arteries.

Systematic Assessment of 4D flow Data Uncertainties of Fontan Flow Distribution

The effects of potential error sources were simulated and flow distribution was quantified 

using pathline calculation. These results were compared to the traditional flow distribution 

results (i.e. evaluated at σ=0 m/s). Note that % flow to the LPA + % flow to the RPA = 100% 
by definition so only one side needs to be evaluated to understand these errors. Results for % 

flow to LPA are given. Analysis was performed for both IVC and SVC flow.

Noise + probabilistic mapping—The probabilistic flow tracking simulation was 

developed in-house (Figure 3–Figure 4) (Matlab; The MathWorks, Natick, Massachusetts, 

USA). For calculating probabilistic pathlines, the simulation steps were as follows— Step 1: 
Random Gaussian time-varying noise (μ = 0, σ = velocity noise) was generated and added to 

the 4D datasets independently for each velocity direction (i.e. ux, uy and uz) to generate 

noisy velocities uxσ, uyσ and uzσ. Step 2: The velocity datasets were masked by the Fontan 

volume and interpolated to refine the intervals of the 4D grid to 1.5 mm voxels and by a 

factor of 2 in time. Step 3: Pathlines were emitted from the IVC and SVC volumes (number 

of emitters: Nem = 30 emitters per cm3 at each time-frame) into the Fontan volume, utilizing 

uxσ, uyσ and uzσ for trajectory calculations. The change in the position (Xσ, Yσ, Zσ) of the 

particle over the time interval Δt was then determined by
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Xσ(t + Δt) = Xσ(t) + Δtuxσ(Xσ(t), Yσ(t), Zσ(t), t),
Yσ(t + Δt) = Yσ(t) + Δtuyσ(Xσ(t), Yσ(t), Zσ(t), t),
Zσ(t + Δt) = Zσ(t) + Δtuzσ(Xσ(t), Yσ(t), Zσ(t), t)

(2)

Steps 1–3 were repeated for multiple experiments, Nexp = 100, each with newly generated 

random time-varying Gaussian noise applied. For each experiment, the flow distribution was 

quantified as the number of pathlines reaching analysis planes in the RPA or LPA (i.e. 

placed close to the Fontan connection), normalized to the total number reaching either side. 

The probabilistic flow distribution was then determined as the mean ± standard deviation 

(SD) over all Nexp experiments. SD was used as the measure of flow distribution uncertainty.

The simulation described above was run with σ = 0.02, 0.04, 0.06, 0.08, and 0.10 m/s, 

corresponding to velocity noise levels of 2%, 4%, 6%, 8% and 10% of a typical venc of 1 

m/s. The purpose was to systemically investigate the behavior of the pathline calculations as 

velocity noise levels increase. Thus, for each of the 14 patients, the probabilistic flow 

distribution was calculated 5 times (i.e. one for each noise level), each with Nexp = 100 

experiments.

For each patient dataset, the true patient-specific velocity noise was estimated as the 

standard deviation of the velocity in a volume of static tissue. A volume of interest covering 

10 slices in the liver was identified using magnitude images. This volume of interested was 

then applied to mask velocities ux, uy and uz. The standard deviation of the velocities in this 

volume of interest, across all time-frames and all velocity directions, was then calculated as 

the patient-specific estimation of velocity noise. This value was used to determine the 

associated patient-specific probabilistic flow distribution by interpolating among the 

simulated results.

Spatial resolution—A subset of patients was identified with at least 3.0 mm acquired 

spatial resolution in all directions (i.e. n=5: 1.9–3.0 × 1.3–1.9 × 1.9–2.5 mm3). The acquired 

data was down-sampled to 3.0 mm and 3.5 mm isotropic resolution. Using the down-

sampled data, new pathlines were calculated and the resulting flow distributions were 

compared to the traditional results (i.e. using the true acquired spatial resolution).

Eddy currents—After correcting for background phase errors from Maxwell terms and 

concomitant gradients during image reconstruction, phase errors due to eddy currents remain 

a critical consideration (16). Thus to understand the magnitude of the related error, all 

Fontan patients were evaluated without any correction for eddy current induced phase offset 

errors. Pathlines were calculated and the resulting flow distributions were compared to the 

traditional results (i.e. utilizing linear slice-wise eddy current correction with a user-

optimized threshold setting for the identification of static tissue).

