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Abstract

The human brain develops rapidly in the first postnatal year, in which rewired functional brain 

networks could shape later behavioral and cognitive performance. Resting-state functional 

magnetic resonances imaging (rs-fMRI) and complex network analysis have been widely used for 

characterizing the developmental brain functional connectome. Yet, such studies focusing on the 

first year of postnatal life are still very limited. Leveraging normally developing longitudinal infant 

rs-fMRI scans from neonate to one year of age, we investigated how brain functional networks 

develop at a fine temporal scale (every 3 months). Considering challenges in the infant fMRI-

based network analysis, we developed a novel algorithm to construct the robust, temporally 

consistent and modular structure augmented group-level network based on which functional 

modules were detected at each age. Our study reveals that the brain functional network is 

gradually subdivided into an increasing number of functional modules accompanied by the 

strengthened intra- and inter-modular connectivities. Based on the developing modules, we found 

connector hubs (the high-centrality regions connecting different modules) emerging and 

increasing, while provincial hubs (the high-centrality regions connecting regions in the same 

module) diminishing. Further region-wise longitudinal analysis validates that different hubs have 

distinct developmental trajectories of the intra- and inter-modular connections suggesting different 

types of role transitions in network, such as non-hubs to hubs or provincial hubs to connector hubs 
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et al. All findings indicate that functional segregation and integration are both increased in the first 

year of postnatal life. The module reorganization and hub transition lead to more efficient brain 

networks, featuring increasingly segregated modular structure and more connector hubs. This 

study provides the first comprehensive report of the development of functional brain networks at 

three month intervals throughout the first postnatal year of life, which provides essential 

information to the future neurodevelopmental and developmental disorder studies.
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1. Introduction

In the first postnatal year, the human brain undergoes the most dramatic growth with its total 

volume expanding up to double its size (Knickmeyer et al., 2008; Tau and Peterson, 2010; 

Gao et al., 2016; Li et al., 2018). Concurrently, remarkable functional brain milestones are 

achieved during this period, including not only the improved vision (Courage and Adams, 

1990) and body manipulation, but also a number of higher-order cognitive functions, such as 

self-awareness (Amsterdam, 1972), spatial attention (Haith et al., 1988), and working 

memory (Reznick, 2009). These dramatic changes greatly shape subsequent cognitive and 

behavioral development and lay foundations for the essential skills in later life. Thus, it is 

critical to improve our limited understandings of developmental patterns and mechanisms of 

the human brain in the first postnatal year.

In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been 

emerging for probing functional brain development (Gao et al., 2009; Smyser et al., 2010; 

Fransson et al., 2011; Gao et al., 2011; Smyser et al., 2011; Barrett and Satpute, 2013; 

Alcauter et al., 2014; Damaraju et al., 2014; De Asis-Cruz et al., 2015; Gao et al., 2015a; 

Gao et al., 2015b; van den Heuvel et al., 2015; Cao et al., 2016a). However, only a few 

studies have focused on the longitudinal aspects of functional brain development in this most 

important period, i.e., the first stages of postnatal life. In a large-scale longitudinal study, 

Gao et al. delineates the developmental trajectories of nine brain functional sub-networks 

every three months from neonate to one year of age. It reveals that different brain sub-

networks have distinct growth trajectories following a sequence from the primary to higher-

order functional systems (Gao et al., 2015a). This finding investigates the developmental 

functional segregation in the brain, but largely neglects the development of functional 

integration (i.e., the functional interactions among different brain regions or different 

functional systems). It is worth noting that studying the development of functional 

integration is essential in the developmental neuroscience, due to that matter, the functional 

interactions are believed to mediate more complex cognitive functions (Barrett and Satpute, 

2013; Behrmann and Plaut, 2013; Friederici and Gierhan, 2013; Sporns, 2013; Gao et al., 

2015a; Cohen and D’Esposito, 2016).

The spatiotemporal characteristics of developing large-scale functional brain networks could 

deepen our understanding on how the human brain develops well-coordinated functional 
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systems that mirror cognitive milestones at such a pivotal age. To this end, it is highly 

required to have more sophisticated and fine-grained network modeling and topological 

analyses. The most popular method is to represent the inter-regional functional interactions 

as a complex network that consists of all brain regions as nodes linked by functional 

connectivity (FC) as edges. In the network, the edge strength is usually measured by the 

temporal synchronization of regional blood-oxygen level-dependent (BOLD) rs-fMRI 

signals (Friston, 2011). Graph theory analyses can help uncover the details of the topological 

properties of such a complex network. Abundant evidence indicates that matured adult brain 

networks follow a small-world property with both high local and global efficiencies to 

facilitate the efficient information exchange (Watts and Strogatz, 1998; Liao et al., 2017). 

From another viewpoint, this efficient organization also suggests well-balanced functional 

segregation (supporting intra-functional-system information exchange to process single-

modal information) and functional integration (enabling inter-functional-system 

collaboration to process multimodal information and support higher-level functions) with 

limited wiring resources (Sporns, 2013). Such properties have been observed in many other 

age groups, such as infants (Gao et al., 2011; De Asis-Cruz et al., 2015; van den Heuvel et 

al., 2015; Cao et al., 2016a), older children (Fair et al., 2009), adolescents (Smyser et al., 

2011), and the elderly (Onoda and Yamaguchi, 2013). Despite the well-observed global 
network properties, the detailed rewiring processes, i.e., the longitudinal development of the 

localized nodes and edges, have not currently been investigated, although they could be 

more important and helpful to understand the developing brain.

It has been hypothesized that the developmental brain network continuously reconfigures 

with a small amount of connections rewired to drive the entire network toward a more 

efficient organization (both globally and locally), while keeping the whole system relatively 

stable (Fair et al., 2009; Supekar et al., 2009; Gao et al., 2011; Uddin et al., 2011; Chen et 

al., 2013; Huang et al., 2013; Damaraju et al., 2014; Thomason et al., 2015; Zhao et al., 

2015; Cao et al., 2016a; Cao et al., 2017). However, most evidences come from the age 

groups spanning from late childhood (~ five years of age) to early adolescence (~12 years of 

age). Based on these studies, a few key connections that link different functional systems are 

prone to rewire in order to achieve enhanced functional integration/segregation, as well as 

increased local and global efficiencies (Fair et al., 2009; Supekar et al., 2009; Dosenbach et 

al., 2010; Wu et al., 2013; Cao et al., 2014). From neonate to early childhood, a similar 

developmental trend was suggested, but it came from only one study on the large-scale 

functional brain networks of the infants at three-week, one-year and two-years of age (Gao 

et al., 2011), which revealed increasing local and global efficiency, as well as the 

increasingly uniform spatial distribution of “hub” regions (the nodes with significantly more 

connections or higher degrees). While the study is still lacking for the first postnatal year, a 

bold hypothesis has been proposed, which assumes more rapid changes in functional 

integration/segregation (Cao et al., 2016a; Cao et al., 2017). Therefore, it is highly important 

and necessary to fill this gap and test such a hypothesis by characterizing fine-grained, 

month-to-month spatiotemporal developmental trajectories of the brains functional networks 

and its topological structures.

