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Abstract

Accurately quantifying microbial growth dynamics for species without complete genome 

sequences is biologically important but computationally challenging in metagenomics. Here we 

present DEMIC, a new multi-sample algorithm based on contigs and coverage values, to infer 

relative distances of contigs from replication origin and to accurately compare bacterial growth 

rates between samples. We demonstrate robust performances of DEMIC for various sample sizes 

and assembly qualities using multiple synthetic and real datasets.

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

The growth dynamics of microbial populations is an important feature that reflects their 

physiological status and drives variation of their compositions. Available approaches for 

estimating the growth dynamics of bacteria make use of phenotypic markers, sequencing tag 

or fluorescence dilution and involve additional experimental steps1–4. Such methods are 

often limited by low stability, population complexity or aerobic environment. Recently, 

peak-to-trough ratio (PTR) was reported as a promising index for species with complete 

genome sequences5. PTR measures growth dynamics of a bacterial population by 

calculating sequencing coverage difference resulting from bidirectional replication from a 

fixed replication origin in the genome (Supplementary Fig. 1).
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For species with only genome assemblies, the accurate locations of the assemblies on the 

original genome are unknown, making it infeasible to calculate peak-to-trough ratio of the 

coverages5,6. In addition, the contigs assembled from metagenomic sequencing data are 

usually fragmented due to intraspecific variations, interspecific/intraspecific repeated 

sequences as well as limited sequencing depths7,8. Moreover, binning algorithms sometimes 

fail to cluster all the contigs from the same species into one group, or erroneously include a 

fraction of contigs from other species9–11. These noisy features complicate the estimation of 

growth dynamics for genome assemblies.

Here, we present Dynamic Estimator of Microbial Communities (DEMIC), which takes 

advantage of highly fragmented contigs assembled in multiple metagenomic samples such as 

different time points or host subjects to accurately compare growth dynamics of a given 

species observed in multiple samples. In DEMIC, for a given contig cluster, relative 

distances from the replication origin that contribute most to the variability of read coverages 

of different contigs are inferred via dimension reduction of contig coverage matrix (Fig. 1, 

Methods). This is combined with GC bias correction and contig/sample filtering to achieve 

the final estimates of the growth dynamics of different samples. The method can be applied 

to a wide range of bacterial communities with closely related species and is robust to sample 

sizes, contig contaminations and completeness of contig clusters.

To evaluate the performance of DEMIC, we used multiple sequencing data sets from four 

bacterial species grown in different media, including 36, 36, 50 and 19 data sets of 

Lactobacillus gasseri, Enterococcus faecalis, Citrobacter rodentium and Escherichia coli, 
respectively (Supplementary Fig. 2, Methods). When applied to contig clusters of three 

species (L. gasseri, E. faecalis and C. rodentium with completeness and contamination 

shown in Supplementary Table 1) generated from the synthetic data sets by co-assembly and 

binning12,13, DEMIC was able to estimate the growth rates in all 122 species-experiment 

combinations (Supplementary Fig. 3).

PTRC5, the method to calculate the PTR, relies on the availability of complete reference 

genomes and has been demonstrated experimentally to be accurate in estimating the growth 

dynamics for the data sets analyzed above. PTRs from PTRC were therefore chosen as the 

gold standard in our evaluations. As shown in Fig. 2a,b and Supplementary Fig. 4, estimates 

from DEMIC and PTRC were highly correlated for all 122 growth rates of all three species. 

In contrast, iRep6, the algorithm based on the draft genomes, had relatively low and unstable 

correlations with PTRC. For example, E. faecalis had a moderate growth rate in sample 24 

based on the estimates from PTRC and DEMIC, but it was classified by iRep as fast growing 

(Fig. 2a). For C. rodentium, although contig contamination accounted for about 15% of the 

contig clusters (Supplementary Table 1), estimates from DEMIC still showed a correlation 

of 0.97 with PTRs (Fig. 2b).