Fontan segmentation—The effects of systematic underestimation and overestimation of 

the Fontan segmentation was investigated. For all Fontan patients, 2 additional 

segmentations were generated (i.e. using 3D erosion by 1 voxel with 6-connectivity and 
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dilation by 1 voxel with 6-connectivity) and used as the new anatomical bounds for pathline 

calculation. Flow distribution was quantified and compared to the traditional results (i.e. 

using the manually segmented Fontan volume).

Statistical Analysis

The Wilcoxon rank sum test was used to compare maximum noise-related uncertainties in 

flow distribution from data acquired with GRAPPA R=2 and R=5 and medians and p-values 

were reported. To determine the effects of low spatial resolution, eddy currents and 

inaccurate Fontan segmentation on flow distribution, Bland-Altman analysis (27) was 

performed, giving the mean difference (d̄) and limits of agreement (d̄ ± 1.96 * dstd standard 

deviation of the differences). In addition, root mean square error was calculated as 

RMSE = 1
N ∑i = 1

N (yi − y∼i)
2 where yi was the measured value for caval flow distribution i, ỹi 

the value after simulation of potential error sources for caval flow distribution i, and N the 

total number of IVC and SVC flow distributions evaluated (i.e. twice the number of patients 

included).

Results

The findings for flow distribution for all patients based on traditional pathlines, i.e. σ=0 m/s 

so no noise added in the simulation, are shown (Figure 5). Four patients had preferential (i.e. 

absolute difference between flow distribution to the LPA and RPA ≥ 20%) IVC flow to the 

LPA, 5 patients had preferential IVC flow to the RPA and 5 patients had non-preferential 

IVC flow. Four patients had preferential SVC flow to the LPA, 9 patients had preferential 

SVC flow to the RPA and one patient had non-preferential SVC flow.

The processing time for the probabilistic simulation for each patient was typically 2 hours 

for each emitter volume and each noise level. The simulation time was mainly limited by the 

4D interpolation step which occurs at every experiment (i.e. Nexp = 100). There was one 

case, Patient 4: SVC flow, where for a small number of experiments (i.e. 1/100, 1/100 and 

3/100 experiments for simulations at σ = 0.06, 0.08 and 0.10, respectively) no pathlines 

reached either the LPA or RPA, and so these 5 experiments were ignored.

Noise-related Effects

Examples are shown of traditional and probabilistic pathlines for three patients (Figure 6). 

When analyzing the data using traditional pathlines, i.e. no noise was added (left column), 

the first patient (top row) had preferential IVC flow to the LPA, and other two patients had 

non-preferential IVC flow. The last patient (bottom row) had preferential SVC flow to the 

LPA and the other two patients had preferential SVC flow to the RPA. When noise was 

added in the simulations, the uncertainty in flow distribution increased and more noise in the 

pathline visualizations can also be appreciated. Taking into account the resulting 

uncertainties due to noise, preferential flow remained the same in these cases.

Figure 7 shows the results for the mean and SD of the flow distributions for all IVC and 

SVC flow simulations. The mean flow distribution (see Figure 7a) remained consistent 

across noise levels, with absolute changes of 1.5 ± 1.1 [0.0 4.8] %—the largest change (i.e. 
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4.8%) was seen in Patient 12: IVC flow to the LPA where the mean went from 53.5% 

(traditional pathlines, i.e. σ = 0 m/s) to 48.7% (σ = 0.10 m/s). The uncertainty of flow 

distributions (see Figure 7b) ranged from none to 5.4%—the smallest uncertainty (i.e. none) 

was seen in Patient 10: SVC flow where no pathlines emitted from the SVC reached the LPA 

during the simulations and the largest uncertainty was seen in Patient 4: IVC flow to the 
LPA where SD was 5.4% (σ = 0.10 m/s).

Comparing scans acquired with R=2 to those acquired with R=5 at simulated noise levels, 

there was no significant difference between the maximum uncertainty in flow distributions 

for IVC and SVC combined (2.0% vs 2.3%, p=0.73) or for IVC (2.0% vs 2.9%, p=0.18) or 

SVC alone (2.2% vs 1.7%, p=0.59).

Estimated velocity noise levels were 2.2 ± 0.7 [1.2 3.5] % of the venc for each patient (Table 

2). At the estimated noise level for each patient, the change in mean flow distribution from 

the no noise added case was within 1.0% and uncertainty was ≤2.2%, resulting in a 

combined potential error of 3.2%.