In this paper, leveraging a large longitudinal rs-fMRI dataset from normally developing 

infants with each having multiple dense scans (at every three months from birth), we aim to 
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(1) delineate the fine-grained developmental trajectories of the large-scale functional brain 

networks in the first postnatal year, and (2) explore the possible driving forces of such a 

dynamic evolution with explicit evidences from network topological analysis. Instead of 

using global network metrics (e.g., local/global efficiency), we focus on a group of densely 

interconnected brain regions, i.e., communities or modules (Rubinov and Sporns, 2010), 

which are suggested to be relevant to specific cognitive/behavioral functions (Bertolero et 

al., 2015). Based on the modular structure, we further investigated the longitudinal 

reconfiguration and rewiring involving a small set of “hub” regions. In this sense, the 

functional segregation and integration can be assessed by quantifying the modular structures 

and hubs (Hwang et al., 2012; Huang et al., 2013; van den Heuvel and Sporns, 2013; 

Bertolero et al., 2015). Based on different topological roles of hubs, we investigate and 

identify the longitudinally sensitive spatial location changes of both provincial hubs (for 

integrating the nodes within a module) and connector hubs (for integrating the nodes 

belonging to different modules) (van den Heuvel and Sporns, 2013; Bertolero et al., 2015). 

We hypothesize that from neonate to one year of age, (1) the number of functional brain 

modules will gradually increase, driven by the increasingly strengthened within-module FC 

(i.e., functional segregation); (2) the number of connector hubs will increase, driven by 

strengthened inter-modular FC (i.e., functional integration); and (3) the spatial distribution 

of different types of hubs are continuously changing, which represents different maturation 

order for different functional systems.

2. Materials and Methods

2.1 Subject Information

Images were obtained from subjects enrolled in the “Multi-visit Advanced Pediatric brain 

imaging study for characterizing structural and functional development (MAP Study)”. 

Fifty-one typically developing infants with 158 longitudinal rs-fMRI scans, i.e., 0 month (n 
= 33), 3 months (n = 29), 6 months (n = 31), 9 months (n = 30), and 12 months (n = 35), in 

the first postnatal year were used in this study. Fig. S1 in Supplementary Materials presents 

a distribution of age for all the included subjects whose image quality passed the quality 

control (QC). The percentages of the subjects who completed each of the five scans are 

19.61%, 19.61%, 13.73%, 25.49%, and 21.57%, respectively. All subjects were in a natural 

sleeping state during rs-fMRI acquisition. For the detailed inclusion and exclusion criteria 

for infants, please see our previous study (Gao et al., 2015a). Informed written consent was 

obtained from the parents of all participants and all study protocols were approved by the 

University of North Carolina at Chapel Hill Institutional Review Board.

2.2 Data Acquisition

All images were acquired with a Siemens 3T MRI scanner. Rs-fMRI was acquired using a 

T2-weighted EPI sequence. The imaging parameters were as follows: TR = 2 s, TE = 32 ms, 

33 slices, voxel size = 4×4×4 mm3, total volumes = 150 (five minutes). In order to provide 

an anatomical reference, structural images were also acquired using a 3D MP-RAGE 

sequence with the following parameters: TR = 1820 ms, TE = 4.38 ms, inversion time = 

1100 ms, voxel size of 1×1×1 mm3.

Wen et al. Page 4

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 Imaging Preprocessing

Allowing for the equilibration of the magnetic field, the first 10 volumes were discarded. 

The remaining data were pre-processed using FSL (http://www.fmrib.ox.ac.uk/fsl). It 

includes the following procedures: slice-timing correction, head motion correction, spatial 

smoothing (6-mm full width at half maximum Gaussian kernel), low-pass temporal filtering 

(<0.08 Hz), and mean signal removal (including white matter, cerebrospinal fluid (CSF), 

whole-brain averaged signal and six head motion parameters) by using a linear regression 

model. To further reduce head motion effects, we conducted data “scrubbing”, which 

removed one volume before and two volumes after each bad frame to control the global 

measure of signal change (DVARS < 0.5%) and frame-wise displacement (FD < 0.5 mm) 

(Power et al., 2012). After scrubbing, subjects with less than 90 volumes were excluded, and 

twenty rs-fMRI scans were removed from further analysis. No significant differences were 

found in terms of mean FD (p = 0.538) and the number of censored frames (p = 0.923) 

among all the age groups by using Kruskal-Wallis test. No correlations were observed 

between the mean FD (r = −0.112, p = 0.164) and the number of censored frames (r = 

−0.144, p = 0.072) with age. Additionally, three benchmark metrics, including QC-FC 

correlation, QC-FC distance dependence and the loss of temporal degrees of freedom 

(tDOF-loss), were reported in Fig. S2 in Supplementary Materials to further evaluate the 

effectiveness of the head motion control in our study (Parkes et al., 2018).

To improve registration accuracy, we used structural tissue-labeled images derived by a 

learning-based multi-source integration framework (LINKS) (Wang et al., 2015) for 

longitudinal and cross-sectional image registration. In the labeled images, the voxels were 

labeled as gray matter, white matter and cerebrospinal fluid, rather than their original 

intensity. Specifically, for each subject at each age, the first volume of the rs-fMRI data was 

affine registered to the corresponding structural images. We then adopted a group-wise 

registration method using GLIRT (Wu et al., 2012) to implement within-subject longitudinal 

registration, thus aligning different structural images of the same subject scanned at different 

ages. After that, we registered the mean image of each subject to a standard symmetric 

Montreal Neurological Institute (MNI-152 adult) template by using Demons (Thirion, 

1998). By combing the linear transformation matrix and the deformation fields from the 

above steps, we obtained a final deformation field of each subject at each scan from its 

native space to the MNI space.

2.4 Individual-Level Brain Functional Network Construction

We parcellated the whole brain into 200 regions by using the atlas provided by Craddock et 

al. (Craddock et al., 2012). As cerebellum registration is difficult for infants due to its small 

size and weak contrast, we excluded 20 cerebellar regions and only used 180 regions. For 

each subject, we warped the atlas back to each subject’s native space by using the inverted 

deformation field obtained from the registration, and then extracted the averaged rs-fMRI 

time series in each brain region. We calculated pairwise Pearson’s correlation between each 

pair of the nodes (i.e., regions), thus generating a weighted brain functional network for each 

subject at each age. Only the positive connections were kept and all negative values were set 

as zeros, as the anti-correlations are still biologically unclear (Garrison et al., 2015). Of note, 

all the following experiments were based on the weighted networks.
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2.5 Module-Guided Group-level Network Construction

To detect robust functional brain modules for each age group, one widely-adopted strategy is 

to generate a group-level weighted FC matrix by averaging all individual-level FC matrices 

of the same age and detect the modular structure based on it. However, this strategy bears 

two limitations. First, the potential image noises could lead to spurious individual-level FC 

matrices that might dominate the group-level result. Second, the resultant averaged FC 

matrix is usually over-blurred, making the following module and hub detection difficult and 

biased. Such problems could be magnified in the neonate/infant study due to the increased 

noise and artifact in infants’ fMRI data (Zhang et al., 2018b). To generate robust group-level 

networks, we proposed a novel method called “Module-Guided Group-Level Network 

Construction”, which leverages the information of the modular structure detected at the 

individual level and utilizes it as the anatomical prior to guide the group-level FC network 

construction.