For growth dynamic estimation, one of the keys steps is the inference of the relative distance 

of a contig to the replication origin. In DEMIC, this step is based on principal component 

analysis (PCA) of contig coverages in multiple samples (Methods). For all three species, the 

inferred relative distances based on multiple samples were more accurate than direct sorting 

of contigs based on their coverages in a single sample (Supplementary Table 2). For 
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example, the inferred relative distances of C. rodentium contigs achieved a high correlation 

of 0.964 with the true distances, whereas direct sorting of the contigs by coverages only had 

a mean correlation of 0.756 in all 50 samples.

We next evaluated how assembly contamination, completeness and sample size affect the 

performance of DEMIC. First, to assess the effect of assembly contamination, we randomly 

added different fractions of assembled sequences from E. coli into the contig clusters of L. 
gasseri and E. faecalis, and used the mixed assemblies to compare the performance. 

Remarkably, all estimates from DEMIC still showed a high correlation of 0.98 even when as 

high as 30% of the contigs were from contamination (Fig. 2c), suggesting high effectiveness 

and robustness of the contig filtering steps adopted by DEMIC. Second, we observed that 

increasing the fraction of contigs led to an improved accuracy in estimating growth 

dynamics (Fig. 2d). In 93.3% of test cases with 40–50% completeness of the contigs, 

estimates from DEMIC showed a high correlation (r > 0.9) with the PTR values, and such a 

high correlation was observed in all 120 tests when the completeness was 60% or more. 

Finally, we observed more stable performances of DEMIC with an increase of sample size 

(Supplementary Fig. 5). DEMIC output highly consistent estimates with PTRs in 93.3% of 

the test cases with only three samples (r > 0.9), and in 99.3% of the test cases with six or 

more samples. In contrast, iRep showed clearly decreased performances with increased 

assembly contaminations and little improvement with increased assembly completeness 

(Fig. 2c,d).

To further assess the accuracy of DEMIC in estimating the growth dynamics from more 

complex and diverse bacterial communities, especially those composed of closely related 

species, we simulated a data set of 45 species with randomly assigned PTRs and average 

coverages in 50 samples. These 45 species were from 15 genera of five phyla including 

Actinobacteria, Bacterioidetes, Firmicutes, Proteobacteria and Spirochaetes (Supplementary 

Fig 6,7,8), and each genus included three species with an average nucleotide identity (ANI) 

ranging from 66.6% to 91.2% (Methods). The co-assembly and binning pipeline generated a 

total of 41 contig clusters with different completeness (48.4%−100%) and contamination (0–

81.6%), and each was dominated by one species simulated. DEMIC successfully estimated 

almost all growth rates of these 41 species (1,220 out of 1,222, Fig. 3a) without estimating 

any spurious rate for species absent in a sample. Moreover, the mean of correlations between 

DEMIC estimates and the true PTRs (0.992) achieved a similar level with those from PTRC 

(0.995) based on complete genomes, and greatly outperformed iRep (0.888) (Fig. 3b, 

Supplementary Fig. 9).

Phylogenetically related species affect assembly and binning qualities due to their similar 

genome sequences, which not only resulted in failure of binning four species in the above 

simulated data sets, but also led to the mixture of their contigs in clusters dominated by other 

species. We evaluated the effects of these related species on performances of DEMIC by 

comparing results in different ANI groups. As shown in Fig. 3c,d, no significant change was 

observed between any two of the three ANI groups of species (p-value > 0.1 for all 

comparisons). In contrast, iRep was dramatically affected by increased ANI (p-value < 0.001 

or 0.05). For example, since species Paenibacillus polymyxa and Paenibacillus terraes 
shared a high ANI (87.4%), bining algorithm output a mixed contig cluster with P. polymyxa 
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as the dominant species (53.1%) but also containing contigs from P. terrae. Such a high 

proportion of contamination completely failed iRep, resulting in estimates that were 

inconsistent with either of the two species (r < 0.3, Supplementary Fig. 10a,b). However, by 

iteratively filtering contigs according to distribution of their PC1 of the stepwise PCA (Fig. 

1d, Methods), DEMIC successfully improved the contig cluster (99.7% from P. polymyxa, 

Supplementary Fig. 10c) and thus accurately estimated the growth dynamic for P. polymyxa 
(r = 0.994, Supplementary Fig. 10d).