Spatial Resolution, Eddy Currents and Segmentation Effects

The results simulating other potential errors sources are shown as Bland-Altman plots with 

the mean difference and limits of agreement reported (Figure 8). Errors in flow distribution 

increased from RMSE=2.3% to 3.8% as the acquired spatial resolution was down-sampled 

to 3.0 mm and 3.5 mm, respectively. In addition, variations were observed due to eddy 

currents (RMSE=6.4%) and with Fontan segmentation erosion (RMSE=9.1%) or dilation 

(RMSE=3.9%). When evaluating SVC flow for patient 4 with Fontan erosion, no pathlines 

reached either the RPA or LPA and this quantification was not included in the erosion study.

Combining Errors

Patient-specific errors in flow distribution from data acquisition-related effects (noise, spatial 

resolution) could be as high as 3.2% for noise (i.e. uncertainty 2.2% + change in mean 1.0%) 

and as high as 3.8% for low spatial resolution, for a combined effect of up to 7.0% (i.e. 3.2% 

+ 3.8%). In addition, data processing-related sources (eddy currents, Fontan segmentation) 

introduced combined errors as high as 15.5% (i.e. 6.4% + 9.1%). Thus, the resulting worst-

case Fontan flow distribution error was as high as 22.5 %.

Discussion

After investigating sources of potential error in Fontan flow distribution, inaccuracies 

associated with post-processing (vessel segmentation, eddy currents) resulted in the highest 

flow distribution error (i.e. as high as 15.5% combined) while data acquisition sources 

(noise, low spatial resolution) had a much lower impact (i.e. as high as 5.5%–7.0% 

combined). With all of these factors working together, the maximum resulting error was as 

high as 22.5%. Preferential caval flow has been previously considered when the absolute 

difference between flow distribution to the LPA and RPA is ≥20% (11,13,28). Thus, 

understanding the variability in flow distribution quantification is important for identifying 

preferential vs. non-preferential flow. While it is unlikely that these errors would be entirely 

additive or affect the ability to identify patients with severe flow asymmetry, these results 
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point out that even at low spatial resolution and when taking into account the noise-related 

variability, the majority of errors in flow distribution quantification can be minimized during 

the analysis process by performing eddy current correction and accurate Fontan 

segmentation. Also, when considering potential errors from Fontan segmentation, i.e. 

dilation (≤3.9%) vs. erosion (≤9.1%), is better to err on the side of overestimation (i.e. 

dilation) of the Fontan volume than underestimation (i.e. erosion).

In a previous study from our group (29), noise was added to Fontan velocity datasets for 

comparing viscous dissipation measured by computational fluid dynamics and 4D flow 

MRI. When adding noise to the down-sampled CFD data (i.e. to simulate MRI data), a 

significant increase was seen in viscous dissipation (i.e. the noisy data had increased spatial 

gradients). However, when assessing the relative relationships between patients, the results 

were comparable. The approach here was different in that we were starting with 4D velocity 

data that was measured and thus has inherent noise. Nevertheless, even when adding high 

levels of noise to the velocity data the variations in flow distribution remained relatively low 

(i.e. uncertainty levels ≤ 5.4% for velocity noise levels at 10% of a typical venc). It makes 

sense that viscous dissipation would be inherently more sensitive to noise that flow 

distribution. In addition, flow distribution was normalized to the total number of pathlines 

reaching either side in order to be robust to the effects of pathline truncation (i.e. pathlines 

that due to noise, partial volume effects, etc. do not reach either pulmonary because they first 

become clipped by the vessel wall).

This study has limitations. The method for determining the estimated velocity noise in these 

datasets was based on the standard deviation of the velocities in volumes of interest in a 

region of static tissue (i.e. the liver). The results in our study were lower than those in a 

previous study by Friman et al. (14), e.g. 1.2–3.5% vs. 4.5% of venc, respectively. While the 

increase in voxel size in our study accounts for improvements in the velocity noise, 

additional methods to systematically assess velocity noise may be explored in future studies. 

We did not scan any subjects with both GRAPPA R=2 and R=5 for direct comparison in this 

study but the results from these techniques were found to be comparable in a previous study 

from our group (21). For the probabilistic simulations, using multiple repeat trajectory 

calculations higher than Nexp = 100 was not explored, but since there was low variation for 

each patient among the mean probabilistic flow distributions (i.e. see the stability across 

noise levels in the top of Figure 7), we believe that 100 realizations is sufficient for this 

study. That only Gaussian noise was applied in the simulations is a potential limitation, 

although with adequate signal to noise this is a reasonable approximation (15,30). The 4D 

velocity data was interpolated to 1.5 mm spatial resolution and by a factor of 2 in time. 