The flowchart of our method is illustrated in Fig. 1, consisting of three steps. First, for each 

subject, we kept top 10% strongest positive connections to ensure the sparsity of FC 

networks and to remove weak connections (Power et al., 2012; Cole et al., 2013; Yeo et al., 

2014; Najafi et al., 2016). We then detected corresponding modular structure for each 

individual FC matrix by maximizing modularity (Q) with a widely-used toolbox (Radtools, 

deim.urv.cat/~sergio.gomez/radatools.php). It allows to use multiple searching algorithms in 

an iterative manner and output the best partition with the highest Q. We combined tabu 

search (Arenas et al., 2008), extremal optimization (Duch and Arenas, 2005), fast heuristics 

(Newman, 2004), and spectral optimization (Newman, 2006) as recommended by Radtools 

developers. For each individual-level network, the module detection was repeated for 100 

times and the modular structure obtained from each run was converted to a “modular 

partition matrix”, where the element with two nodes assigned to the same module has a 

value of one; otherwise, zero. We then averaged 100 module partition matrices to obtain an 

individual-level “modular partition probability” (MPP) matrix. Second, by averaging 

individual-level MPP matrices across all subjects of the same age group, we generated a 

group-level MPP matrix, where each element represents the probability of assigning a pair 

of nodes to the same module. Third, we generated a MPP-guided group-level FC network. 

The edges with higher MPPs are more likely to be intra-modular connections with strong 

FC, while those with lower MPPs are more probably inter-modular connections with weak 

FC. Therefore, we divided the MPPs of all edges into three categories using two cutoffs, i.e., 

thrl and thrh, which respectively represent the low and high thresholds for MPPs. We set the 

final weight of a group-level FC edge to be the mean of the five highest individual-level FC 

of the same edge across all subjects, if the MPP of this edge is larger than thrh (i.e., max 

Pool). Similarly, we set it to be the mean of the five weakest individual-level FC across all 

subjects, if this edge has an MPP lower than thrl (i.e., min Pool). For the edges in-between of 

thrl and thrh, we treated them as uncertain modular partition and set their final weights to the 

mean FC of all subjects (i.e., mean Pool). The values of thrl and thrh were set to 0.1 and 0.5 

in the following experiments. Other settings for thrl and thrh are discussed in Section 4.5.3.

Rather than calculating the MPP matrix independently for each age group, we added an 

extra step, i.e., temporal smoothness, during the MPP calculation to adjust it and to ensure 
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its temporal consistency across ages (Li et al., 2012; Wang et al., 2012; Yan et al., 2017). We 

assume that the neighboring age groups share similar brain network architectures to certain 

extent. In light of this, we let each element in the adjusted MPP matrix at each time point 

shares the information from its temporal neighborhood. Specifically, for an edge (i, j) in the 

r-th time point, the adjusted MPPr(i, j) was calculated as the weighted sum of the original 

MPP t(i, j) (t = 1, …, T) as follows:

MPPr
adjust(i, j) = ∑t = 1

T wt
rMPPt

orig(i, j) (1)

where T is the total number of the age time points, and wt
r is the contribution ratio of the t-th 

time point (t = 1, …, T) to the r-th time point, as defined below:

wt
r = 1

2πδ
exp( − (t − r)2

2δ2 )/∑t = 1
T wt

r (2)

where δ is the standard deviation of the Gaussian function to control the “temporal 

smoothness”, which is set to 1.5 in this study (please see the further discussion on the choice 

of this parameter in Section 4.5.2). According to Sections 2.4–2.5, we generated 

“augmented” group-level FC networks for each age group by both enhancing the modular 

structure and making them temporally consistent for following longitudinal module 

detection (Section 2.6) and hub assessment (Sections 2.7–2.8).

2.6 Module Detection from Augmented Group-Level FC Networks

Based on the “augmented” group-level FC networks, we detected the modular structures for 

each age separately using Radtools with the same sparsity (10%) as used for individual-level 

module detection (Power et al., 2012; Cole et al., 2013; Yeo et al., 2014; Najafi et al., 2016). 

For each group-level network, we repeated the module detection for 100 times and used a 

consensus clustering method (Bassett et al., 2013) to obtain the consistent modules. The 

modular structure for the age-specific FC networks was compared across different ages (0-, 

3-, 6-, 9-, and 12-months of age). Based on the detected modular structures, we further 

calculated mean intra- and inter-modular connectivities across all modules for each subject 

at all age groups for quantitative assessment of the developmental changes in the FC 

network segregation and integration. The mean intra-modular connectivity (reflecting 

functional segregation) was defined as the averaged FC strength across all the within-

modular connections. The mean inter-modular connectivity (measuring functional 

integration) was calculated as the averaged FC strength across all the edges that linked 

different modules. All the positive connections were used, and the negative connections 

were not counted. As the intra- and inter-modular connectivities were calculated using 

whole-brain FC links, they provide direct measurement for the whole-brain functional 

segregation/integration changes.

After obtaining the mean intra- and inter-modular connectivities of each subject at all age 

groups, we adopted a linear mixed-effect regression (LMER) model to delineate the 
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developmental trajectories of intra- and inter-modular connectivities. The LMER model was 

used due to its ability to handle missing data for the longitudinal study (Verbeke and 

Molenberghs 2000). Specifically, both a linear model (using age as a fixed-effect variable to 

test for a linear change) and a log-linear model (using log(age) as a fixed-effect variable to 

test for a nonlinear change) were built. The log-linear model has been widely used in the 

previous brain development studies (Gao et al., 2015a, 2015b). Random intercept and 

subject effects were included to characterize the temporal correlation. The Akaike 

information criterion (AIC) was adopted for model selection between the linear and 

nonlinear models. For all models, the significance was defined as p < 0.05. Next, we 

identified and characterized key brain regions (i.e., hubs) that contributed to the developing 

functional segregation/integration.