To compare PTR, DEMIC and iRep in real metagenomic data, we analyzed the sequencing 

data sets from seawater samples of eight Red Sea stations15 and fecal samples of 26 healthy 

subjects16. PTRs can be calculated using PTRC for 7 and 34 bacterial species with complete 

reference genomes for the two data sets, respectively (Supplementary Fig. 11a). In constrast, 

DEMIC can effectively estimate growth dynamics for 34 and 110 species with contig 

clusters, compared to 8 and 57 species by iRep, respectively, indicating that DEMIC can 

quantify the growth dynamics for a larger set of bacteria. DEMIC outperformed the other 

two methods by 133% to 437% (Supplementary Fig. 11b) in number of growth rates 

estimated. As DEMIC and iRep have the same input requirements, we also compared the 

computational resources needed. When using eight threads, DEMIC completed its 

estimation for these data sets (86 Gb and 74 Gb) in about two hours with 10 G RAM, about 

one fifth of time and one third of RAM needed by iRep (Supplementary Fig. 11c,d). When 

using different binning algorithms, we observed similar results (Supplementary Fig. 12).

Depth-dependent gradients of physicochemical properties explain the most variation in 

microbial compositions in Red Sea15. Using the estimates from DEMIC, we observed a 

strong association of bacterial growth dynamics and the sea depth (Supplementary Fig. 13a). 

For example, DEMIC estimated growth rates for a contig cluster, with about 60% 

completeness and an average identity of 92% to Marinobacter adhaerens, in 22 seawater 

samples from seven stations. At a depth of 500 m, the estimated growth rates were between 

1.06 and 1.15 in all stations, significantly lower than those in 10 m and 100 m that ranged 

from 1.37 to 1.92 (p-value < 0.005; Supplementary Fig. 13b,c).

When applied to metagenomic data sets of fecal samples of 26 healthy and 86 Crohn’s 

disease children16, DEMIC estimated growth dynamics for 278 species with contig clusters 

in a wide range of completeness and contamination, of which more than 20% were estimated 

in 50 samples or more (Supplementary Fig. 14a,b). The high sensitivity of DEMIC made it 

possible to compare growth dynamics among different groups. For example, we found six 

(one) species (Supplementary Table 3) having significantly higher (lower) growth rates in 

healthy subjects compared to Crohn’s disease patients. Interestingly, after treatment by 

antiTNF or enteral diet for one to eight weeks, the corresponding growth dynamics of three 

out of the seven species above in Crohn’s disease subjects showed a significant shift towards 

the healthy subjects (Supplementary Fig. 14c; p-value < 0.05 after FDR correction).

Shotgun metagenomic sequencing data offer new insights into bacterial growth dynamics in 

microbiome studies. We have presented DEMIC, which effectively utilizes the data from 

multiple samples of each species in order to infer relative distances of contigs to the 

replication origin. Closely related organisms are one of the main factors that affect the 
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completeness and contamination of a metagenomics pipeline including assembly and 

binning. DEMIC adopts a stepwise filtering strategy to iteratively update contig clusters, 

which provides an effective way of removing the high proportion of contig contaminations 

(Supplementary Fig. 10). Due to substantially lower fraction of the genomes recovered by 

assembly and binning methods for different strains of the same species17,18, DEMIC, like 

other available PTR estimation methods, is currently not able to provide estimation of 

growth dynamics at strain level. As continuous efforts are being made on assembly, binning 

and other related methods19,20, we expect that DEMIC may eventually be extended to strain 

level.

Methods

DEMIC implementation

This algorithm was implemented in Perl and R, and has been extensively tested on Linux 

and Mac OS X. No dependency is needed for running DEMIC except two non-default 

packages lme4 (ref. 21) and FactoMineR22 in R. Multithreading is available for processing 

both multiple metagenomic samples and multiple contig clusters in large data sets.

Calculation of contig coverages for sliding windows—DEMIC is designed to 

process sorted alignments of metagenomic shotgun sequencing reads against assembled 

contigs in SAM format (Fig. 1a). To estimate growth dynamics for a species, sequencing 

coverage values are first calculated from the read alignments of each sample, for all sliding 

windows of the same size within contigs (Fig. 1b). Thresholds for mapping length (≥ 50 bp 

by default), mapping quality (≥ 5 by default), and mismatch ratio (≤ 0.03 by default) are 

adopted during the following process to filter out spurious or ambiguous alignments.