While a higher level of interpolation would be preferred, this study was limited due to the 

method of interpolation used in the simulations and the implementation and thus ran 

robustly for all patients using these settings. Future work will include updating the 

simulation to allow for a more highly refined grid to assess the impact on probabilistic 

tracking results. Since the purpose of this study was to assess potential errors in flow 

distribution quantification, a simple pathline calculation algorithm was utilized to maintain 

generality—the idea being that a more advanced technique will likely have built in some 

robustness to noise-related effects and other potential errors. Future studies should explore 

advanced techniques in pathline calculation.
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Due to the interleaved flow imaging acquisition scheme, the temporal resolution has only 

certain allowable settings and ~40 ms is typically used in cardiovascular applications. Thus 

we did not perform a systematic down-sampling of the acquired temporal resolutions. Future 

studies are warranted to investigate the effects of temporal resolution by acquiring 4D flow 

MRI with high temporal resolution (~20 ms) to then down-sample accordingly. This will, 

however, take the twice the scan time and thus may not be feasible in a clinical setting. 

While the presented data illustrate the precision of the studied method, to gain further 

theoretical understanding of the ability of 4D flow MRI to accurately quantify flow 

distribution, a controlled phantom experiment should be utilized to acquire at high temporal 

and spatial resolutions to then down-sample and systematically test the effects. In addition, a 

more systematic analysis of potential error sources, particularly for the relatively high 

variations related to eddy currents and segmentation and also for the physiologic sources of 

inaccuracy not investigated here (i.e. bulk and respiratory motion) may be the focus of 

further research. Testing the effects of physiological error sources could be accomplished 

using repeated scans and by quantifying flow distribution from the main pulmonary artery to 

the left and right lung.

In conclusion, when evaluating Fontan flow distribution using 4D flow MRI, the fluctuations 

induced by vessel segmentation and eddy currents appeared to be the largest potential 

sources of error while measurement noise and low spatial resolution had a lower impact. 

Future work is warranted to study physiological error sources, i.e. bulk and respiratory 

motion, and the diagnostic impact of the current findings, i.e. how incorporating errors due 

to noise and other potential error sources into flow distribution quantification may help with 

clinical decision-making.
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Figure 1. 
Particle trace pathlines. a) Idealized pathline calculation. Top: Simplified 2D velocity field 

(ux, uy) with constant velocity magnitude V and changing velocity direction for 3 successive 

time-frames, t0-t1, t1-t2 and t2-t3, in a region containing 4 voxels. Bottom: A time-resolved 

pathline is emitted from location (X(t0), Y(t0)) = (0, 0) where ux (X(t0) = 0, Y(t0)=0, t0-t1) = 

0 and uy (X(t0) = 0, Y(t0)=0, t0-t1) = V. This results in particle motion to (0, VΔt) where Δt 
is the time between frames. Thus at t1 the particle has traversed to location (X(t1), Y(t1)) = 

(0, VΔt) where ux (X(t1) = 0,Y(t1) = VΔt, t1-t2) = V and uy (X(t1) = 0,Y(t1) = VΔt, t1-t2)= 0. 

Stepping through each time-frame, the resulting pathline trajectory (X(t), Y(t)) is shown by 

the dashed line. Note the voxels of the velocity field used to determine the pathline 

trajectory for each time-frame are shaded gray. b) Noise added to the velocity field generates 

a probabilistic pathline from the same emitter location. c) Schematic illustration of 

probabilistic flow tracking approach in Fontan circulation for one emitter point (X(t0), Y(t0), 
Z(t0)). Left: The dashed lines represent the pathline trajectory for 3 successive time-frames. 

When velocity noise is not considered, there is only one possible flow pathway from this 

emitter point. Right: To see the effects of varying local measurement uncertainty, random 

time-varying velocity noise is added to the velocity data field for three repeat trajectory 

calculations (experiments), i=1 to Nexp = 3, using a Monte Carlo simulation approach. For 

the same emitter point, multiple probabilistic pathlines are thus generated (i.e. the red, 

orange and green dashed lines are the pathlines generated from experiments 1, 2 and 3, 
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respectively). The resulting locations are labeled as (X(t), Y(t), Z(t))i corresponding to the 

location at time t during experiment number i.
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Figure 2. 
Fontan flow visualization and distribution analysis. a–c) To visualize the distribution of 

blood flow originating in the caval veins (i.e. IVC and SVC) into the pulmonary arteries (i.e. 