2.7 Provincial and Connector Hub Detection

Instead of investigating hubs as a whole, we step further to classify hubs into provincial and 

connector hubs based on their topological roles in the modular partitions measured by 

within-module degree (WD) and participation coefficient (P) (Guimera and Amaral, 2005; 

Meunier et al., 2009; Meunier et al., 2010; Bertolero et al., 2015). WD measures how well-

connected a node is in the same module that this node belongs to (Guimera and Amaral, 

2005). P measures distribution of nodes’ connections among different modules (Guimera 

and Amaral, 2005). In other words, WD evaluates the importance of a region to its module 

and P characterizes the importance of a region in connecting with different modules. 

Specifically, suppose a modular partition is M = {mc | c = 1, …, C}. For a node i in module 

mc, WDi and Pi were respectively calculated by:

WDi =
κmc

i − κmc
δκmc

, (3)

Pi = 1 − ∑c = 1
C (

κmc
i

ki
), (4)

where κmc
i  is the total FC strength between node i and the other nodes in module mc . κmc

 and 

σκmc
 represent the average and standard deviation (SD) of κmc

i  across all nodes in module mc, 

respectively. ki is the sum of FC strength connecting node i.

Provincial hubs provide structures within the local module, and connector hubs mediate 

connections between multiple modules (Guimera and Amaral, 2005; van den Heuvel and 

Sporns, 2013). Thus, provincial hubs should have high WD but low P, while connector hubs 

have both high WD and P. By setting thresholds for within-module degree (thrWD) and 

participation coefficient (thrP), we detected provincial and connector hubs from each age-
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specific group-level FC network. For node i, it is categorized to a provincial hub if WDi > 

thrWD and Pi < thrP, or to a connector hub when WDi > thrWD and Pi > thrP. In the 

experimental results, we only showed the detected hubs when thrWD and thrP were set to 1.0 

and 0.6, respectively. The other settings for WDthr and Pthr are discussed in Section 4.5.6.

2.8 Characterization of Regional Developmental Trajectories of WD and P

Besides investigating hubs at each age in a cross-sectional manner, we further used LMER 

model to characterize developmental trajectories of the regional WD and P to delineate how 

a brain region evolves to be a provincial/connector hub. We thus selected hub regions 

detected in 12-months-old as regions of interest (ROIs) and assessed their WD and P values 

at all age groups in the first postnatal year. In each LMER, the ROI’s WD or P was modeled 

as the dependent variable, and age or log(age) in days was entered as the independent 

variable. Random intercept and subject effects were included to characterize the temporal 

correlation. The Akaike information criterion (AIC) was adopted for model selection 

between age and log(age). For all models, significance was defined as p < 0.001 after false 

discovery rate (FDR) correction.

3. Results

We evaluated the effectiveness of our proposed group-level network construction method by 

comparing the generated group-level FC matrix at each age group with those derived from 

the conventional (i.e., average-based) method. After the group-level networks were 

constructed, we used the same algorithm as described in Section 2.6 to detect modular 

structures and compared results between two methods. Of note, the proposed “temporal 

smoothness” constraint could not be easily applied to the conventional method as it should 

be applied to the MPP matrices (see Section 2.5). For unbiased comparisons, we also 

generated the module-guided group-level networks without adding the step of “temporal 

smoothness”. The three results are shown in Fig. 2.

As expected, the group-level FC network matrices obtained from the conventional method 

(Fig. 2a) are much more blurred than those from our method either with or without 

“temporal smoothness” for all age groups (Figs. 2b and 2c). Such results were also 

supported by higher modularity (Q) values of the networks derived from our methods than 

those from the conventional method (Fig. S5 in Supplementary Materials), because Q 
measures the degree of modular structure in a network, with a larger Q indicating a clearer 

modular structure. The blurred FC matrices increase the difficulty in module detection and 

further result in inconsistent modular structures across ages. Comparisons of the detected 

modular structures show that, even without additional “temporal smoothness”, the modules 

derived from our method are still consistent across ages compared to the conventional 

method. For example, the conventional method leads to an additional dorsal frontal module 

at nine months of age compared to other ages (see the blue arrow in Fig. 2a). In contrast, 

from our proposed method, the frontal area is consistently and smoothly partitioned into 

three modules during the development in the first postnatal year. We also find that the 

introduction of “temporal smoothness” in the MPP prior calculation could further improve 

the temporal consistency of modular structures. As shown in Fig. 2b, without “temporal 
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smoothness”, a small region in the inferior parietal cortex is singled out from the main 

parietal modules (see the red arrow in Fig. 2b), but such a result does not exist at 

neighboring ages. With the method of integrating “temporal smoothness”, such inconsistent 

results can be avoided. We also evaluated the effectiveness of our method on an adult 

dataset. For detailed information, please see Supplementary Materials.

3.1 Development of Modular Structures in Infant Functional Brain Networks

The full views of the detected modules from neonates to 12 months of age are visualized in 

Fig. 3a. Asides from the temporally consistent modular patterns across ages, we find that the 

brain is gradually divided into more and more modules, from 4 modules at neonate to 8 after 

12 months of maturation (Fig. 3b). Table 1 summarizes how these new modules emerge by 

splitting from or merging to the existing modules at previous ages. Specifically, the quantity 

of modules increases with the emergence of new modules in spatially-independent brain 

regions at different ages, which seems to follow a particular order as described below.

In neonates, the brain is separated into four modules: neonatal-module a (mainly covering 

the visual cortex in the occipital lobe), neonatal-module b (encompassing the temporal lobe 

and subcortical regions), neonatal-module c (in the frontal area), and neonatal-module d 
(located at central areas for sensorimotor function, i.e., pre- and post-central gyrus). With 

development, all modules are gradually reshaped or divided and new modules emerge. 

Compared to other three modules, the spatial pattern of the neonatal-module a has less 

change from neonates to one year of age.

At three months of age, the neonatal-module b is divided into two modules: one at 

subcortical regions and the other covering the temporal area.

At six months of age, the neonatal-module c is divided into medial and lateral parts, with the 

lateral part further dividing into a larger dorsal module (covering major part of the inferior 

and middle frontal gyrus) and a smaller ventral module (covering the triangular part of the 

inferior prefrontal gyrus and the anterior insula). The new medial prefrontal module (i.e., the 

medial part of the neonatal-module c) further combines with another module in the sub-

cortical regions that was separated three months ago.

At nine months of age, the parietal part of the neonatal-module a continues to shrink, and 

finally incorporates the bilateral superior parietal lobules separated out as a new module. 

Such changes occur in parallel with shrinking neonatal-module d, with its recessed area 

occupied by the expending triangular prefrontal/anterior insular module (now covering the 

whole insula and the ventral part of the central area).

At 12 months of age, the medial prefrontal module that belongs to the neonatal-module c is 

divided into the anterior and posterior portions, with the posterior part covering subcortical 

regions, middle cingulate cortex, and supplementary motor area.