Specifically, reads that are aligned to the jth contig with length l j ≥ l′+p+2lr are used for 

coverage calculation using sliding windows, where p is the sliding window step size (100 bp 

by default), l′ is the window size (5,000 bp by default, an integer multiple of p), and lr is the 

read length being excluded from each side of the contig. The total steps within a window is 

q=l′ p. For the ith sample, the average coverage of the kth window Y i jk is calculated as

Yi jk= Ti jk‐1+T′i jkq‐T′i j k‐1 1
l′

,

where T i jk‐1 represents the total base coverage for the previous (k-1)th window, T′i j k‐1 1
represents the total base coverage in the first p bases of the previous (k-1)th window, and 

T′i jkq represents the total read coverage of the last p bases of the current kth window. Using 

this calculation, the average coverages of all sliding windows in a contig except the first one 

can be efficiently calculated while the sorted alignments of a sample are being scanned, 

avoiding repetitively counting the aligned reads for the bases that are in the previous sliding 

windows. As another filter step to remove chimeric contigs, only contigs with coverages 

larger than 0 in all sliding windows are kept for a sample, and these coverage values are log-

transformed for the subsequent analyses.
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A linear mixed-effects model for correction of sequencing bias—GC content has 

been reported to result in bias in next-generation sequencing platforms such as Illumina23. 

To detect and eliminate such biases, GC content in each window is first calculated during the 

scanning of contig sequences, in the same pattern as described above for the coverage 

calculation. For a given contig cluster, a linear mixed-effects model (LMM) is then fitted for 

the coverage values calculated above with GC contents as the fixed effect and sample- and 

contig-specific random intercept. Specifically,

log2Yi jk=a0+ X jk‐X a+Zi j+ei jk

where Y i jk is the average sequencing coverage for the kth window of the jth contig of the ith 

sample, a0 is the intercept, X jk is the GC content of the jth window of the kth contig, X is the 

average GC content of all the contigs, a is the regression coefficient, Zi jis the sample- and 

contig- specific random intercept and ei jk is the random error, respectively. This model is 

fitted for each contig cluster to estimate both the intercept, fixed effects a of the GC content 

and random effects Zi j for contig j and sample i using the best linear unbiased predictor 

(BLUP). The resulting BLUP of Zi j, denoted by Z i j, corrects the average coverage of contig 

according to its GC content difference from the average GC content of all contigs and 

therefore eliminates sequencing bias. We define Y′i j=a0+Z i j as the GC-adjusted log-

transformed coverage of sample i and contig j and Y′ as the final log-transformed coverage 

matrix, where a0 is the estimate of a0

Estimation of growth dynamics based on multiple samples—For an accurate 

inference of the relative distances between contigs and replication origin, samples with low 

coverage of the given species are excluded from the following steps. Specifically, since the 

majority of contigs in each cluster are expected to be from the same species, an informative 

sample should have coverage for more than half of the contigs. Samples with an average of 

coverages lower than 0 for all contigs are also excluded in this step for their relatively large 

variation. If two or more informative samples achieve the above thresholds, a preliminary 

filtering of the contigs is then employed to remove contigs with no coverages in any of the 

informative samples.

To infer relative distance of contigs from the replication origin, dimension reduction method 

is applied to the log-transformed coverage matrix Y′  of the informative samples and 

contigs. Suppose that the log-transformed coverage matrix has a dimension of Ns × Nc, 

where Nc and Ns represent the number of contigs and informative samples, respectively. A 

principal component analysis (PCA) is performed to reduce the dimension to 1 × Nc so that 

the first principal component (PC1) accounts for the largest contribution to the variability of 

coverages among the Nc contigs across all Ns samples. This variability across different 

contigs is expected to result from different relative distances of the contigs to the replication 

origin. PC1 values of the Nc contigs, denoted as a vector U, are therefore expected to be 

highly correlated with the contig locations relative to the replication origin. We then sort the 
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Nc contigs and determine their relative distances based on their PC1 values. These sorted 

values are used to estimate the PTR in the next step.