LPA and RPA), time-resolved particle trace pathlines are emitted from locations in the IVC 

and SVC. The time-averaged PC-MRA (gray) depicts the cardiovascular anatomy. d) Fontan 

flow distribution analysis volumes and planes. The Fontan volume is shown in gray. The 

IVC and SVC volumes were separated from the Fontan volume to be used as emitter 

volumes. Analysis planes in the LPA and RPA were placed close to the Fontan connection to 

capture flow pathlines reaching either vessel.
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Figure 3. 
Probabilistic flow distribution quantification. For an example patient, the simulation is 

shown with σ = 0.06 m/s as input. After completing steps 1–3, the first experiment is shown 

(top right). Steps 1–3 are repeated multiple times (Nexp=100) to give the final probabilistic 

flow distribution result (bottom right) where uncertainty values (in % flow distribution) are 

underlined.
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Figure 4. 
Top: Pathlines without and with noise added. Traditional pathlines are shown on the left (σ = 

0 m/s). For comparisons, probabilistic simulations are shown with different noise levels, i.e. 

σ = 0.06 m/s (middle) and σ = 0.10 m/s (right). Bottom: The mean flow distribution is 

shown as the experiments were completed from 1 to Nexp=100 at two different noise levels 

(i.e. σ = 0.06 m/s and σ = 0.10 m/s) for the IVC (left) and SVC (right) simulations.
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Figure 5. 
Traditional pathlines results (i.e. σ = 0 m/s). Boxplots and scatterplots (i.e. showing each 

data point) are shown. The data points showing preferential flow, i.e. absolute difference 

between flow distribution to the LPA and RPA is ≥20%, are shaded (dark gray = to the LPA, 

light gray = to the RPA).
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Figure 6. 
Flow distribution results. Traditional pathlines (left) and probabilistic simulation results at 

two noise levels (σ = 0.04 m/s: middle, σ = 0.10 m/s: right) are shown for three patients: A, 

B and C = 3, 4 and 12, respectively). For each noise level, the flow distribution results (in %) 

for all 100 experiments are reported and the probabilistic pathlines from 5 experiments are 

visualized.
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Figure 7. 
Probabilistic flow distribution results with increasing levels of added velocity noise (i.e. 

none to 10% of typical venc). For each patient, the mean of the % flow distributions (i.e. 

among experiments during simulation at each noise level) is reported (top) and the 

uncertainty, or standard deviation (bottom). For simplicity, only the flow distribution to the 

LPA is shown because flow distribution is normalized and so the % flow to the RPA is equal 

to 100% minus this value. Patient-specific results (noted by black circles) were interpolated 

among these data at the level of patient-specific velocity noise.
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Figure 8. 
Bland-Altman plots for simulated error sources. The potential effects of low spatial 

resolution (a–b), phase background errors (c) and Fontan segmentation (d–e) are shown. 

These errors were simulated and the flow distribution was evaluated independent of added 

measurement noise (i.e. at σ=0 m/s) and compared to the original results (i.e. also at σ=0 

m/s but evaluated at the acquired resolution, with eddy current correction and the manually 

segmented Fontan). The results both for SVC and IVC flow are included. Again for 

simplicity (and as in Figure 7), only % flow to the LPA is shown.
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Table 1

Summary of Potential Error Sources in flow distribution quantification

Potential Sources of 
Error Source Type Primary Error Type* Potential Impact

How feasible is it to test with the 
data at our center as of May 2018?

low spatial resolution technical accuracy unknown feasible: down-sample the high 
resolution datasets to see the effects

low temporal resolution technical accuracy temporal blurring of 
pathlines

not feasible: this would require 
acquiring high-temporal resolution 
data

measurement noise technical precision unknown
feasible: add random noise to the 
velocity datasets to evaluate the effects 
of noise

background phase errors technical accuracy pathlines trajectory error
feasible: simulate background phase 
error and test the effects on flow 
distribution

patient “bulk” motion physiologic accuracy unknown
not feasible: this is highly patient and 
scan specific, requires repeat scanningrespiratory motion physiologic accuracy unknown

heart rate variability physiologic accuracy likely low

inter-observer variability analysis precision low due to automated 
nature of quantification

feasible: previously found to have 
good agreement (13)

intra-observer variability analysis accuracy likely low
feasible: but due to the highly 
automated nature of quantification, 
this is not a key study to perform

Fontan segmentation analysis accuracy unknown
feasible: test the effects of 
segmentation by dilating/eroding the 
existing segmentations

*
Note, the term “accuracy” relates to errors resulting in a systematic bias while “precision” relates to random effects, e.g. from noise (31).
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