In this manner, by one year of age, the number of modules doubles, with eight modules 

formed: visual module, temporal module, subcortical and middle cingulate module, medial 

prefrontal module, lateral prefrontal module, ventral central and perisylvian module, dorsal 

central module, and parietal module. During the first year of development, we find the 
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module generation and splitting roughly follows a general anatomical order that from 

inferior to superior, from lateral to medial, from subcortical to cortical, from primary to 

higher-level function-related areas. Anatomically, the development of the lobes roughly 

follows an (not strict) order of occipital, temporal, parietal and frontal lobes.

With the increasing module quantity, we further find that the mean intra- and inter-modular 

FC are also both increased (Fig. 3c), but with diverse developmental trajectories. The 

averaged intra-modular FC has a nonlinear developmental trajectory with the largest 

enhancement at the first three months, but a much flatter curve thereafter. In contrast, the 

averaged inter-module FC shows a growth curve with the consistent increasing speed.

3.2 Development of Hubs in Infant Functional Brain Networks

3.3.1 Hub Location and Quantity Changes—Figure 4a visualizes the spatial 

distributions of the detected functional hubs (both provincial and connector hubs) for all age 

groups. The total number of hubs firstly decreases a little bit at nine months of age and 

increases thereafter (Fig. 4b). Meanwhile, the spatial distribution of hubs is dramatically 

changed (Fig. 4a). Specifically, for neonate and three months of age, the hubs are mainly 

located in the sensorimotor, visual areas, and the superior frontal cortex. Starting at the age 

of six months, the hubs are spatially expanded with a shrinking number at the primary areas 

and newly emerging hubs, mostly in the cingulate cortex, temporal area and thalamus. After 

nine months of age, the hubs emerge in the higher cognition-related areas, including the 

lateral prefrontal areas, insula, posterior superior temporal gyrus, and superior parietal 

lobules.

Although the total number of hubs does not change a lot, the ratio between the quantity of 

the provincial hubs and that of the connector hubs gradually decreases (Fig. 4b), with 

continuously increasing connector hubs and decreasing provincial hubs. From neonate to 

one year of age, the spatial distribution of the provincial hubs gradually shrinks. In contrast, 

the connector hubs gradually expand to the temporal (at 6 months of age), frontal (at 9 

months of age), and parietal association areas (at 12 months of age). The increasing 

connector hubs further support increasing mean inter-modular FC (Fig. 3d) and could be 

related to more integrated functional brain networks.

3.3.2 Hub Connection Property Changes—In addition to the above cross-sectional 

hub detection results, we further measured the longitudinal change of each hub during 

development by delineating the developmental trajectories of within-module degree (WD) 

and participation coefficient (P), which are two key properties that characterize hubs 

regarding to their positions in the network modular topology. Intuitively, one can detect 

several different scenarios based on WD and P developmental trajectories, each of which 

may represent a certain type of role transitions of brain regions along development. For 

example, the ROIs with both significantly increased WD and P are more likely converting 

from non-hubs to connector hubs because connector hubs generally have high WD and P. 

The ROIs with significantly increased WD only may gradually convert from non-hubs to 

provincial hubs because provincial hubs have large WD but small P. For the ROIs with 

significantly increased P only, they might convert from provincial hubs to connector hubs 
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because connector hubs have high P and WD while the unchanged high WD might suggest 

that they were the provincial hubs at the beginning. Finally, the ROIs with no significant 

change in either WD or P could already be provincial hubs or connector hubs in neonates. 

Based on these intuitive thoughts, we classified the ROIs into four categories: 1) both WD 
and P are significantly increased (Fig. 5(a)), 2) only WD is significantly increased (Fig. 

5(b)), 3) only P is significantly increased (Fig. 5(c)), and 4) both WD and P show no 

significant changes (Fig. 5(d)). The fitted curves from LMER on four categories are 

respectively showed in Figs. S7, S8, S9 and S10 in Supplementary Materials.

Of all 26 ROIs, eight (31%) have both significantly increased WD and P along growth (the 

first category), which indicates these nine regions are gaining importance with respect to 

their within-modular connections and inter-modular connections. With growth in the first 

year, these regions could become (or have potentials to become) connector hubs, thus are 

quite important to the brain functional network development. They mainly locate in the 

anterior middle temporal gyrus and posterior insula of both sides, as well as right inferior 

frontal areas, right inferior parietal areas, and posterior part of the middle temporal gyrus 

(Fig. 5a). Interestingly, none of them constitutes any initial hub regions in neonates.

As shown in Fig. 5b, 4 (15%) regions out of all 26 ROIs have a tendency towards growing 

from non-hub regions into provincial hubs (i.e., with increasing WD but constant P, the 

second category). They sit in the left lingual, as well as the thalamus and caudate. Of note, 

all these regions show exponential increases in the WD (i.e., fitting better with a log-linear 

regression model).

The third category of developing trends consists of the most regions (11, 42%), which shows 

significant linear growth in P but constant WD. Combing with Fig. 4a, many regions in this 

category have already been provincial hubs in the neonatal stage, which can also be reflected 

by a relatively high level of WD developmental curves (larger intercept in Table 2). 

Therefore, many of these regions are probably transforming from provincial hubs in the 

earlier months to connector hubs in the later months of the first year of life. The majority of 

them are located in the frontal association or high-level cognitive function-related areas, 

some of which are left lateralized, such as Broca’s area. The other regions are located in the 

occipital association areas (Fig. 5c).

The fourth category only includes three ROIs in the visual areas (Fig. 5d) with non-

significant WD or P growth. Considering these two regions are identified as provincial hubs 

at 12 months of age, they could be acting similarly as provincial hubs in the previous ages 

and did not change their roles in the brain network during development.

4. Discussion

In this paper, we, for the first time, provide a comprehensive report of the development of 

functional brain networks in the first postnatal year by investigating two important network 

measures, i.e., modules and hubs (including provincial and connector hubs). Particularly, we 

developed a novel algorithm for generating robust, temporally consistent and modular 

structure-enhanced group-level FC networks for infants’ longitudinal rs-fMRI data. We find 

Wen et al. Page 12

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during the first year of development, the brain network is gradually subdivided into more 

modules accompanied by the strengthening intra- and inter-modular connections. Based on 

the developing modules, hubs are spatiotemporally rewired with connector hubs emerging 

and increasing, but provincial hubs diminishing and decreasing. All the findings suggest that 

functional segregation and integration are both enhanced in the first postnatal year. The 

reorganizations of modules and hubs drive the functional brain networks to become more 

efficient with both higher intra- and inter-modular information transmission at the low 

wiring cost. Additionally, the systematic ROI-wise analysis of within-module degree and 

participation coefficient further characterized different developmental trajectories for brain 

regions evolved to be provincial or connector hubs.