The contig group needs further filtering to make sure that the PCA is not affected by the 

contigs from other species. Specifically, the assembled contigs are expected to evenly 

distributed along a bacterial genome, and such a uniform distribution will be distorted if a 

few contigs from the other species are mixed into the group. Thus, the distribution of PC1 of 

all contigs U is examined against the putative uniform distribution, unif(min(U), max(U)), 

by a Kolmogorov–Smirnov test. If a difference is found between the current distribution and 

the uniform distribution at the significance level of 0.05, the two contigs with maximum/

minimum PC1 values are compared with respect to their distance from the adjacent contig, 

and the one with a larger distance is regarded as the contamination and removed in this step 

(Fig. 1c).

All of the remaining contigs are then used to fit an ordinary linear regression model for each 

sample (Fig. 1d). Specifically, for the ith sample, we fit the following linear regression

Y′i j=b0i+biU j, j=1,2,...,Nc

where b0iand bi are the intercept and slope parameters. Let b0iand b i be the least squares 

estimates of the coefficients. From these models, the growth dynamics of the species in these 

samples are calculated as the ratio of exponential of model-fitted coverages of the two 

contigs with the maximum U
Nc

 and minimum U 1  values of the PC1. We call this 

quantity as the estimated PTR (ePTR). Specifically, for the ith sample, its ePTR is defined as

exp b0i+biU Nc
exp b0i+biU 1

, i=1,2,...,Ns

Iteration and random strategies—In the implementation of DEMIC, several iteration 

and random strategies are adopted to ensure robustness of the pipeline before the final 

estimation of PTR. First, the four steps in previous sections are repeated until convergence 

(Fig. 1c), including GC bias correction based on LMM, identification of informative 

samples, relative distance inference based on PCA and filtering of contigs. Both sets of 

contigs and samples are required to be the same between the current and the last iteration to 

achieve convergence of the four steps, which is designed to avoid potential influence of less 

informative samples or contig contaminations on LMM and PCA. Second, to eliminate 

potential local optimum of the iteration steps, one can test the consistency between two 

different subsets of the contigs. Briefly, after calculation of coverages for contigs within the 

sliding windows, two subsets are randomly selected so that each of them contains the same 

fraction (80% by default) of the total contigs and their union represents the total contigs. 

Each subset is independently used for relative distance inference by the four steps described 

above, and their consistency with each other is tested by the correlation of linear regression 
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slopes b  in all remaining samples. Third, these linear regression slopes are used to estimate 

growth dynamics only when the correlation is above the designated threshold (0.98 by 

default), otherwise another two subsets are randomly selected and the above steps are 

iterated.

Data sets

Different types of data sets were downloaded or generated to evaluate the performance of 

DEMIC. We first used a synthetic data set composed of 141 real sequencing data sets 

generated in a previous study5. The sequencing data sets were downloaded from the 

European Nucleotide Archive (accession number PRJEB9718) with the corresponding 

metadata, and each of them was from Lactobacillus gasseri (ERR969426 - ERR969461), 

Enterococcus faecalis (ERR969335 - ERR969370), Citrobacter rodentium (ERR930224 - 

ERR930295, ERR969253 - ERR969278), and Escherichia coli (ERR969315 - ERR969334) 

grown in vitro separately. The synthetic data set contained 50 simulated samples, and each 

sample was set to randomly contain two to four of the above sequencing data sets from 

different species in order to mimic composition of microbiota (Supplementary Fig. 2). The 

synthetic data set contained 6.1 G base pairs in total, and each species present in a sample 

has a sequencing depth ranging from 0.17 to 96 folds.