4.1 Enhanced Functional Segregation and Integration

To the best of our knowledge, this is the first study to characterize the development of the 

infants’ functional brain networks by detecting modular structures. Previous studies 

generally adopted seed-based correlations (Gao et al., 2015a) or ICA (Gao et al., 2015b) to 

detect brain functional systems. However, seed-based correlations limit the study only on a 

specific functional system, other than multiple functional systems and their interactions as a 

whole. Although ICA could simultaneously detect multiple functional systems, the results of 

within-component FC and inter-component FC are not quite straightforward to interpret, and 

a component-based network-wise FC analysis lose the spatial specificity across ages (Sporns 

and Betzel, 2016). By building region-wise FC networks and detecting modular structures at 

each age, we could systematically delineate when and how each functional subsystem 

develops with large-scale metrics (i.e., modular quantity, intra/inter-modular FC), meso-

scale metrics (i.e., single module) and local metrics (i.e., hubs, nodal WD and nodal P).

By investigating modules and hubs of functional brain networks, we found: 1) gradually 

increasing modular quantity (Fig. 3b), 2) both increasing intra- and inter-modular FC (Fig. 

3b), and 3) increasing quantity of connector hubs and decreasing number of provincial hubs 

(Fig. 4b) in the first postnatal year. The increasing modular quantity and tightening intra-

modular connectivity indicate the enhanced functional segregation, and the tightening inter-

modular connectivity suggests the increasing functional integration. The increasing number 

of connector hubs provides additional support to the enhanced functional integration since 

those regions are mostly responsible for integrating inter-modular information. Although the 

number of provincial hubs decreases, it is not likely to be an indicator of decreasing 

functional segregation, due to the globally increased FC, the connections could be less 

concentrated, making it more challenging to detect hubs. The increasing functional 

segregation could be due to the improved primary brain functions in the first postnatal year 

(Courage and Adams, 1990). During this period, the high-level cognitive function-related 

regions, such as the temporal, frontal, and parietal association regions, also show rapid 

development (Amsterdam, 1972; Haith et al., 1988; Reznick, 2009), which facilitates the 

increase of functional integration. The development of these association regions could 

mirror increasingly prominent functions in the coordination of different functional systems 

and the integration of different unimodal information (Bertolero et al., 2015).
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Comparing our findings with a few previous early brain development studies, we found that 

increasing functional segregation and integration is still quite controversial. Several previous 

whole brain and graph-theory-based studies using local efficiency and global efficiency 

suggested increasing functional segregation and integration in the first two years of life (Gao 

et al., 2011). While they did not use module-derived metrics as we used, their interpretations 

are consistent with ours. However, in Gao et al. (2015b), ICA was adopted to extract 

different brain networks and both intra- and inter-network FC were respectively computed as 

within-network FC values and between-network synchronization of the component-

associated time courses. While they reported increasing intra-network FC for various 

functional networks, the inter-network FC was observed to be decreasing along ages. The 

same method was used in another study but led to decreased intra-network FC and increased 

inter-network FC from 4- to 9-months of age (Damaraju et al., 2014).

It is thus highly needed to have more future studies using different metrics and different 

networks to comprehensively investigate the developmental trajectories of functional 

segregation and integration.

4.2 More Efficient Network Information Processing

Brain function has been conceptualized as a balance between modular and integrative 

processing (Bertolero et al., 2015). In such a theory, each module functions autonomously 

with strong ability of local information processing. Meanwhile, highly efficient global 

information communication requires cooperation among different modules, and such 

cooperation could be mainly mediated by connector hubs that are located between different 

modules. During development, the functional brain networks are dynamically rewired (van 

den Heuvel et al., 2015; Cao et al., 2016b), and the modular structure is continuously 

changing (the quantity of modules is increasing during the infant developmental stage). Due 

to the fact that building inter-modular (often long-range) connections requires enormous 

energy consumption, such a rewiring could lead to inter-modular connections concentrated 

into a small number of brain regions (i.e., connector hubs). This could keep each module 

function largely autonomous, while facilitating the efficiency of inter-modular information 

processing at the low wiring cost. Taken together, the reconfiguration of the functional brain 

networks during development could feature with more efficient information exchange with 

the increasing number of connector hubs.

4.3 Different Developmental Patterns for Provincial and Connector Hubs

In this study, based on the regional-wise longitudinal analysis of intra- and inter-modular 

connections, we identified four subtypes of hubs with distinct developmental trajectories. 

Among four categories, the second category of brain regions with the significant increase in 

WD (within-modular degree, characterizing intra-modular connections) displayed non-linear 

(exponential) trajectories (Table 2), with more rapid changes in the earlier months than the 

later months in the first year of postnatal life. These regions are mainly located at the 

primary visual areas and thalamus (Fig. 5b). The third category of brain regions with 

significant increase in P (participation coefficient, characterizing the ability of inter-modular 

connections) had linear trajectories (Table 2). They are mainly located at frontal areas, high-

order motor areas, and higher-order visual areas (Fig. 5c). Such a difference in 
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developmental trajectories reflects the distinct growth rates that provincial hubs gain more 

connections in the earlier stages, while connector hubs gain connections in whole ages, of 

the first year of life. Such finding imply that the intra-modular connections may saturate 

much faster, but the inter-modular connections could have protracted development into later 

ages.

Combining the first and the third categories (both with P significantly increased), we found 

that the involved brain regions are mainly located in the temporal association areas and 

inferior parietal lobules, part of the default mode network (Fig. 5a), as well as regions in 

frontal task executive control network, and high-order motor/visual areas (Fig. 5c). Such 

findings suggest hubs in the high-level functional networks could be maturing rapidly, which 

could help the functional and anatomical maturation of the high-level functional networks in 

later ages (Cao et al., 2017). These hub regions should be further studied due to their 

essential roles in the normative and abnormal development of the high-level functions, 

because the hubs are the most important regions in the network, and any targeted attack on 

them could lead to major disruption of the network (Gao et al., 2011).

4.4 Module-guided Group-level Network Construction

Our proposed module-guided group-level network construction method addresses two issues 

in the conventional averaging-based strategy. First, the possible outliers of individual-level 

FC matrices could exert significant influence on the traditional average-based group-level 

network, especially for the infant study with severer noise and artifacts (Zhang et al., 2018b). 

In our method, we determine the group-level FC based on the modular assignment 

probability (i.e., MPP matrix) calculated across all subjects. Therefore, each subject has the 

same contribution during the MPP calculation, thereby avoiding the effects of the outliers 

with extreme FC strength. Second, we use different strategies to determine weights of edges 

based on the corresponding MPPs (module partition probability) to avoid making group-

level FC matrix over-blurred, which is better for the subsequent group-level module and hub 

detection. The decision of choosing the group-averaging method from max/mean/min pool is 

based on the useful prior information of node-to-modular assignment probability. In such a 

way, both individual FC strength and the topological consistency of individual-level modular 

structure across all subjects are considered to form the group-level FC matrix. This is similar 

to “robust mean” (Fair et al., 2009; Meunier et al., 2009; Lynall et al., 2010) that derives 

more robust group means by removing outliers. Our method-derived group-level FC could 

thus be treated as an augmented, or de-noised result. Whilst useful for other options, such as 

“robust mean”, our method could be more suitable for the subsequent group-level module 

detection.

Additionally, the introduction of the MPP in our proposed method helps generate temporally 

consistent group-level FC networks and longitudinally smooth modular structure changes for 

the brain functional development studies. According to the MPP matrix, we could improve 

the temporal consistency of group-level networks across age groups, but do not touch 

individual FCs.
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4.5 Method Robustness Evaluation

Our study has several parameters to be determined. In the group-level network construction, 

our model introduces four parameters, i.e., a density threshold for sparsifying individual-

level networks (thri), a parameter δ for controlling “temporal smoothness”, and an upper 

(thrh) threshold and a lower (thrl) threshold for group-level MPP matrix. Additionally, the 

threshold for sparsifying group-level network (thrg) and the atlas for brain parcellation may 

also affect the detected modular structure. In the hub detection, thresholds for within-module 

degree (thrWD) and participation coefficient (thrP) may influence the categorization of 

provincial and connector hubs. We discuss the effect of each parameter below. Of note, when 

one parameter was varied, the others were fixed to be the values used in the main 

experiments.

4.5.1 Density Threshold for Sparsifying Individual-level Networks—The 

parameter thri may affect individual-level module detection and further affect the generated 

group-level MPP matrices and networks. To evaluate such influences, we changed thri from 

0.05 to 0.15 in a step of 0.01. At each setting, we constructed a corresponding group-level 

MPP matrix and compared its cumulative distribution of probability values with the one 

adopted in our main analysis (i.e., the MPP matrix with thri = 0.1) by using Kolmogorov-

Smirnov test. As shown in Fig. S11 in Supplementary Materials, most of the thri settings led 

to similar MPP distributions for all age groups (p > 0.05), except very small or very large 

thri settings mainly lying at the start and end of the range (p < 0.05). We further picked thri = 

0.05 and 0.15 and visualized their corresponding group-level modules of all age groups in 

Fig. S12 in Supplementary Materials. We found different settings of thri generated very 

similar results regarding the modular structures (Fig. S12a) and the intra-/inter-modular 

connectivities (Fig. S12b), suggesting that thri may have little effect on the results.

4.5.2 Temporal Smoothness Applied to the Group-level MPP Matrix—The 

parameter δ controls the temporal smoothness of MPP matrices for improvement of the 

consistency of group-level networks across ages. No golden standard can be found from the 

previous studies for δ selection. We decide to use temporal smoothness of Q curves as an 

evaluation index to select δ because the motivation of introducing temporal smoothness is 

mainly to improve modular consistence across ages. We set δ to multiple values (i.e., 0, 0.5, 

1, 1.2, 1.4, 1.5, 1.6, 1.8, and 2) and evaluated the temporal consistency of the networks’ Q 
values at each setting. As shown in Fig. S13a in Supplementary Materials, with the increase 

of δ, the modular structure gradually became smoother along development. When δ is 

smaller than 1.5, the development curves are less smooth, where a large dip at 3 months of 

age can be spotted, which seems not biologically meaningful. When δ was set to 2, there 

was an over-smoothed Q curve, which could also be suboptimal. We chose δ = 1.5 because it 

located at a turning point of the temporal smoothness. We also compared the modular 

detection results with δ = 0 and 1.5 and found that the introduction of temporal smoothness 

did not significantly change the modular structure of each age group (Fig. S13b in 

Supplementary Materials) and also the developmental patterns of intra- and inter-modular 

connectivities (Fig. S13c in Supplementary Materials), while removed several inconsistent 

modular affiliations at certain ages and smoothed the developmental trajectories.
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4.5.3 Upper and Lower Thresholds for Group-level MPP Matrix—The 

parameters thrl and thrr are lower and upper thresholds for MPP matrices, respectively, 

which affect the distribution of FC strength in the group-level network. To investigate their 

effects on the results, we changed thrl from 0.05 to 0.25 and thrh from 0.45 to 0.65. For 

different combinations, we re-generated multiple networks for each age group and compared 

the detected modular structures with the one generated with thrl = 0.1 and thrh = 0.5 in the 

main result. Normalized mutual information (NMI) and modularity difference were used as 

evaluation indexes for the comparison.

As shown in Fig. S14 in Supplementary Materials, the changes induced by thrl and thrr are 

quite small at all age groups.

4.5.4 Density Threshold for Sparsifying Group-level Networks—Before group-

level module detection, a threshold (thrg) was used for sparsifying the group-level networks. 

To investigate its influence on the result, we changed thrg from 0.05 to 0.15 in the step of 

0.01. At each setting, we detected the corresponding modular structure and calculated its 

similarity to the result in our main analysis (thrg = 0.1) by using NMI. As shown in Fig. S15 

in Supplementary Materials, most of NMI values were greater than 0.8, suggesting high 

similarities of modular structures between different settings of thrg. We then picked thrg = 

0.05 and 0.15 and visualized their corresponding group-level modular structures at all age 

groups and the developmental trajectories of intra- and inter-modular connectivities to make 

the further comparison with our main results (thrg = 0.1). We found that the main findings 

did not change regarding thrg that 1) the brain network is gradually subdivided into more 

and more modules from neonates to 1 year of age (Fig. S16a in Supplementary Materials), 

and 2) both mean intra- and inter-modular connectivies increase with age (Fig. S16b in 

Supplementary Materials).

4.5.5 Brain Parcellation Scheme—To test whether different brain parcellation 

schemes could lead to different results, we repeated the analysis with a new brain atlas, 

which includes 1024 ROIs of the same size obtained by a random parcellation method 

(Zalesky et al., 2010). After individual-level FC networks were determined by using the new 

atlas, we adopted the same methods and parameters as described in Sections 2.5 and 2.6 to 

construct the group-level networks and then detect modular structure for each age group. As 

shown in Fig. S17 in Supplementary Materials, the modules derived from new atlas were 

similar to our main results, where the brain functional network is gradually subdivided into 

an increasing number of functional modules (Figs. S17a and S17b) accompanied by both 

strengthened intra- and inter-modular connectivities (Fig. S17c).