A simulated sequencing data set was next generated to test the effects of phylogenetically 

related species on the performance. A list of species with RefSeq ID, taxonomy and 

replication origin recorded in a previous study24 was downloaded. A total of 15 genera in the 

list with at least three species in each were randomly selected. Reference genome sequences 

of randomly selected three species in each genus were downloaded from NCBI to generate 

sequencing reads. According to the replication origin and genome size, for a given randomly 

assigned PTR (<3), we first generated read coverages along the genome based on an 

exponential distribution. A function of accumulative distribution of read coverages along the 

genome was then calculated. Sequencing reads were next generated one by one by using the 

above accumulative distribution function and a random number to determine the location of 

each read on the genome, until the total read number achieved a randomly assigned average 

coverage (between 0.5 and 10 folds) for the species in a sample. Sequencing errors including 

substitution, insertion and deletion were simulated in a position- and nucleotide-specific 

pattern according to a recent study on metagenomic sequencing error profiles of Illumina25. 

The generated data set contained 45 species from 15 genera of five different phyla 

(Supplementary Fig. 6, generated by iTOL26), and the ANI between species within each 

genus ranged from 66.6% to 91.2% according to Integrated Microbial Genomes & 

Microbiomes27. The probability of one species existing in each of the 50 simulated samples 

was set as 0.6, and a total of 1,336 average coverages and the corresponding PTRs were 

randomly and independently assigned (Supplementary Fig. 7 and 8). The final simulated 

sequencing data set is about 18.9 Gbp.

The PLEASE data16 included sequencing data from the fecal samples of 26 healthy and 86 

Crohn’s disease children. Healthy children were sequenced at one time point, and the 

Crohn’s disease patients were sequenced at four time points including baseline, one week, 

four weeks and eight weeks after antiTNF or enteral diet treatment. The reads were 

Gao and Li Page 8

Nat Methods. Author manuscript; available in PMC 2019 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



downloaded from NCBI short read archive (SRP057027) with the corresponding metadata. 

We used the subset of 26 healthy subjects (73.6 Gbp) to compare DEMIC, PTRC and iRep 

on bacterial growth dynamics estimation, and used the whole data sets (819 Gbp) to 

compare growth dynamics of the same species in different samples by DEMIC.

The RedSea data set15 included 45 metagenomic samples of seawater sampled from 

different depths at eight stations in the Red Sea. The reads were downloaded from NCBI 

short read archive (SRP061183) with the corresponding metadata. We used the whole data 

sets (85.6 Gbp) to compare DEMIC, PTRC and iRep on bacterial growth dynamics 

estimation, and also to compare growth dynamics of the same species in different samples 

by DEMIC.

Coassembly, binning and mapping

For both of synthetic and real data sets, coassembly was performed to facilitate binning as 

well as analysis of DEMIC and iRep. MEGAHIT13 version 1.1.1 was used as the assembler 

for its advantages on both total assembly length18 and controllable memory usage that is 

convenient for large metagenomic data sets. The default settings of MEGAHIT were used 

for all of the data sets.

After co-assembly, contigs were clustered into groups by using binning algorithms. 

MaxBin12 version 2.2.4 was used for clustering contigs in the synthetic data sets, simulated 

data sets, all RedSea and 26 healthy PLEASE data sets for its outstanding performances in 

medium and low complexity data sets18. MetaBAT28 version 2.12.1 was used for binning of 

the RedSea and PLEASE data sets for its overall performances and high speed to process 

high complexity data sets. CheckM14 was used to assess the contig completeness and 

contamination of the contig clusters using the default settings.

For all of the data sets above, Bowtie 2 (ref. 29) version 2.3.2 was used to align reads back 

to assembled contigs. The output alignment results were then sorted by samtools30 version 

0.1.19 and used as input of both DEMIC and iRep.

Evaluation based on the synthetic data sets and random tests

After coassembly and binning of the constructed contigs, contigs from three species were 

successfully clustered, including L. gasseri, E. faecalis, and C. rodentium. Neither MaxBin 

nor MetaBAT generated a contig cluster corresponding to E. coli, due to its relatively low 

sequencing depths compared with C. rodentium in the same family. The following 

evaluations are therefore based on contig clusters of L. gasseri, E. faecalis, and C. 
rodentium. Bacterial growth rates in the synthetic data sets were first estimated by PTRC, 

DEMIC and iRep using the respective default settings. For a total of 122 growth rates of the 

three species (36, 36 and 50, respectively), correlations between PTRC and DEMIC as well 

as between PTRC and iRep were calculated using Pearson’s r value.