4.5.6 Thresholds for Determinations of Provincial and Connector Hubs—In 

the hub detection, thrWD (influencing the hub determination) and thrP (influencing the hub 

classification) have effects on the hub classification. We thus conducted the following 

experiments to evaluate the influence of setting such thresholds. By fixing thrP to 0.6 and 

increasing thrWD from 0.8 to 1.1 with 0.1 as an increment, we tested the effects of thrWD on 

hub assessment. As shown in Fig. S18 in Supplementary Materials, the detected cortical 

hubs in each age group did not change a lot in spatial distribution or in quantity. All thrWD 

settings show similar developmental patterns of hubs. On the other hand, by fixing thrWD to 
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1.0 and varying thrP from 0.50 to 0.65 with a step of 0.05, we investigated the possible 

influence of thrP on the categorization of provincial and connector hubs. Despite decreased 

number of brain regions being classified as connector hubs as thrP increased, both provincial 

and connector hubs show similar developmental patterns to the main results (Fig. S19 in 

Supplementary Materials), i.e., the quantity of connector hubs is increased and the number 

of provincial hubs is decreased.

4.6 Technical Considerations and Future Works

Several technical considerations should be discussed. First, the large voxel size may worsen 

the partial volume effect for studies of neonates and infants who have relatively smaller 

brains. Previous infant studies (Gao et al., 2015a, 2015b) adopted adaptive spatial smoothing 

that adjusts the Gaussian kernel proportionally to the actual size of the brain to alleviate this 

issue. An alternative is to improve the spatial resolution of the fMRI data. For example, in an 

ongoing Baby Connectome Project (BCP)1, fMRI data was collected with a high spatial 

resolution (voxel size = 2×2×2 mm3) by using a multiband echo-planar imaging (EPI) 

sequence (Howell et al., 2018; Zhang et al., 2018a). Second, the smaller and quickly 

developing brain during infancy poses a great challenge in infant brain fMRI registration for 

aligning the data at each age to a standard MNI space. If using the conventional registration 

algorithms, the registration accuracy cannot be guaranteed because a large and varying 

“distance” exists between a moving image (source) and a fixed image (target). To address 

this issue, one may choose a set of specified neonate/infant atlases corresponding to different 

ages instead of using a single adult-based atlas to reduce the distance of images and improve 

registration quality (Zhang et al., 2018a). An alternative we used is to perform advanced 

registration with dedicated algorithms that can handle a large variability of brain size and 

image appearance as used in previous studies (Zhang et al., 2017a, 2017b, 2018b). Third, 

head motion is another issue for fMRI analysis. It is recommended to evaluate motion 

quality control (QC) by reporting several benchmarks metrics, including QC-FC correlation, 

QC-FC distance dependence and the loss of temporal degrees of freedom (tDOF-loss) 

(Parkes et al., 2018). In addition to providing the QC benchmarks, we also repeated the 

analysis by using two different thresholds for data scrubbing. The one that we used in our 

main analysis is FD < 0.5 and DVARS< 0.5% (Figs. 2 and 3), and the results using the other 

threshold (FD < 0.25 and DVARS < 0.5%) were reported in Supplementary Materials. The 

similar results of both modules and hubs derived from the two thresholds indicate that our 

findings are less likely affected by head motion (Figs. S20 and S21). Finally, in this paper, 

the adopted module detection method limits each node can only be assigned to one module. 

Such constraint may lead to our resultant functional brain network (i.e., module) showing 

different spatial configurations with those derived from seed-based correlation or ICA-based 

method, which allows each node to belong to multiple functional networks. For example, 

Gao et al. (2015a) found matured default mode network (DMN) at 9 months of age by using 

a voxel-wise seed-based correlation method, which fails to be detected in our study. Such 

inconsistent findings may be due to Gao et al., (2015a) assigned posterior DMN (pDMN) 

(including posterior cingulate cortex and bilateral inferior parietal cortex) to both visual 

1http://babyconnectomeproject.org/
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network and DMN, while we only assigned it to the visual module. In future, we could use a 

certain algorithm that can detect modules with overlapping brain regions (Wen et al., 2016).

5. Conclusions

In this study, we provided the first comprehensive report of the early development of large-

scale functional brain networks at a fine temporal scale (every three months). We proposed a 

novel modular information-guided method to combine individual-level FC networks to form 

a robust, temporally consistent, and modular structure-enhanced group-level network at each 

age. We found that the functional brain networks were gradually subdivided with 

strengthening intra- and inter-modular connectivities, indicating the enhancement of 

functional segregation and integration in the first postnatal year. Meanwhile, the rewiring 

could drive the hubs to be more and more spatially uniform, with increasing connector hubs 

and increasing intra- and/or inter-modular FCs, towards more efficient information 

exchanges. These findings unravel detailed spatiotemporal changes of large-scale functional 

brain networks, which paves a road for the future works for better understanding of infant 

brain development.
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Fig. 1. 
Flowchart of the proposed Module-Guided Group-Level Network Construction method. 

First, based on each subject-level FC network, we detected the subject-level modular 

structure of FC network for each subject and represented such modular structure as a matrix. 

In such a matrix, if two nodes were assigned to the same module, the corresponding value 

was set to one; otherwise, zero. Second, we averaged modular partition matrices across all 

subjects in each age group to generate the group-level “possibility matrix”, i.e., “Module 

Partition Possibility” (MPP) matrix. In the MPP matrix, each element represents the 

probability of assigning a pair of nodes to the same module. Third, we determined the final 

weights of edges in the group-level FC network guided by the MPP matrix. For each edge, if 

its MPP is larger than thrh, the edge weight is set to the mean of the five highest individual-

level FC of the same edge across all subjects (i.e., max Pool). If the MPP is smaller than thrl, 

the edge weight is the mean of the five weakest individual-level FC across all subjects (i.e., 

min Pool); otherwise, the weight is the average value across all subjects (i.e., mean Pool).
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Fig. 2. 
Comparisons of the constructed group-level FC networks and their corresponding modular 

structures obtained by (a) conventional method, (b) our proposed method without “temporal 

smoothness”, and (c) our method with “temporal smoothness”. In each subplot, the upper 

row shows the group-level FC matrices after rearranging rows and columns according to the 

modular structure obtained on adults. The lower row shows modular structure (different 

modules in different colors). The arrows highlight the inconsistent module detection results.
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Fig. 3. 
Developmental changes in functional brain networks in the first postnatal year, including (a) 

developing modular structure, (b) continuously increasing modular quantity, and (c) 

longitudinal developmental trajectories of the mean intra-modular and mean inter-modular 

FC connectivities.
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Fig. 4. 
Developmental changes in spatial distribution and quantity of different types of hubs. (a) 

Spatial distributions of provincial (blue) and connector hubs (green) in the first postnatal 

year. (b) The numbers of provincial (blue) and connector hubs (green) at all age groups in 

the first postnatal year.
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Fig. 5. 
The spatial distributions of hubs with (a) both within-module degree (WD) and participation 

coefficient (P) significantly increased (p<0.001 FDR corrected); (b) only WD significantly 

increased (p<0.001 FDR corrected); (c) only P significantly increased (p<0.001 FDR 

corrected); (d) both WD and P having no significant changes (p<0.001 FDR corrected). For 

each category, we select one brain region and plot its developmental trajectories of WD and 

P. Statistically significant increasing curves are fitted with the red lines.
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