To generalize our evaluation to diverse metagenomic data sets, three different types of 

random tests were performed to test the effects of sample counts, fraction of contig 

contaminations and completeness of contig clusters on the performance. Specifically, groups 

of 3, 6, 10, 15, 20, 25 samples, groups with 5%, 10%, 15%, 20%, 25% and 30% of contig 
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contaminations and groups of 30%, 40%, 50%, 60%, 70%, 80% and 90% completeness of 

contig clusters were considered. For each random test, DEMIC was applied to the selected 

subset of samples or contig clusters that were randomly generated according to a given 

fraction, so that these random tests in the same group are independent of each other.

After coassembly and binning for the simulated data set of 45 species in 50 samples, contigs 

from 41 species were successfully clustered. Four species failed to be binned into separate 

clusters as dominant species, including Caldicellulosiruptor lactoaceticus, Paenibacillus 
terrae, Xanthomonas axonopodis and Xanthomonas oryzae. The subsequent evaluations are 

therefore all based on contig clusters of the 41 clusters and the corresponding 1,222 PTRs 

(Supplementary Fig. 9). A window size of 3,000 and a mismatch threshold of 0.02 were 

used in DEMIC with all other settings as default. PTRC were provided with complete 

reference genomes, and the default settings were used for both PTRC and iRep.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational pipeline of DEMIC.
(a) In a contig cluster identified by the binning algorithm, the genomic locations and 

potential contamination of contigs represented by different colors are unknown. (b) The 

coverages (sequencing depths) of contigs in a cluster are first calculated for all sliding 

windows. (c) The inference is an iterative process that includes GC bias correction using 

LMM, identification of informative samples, relative distance inference using PCA and 

filtering of contaminated contigs. Colored dots represent different contigs in the cluster. (d) 

After convergence of both sample and contig sets, growth rates are estimated for the 
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informative samples. Dashed lines represent linear regressions of log-transformed coverages 

of contigs in different samples and their inferred relative distances to the replication origin. 

(e) The same pipeline is applied to each of the contig clusters identified by the binning 

algorithm.
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Figure 2. Performance evaluation of DEMIC based on sequencing data sets of three species.
(a-b) Correlations of estimates from DEMIC and iRep with PTR values (Pearson’s r value) 

in 36 data sets of Enterococcus faecalis (a) and 50 data sets of Citrobacter rodentium (b). 

The shading areas indicate 99% level of confidence interval. (c-d) Evaluation of the effects 

of contig contamination (c) and completeness (d) of the contig cluster on the performances 

of DEMIC and iRep. Evaluations of the sample size and contig cluster completeness were 

based on L. gasseri, E. faecalis and C. rodentium (n = 10 for each), and evaluation of contig 

contaminations was based on L. gasseri and E. faecalis (n = 10 for each). Correlations of all 

evaluations were plotted, and the boxplots indicate the median (center line), first and third 

quartiles (box edges), and 1.5 times the interquartile range (whiskers).
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Figure 3. Performance evaluation of DEMIC based on simulated data of 45 closely related 
species from five phyla.
(a) DEMIC estimated 1,220 of a total of 1,222 simulated PTRs with no spurious estimates 

for all species whose contigs were dominant in the 41 contig clusters. (b) The correlation 

between DEMIC estimates for the 41 contig clusters and PTRs (Pearson’s r value) achieved 

a similar level with PTRC based on the 41 complete genomes, and outperformed iRep. (c) 

Significant difference in estimation accuracy of iRep was observed among different ANI 

groups of species (n = 19, 17 and 5 for ANI% group 66–74, 74–82 and 82–90, respectively), 

but not the accuracy of DEMIC estimates (two-sided Mann-Whitney U tests, * p value < 

0.05, ** p value < 0.01, and *** p value < 0.001). For (b) and (c), the boxplots indicate the 

median (center line), first and third quartiles (box edges), and 1.5 times the interquartile 

range (whiskers). (d) Correlations (Pearson’s r value) between DEMIC estimates and PTRs 

were higher than those between iRep estimates and PTRs for all 41 species, and the 

difference was more pronounced in species sharing higher ANI with others. The inset graph 

shows species having correlations with PTRs greater than 0.9 by both methods.
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