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Abstract

The highly convoluted cortical folding of the human brain is intriguingly complex and variable 

across individuals. Exploring the underlying representative patterns of cortical folding is of great 

importance for many neuroimaging studies. At term birth, all major cortical folds are established 

and are minimally affected by the complicated postnatal environments; hence, neonates are the 

ideal candidates for exploring early postnatal cortical folding patterns, which yet remain largely 

unexplored. In this paper, we propose a novel method for exploring the representative regional 

folding patterns of infant brains. Specifically, first, multi-view curvature features are constructed to 

comprehensively characterize the complex characteristics of cortical folding. Second, for each 

view of curvature features, a similarity matrix is computed to measure the similarity of cortical 

folding in a specific region between any pair of subjects. Next, a similarity network fusion method 

is adopted to nonlinearly and adaptively fuse all the similarity matrices into a single one for 

retaining both shared and complementary similarity information of the multiple characteristics of 

cortical folding. Finally, based on the fused similarity matrix and a hierarchical affinity 

propagation clustering approach, all subjects are automatically grouped into several clusters to 

obtain the representative folding patterns. To show the applications, we have applied the proposed 

method to a large-scale dataset with 595 normal neonates and discovered representative folding 

patterns in several cortical regions, i.e., the superior temporal gyrus (STG), inferior frontal gyrus 

(IFG), precuneus, and cingulate cortex. Meanwhile, we have revealed sex difference in STG, IFG, 

and cingulate cortex, as well as hemispheric asymmetries in STG and cingulate cortex in terms of 

cortical folding patterns. Moreover, we have also validated the proposed method on a public adult 

*Corresponding authors: gang_li@med.unc.edu and dgshen@med.unc.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2020 January 15.

Published in final edited form as:
Neuroimage. 2019 January 15; 185: 575–592. doi:10.1016/j.neuroimage.2018.08.041.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset, i.e., the Human Connectome Project (HCP), and revealed that certain major cortical 

folding patterns of adults are largely established at term birth.
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1. Introduction

The cerebral cortex of the human brain is a convoluted structure with highly complex and 

variable folding patterns across individuals. Many neurodevelopmental and neuropsychiatric 

disorders are associated with abnormal cortical folding morphology, which is likely the 

consequence of the abnormality in the dynamic folding development during perinatal brain 

development. During the last trimester of human pregnancy, the cortex develops rapidly 

from a smooth lissencephalic structure to an extremely folded one with notable increases in 

terms of many measures, e.g., brain volume, cortical surface area, sulcal depth, and 

curvature (Kapellou et al., 2006; Dubois et al., 2007; Dubois et al., 2008; Studholme, 2011; 

Orasanu et al., 2016). Meanwhile, the hemispheric asymmetries of cortical folding emerge in 

several regions during this period, e.g., the Heschl’s gyrus, planum temporale, and superior 

temporal sulcus (Dubois et al., 2010; Habas et al., 2011; Orasanu et al., 2016; Shimony et 

al., 2016). At term birth, neonates have already developed all the primary and secondary 

cortical folds and presented sex difference and hemispheric asymmetries (Chi et al., 1977; 

Awate et al., 2010; Hill et al., 2010; Li et al., 2014b), largely resembling the complex 

cortical folding morphology of adults (Li et al., 2014d; Li et al., 2018). Therefore, studying 

the morphology of neonatal cortical folding could provide important insights into normal 

early brain development and neurodevelopmental and neuropsychiatric disorders.

However, noticing the remarkable inter-subject variability of cortical folding in neonates 

(Fig. 1), it is still unclear on what are the representative normal neonatal folding patterns in 

each cortical region. Discovering the underlying representative patterns of cortical folding in 

neonatal brains is of great importance for neuroimaging studies of early brain development. 

As this will help: 1) provide important insights into early cortical folding variability across 

individuals and better understanding of the possible relationship between folding patterns 

and behavioral/cognitive functions (Klyachko and Stevens, 2003; Choe et al., 2012; Sun et 

al., 2012; Im et al., 2015; Cachia et al., 2016); 2) build multiple infant cortical surface 

atlases based on cortical folding patterns for enabling better spatial normalization and 

registration of cortical surfaces across infants; 3) identify the abnormal cortical folding 

patterns that could potentially associate with brain disorders during infancy; 4) explore 

possible sex differences as well as hemispheric asymmetries in relation to cortical folding 

patterns (Paus et al., 1996; Awate et al., 2010; Dubois et al., 2010; Li et al., 2014d; Li et al., 

2015a; Fish et al., 2016); and 5) investigate the latent relationships of cortical folding 

patterns between the developing neonatal brains and the matured adult brains.

Several pioneer studies of cortical folding patterns have been conducted based on visual 

inspection of adult brains. For example, the classic textbook “Atlas of Sulci” (Ono et al., 
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1990) comprehensively describes sulcal patterns of various regions, by visual examination of 

25 autopsy specimen brains. Relying on MR imaging, Ebeling et al. classified the cortical 

folding of the inferior frontal gyrus into four types, and Clark and Plante further refined this 

classification (Ebeling et al., 1989; Clark and Plante, 1998; Tomaiuolo et al., 1999). Yucel et 

al. classified the cortical folding of the anterior cingulate cortex into three types by 

identifying the presence of the paracingulate sulcus (Yücel et al., 2001). Pereira-Pedro et al. 

classified the cortical folding of the precuneus into three categories by checking sulcal 

connections and sulcal shape patterns (Pereira-Pedro and Bruner, 2016; Bruner et al., 2017). 

However, visual inspection is very subjective, error-prone and time consuming, and thus is 

not capable of fully capturing inter-subject variability of cortical folding in the modern 

large-scale MRI datasets.

To address this issue, several computational methods were proposed for automatically and 

objectively discovering cortical folding patterns (Sun et al., 2007; Sun et al., 2009; Coulon et 

al., 2012; Meng et al., 2016). Sun et al. leveraged 3D moment invariants as shape descriptors 

of sulci to explore the folding patterns of the cingulate cortex, and successfully identified 

three patterns (Sun et al., 2007). As the 3D moment invariants may not be sufficient to 

capture the complexity of cortical folding, Sun et al. further combined the Iterative Closest 

Point (ICP) registration method and the Isomap algorithms to better explore the folding 

patterns in the superior temporal sulcus (STS), cingulate cortex, and inferior frontal region 

(Sun et al., 2009). This method led to the discovery of an additional parallel cingulate 

pattern, which indeed occupies a big percentage in large populations (Ono et al., 1990; 

Cachia et al., 2016; Meng et al., 2016). Coulon et al. proposed a template-based method to 

extract features for encoding the presence and orientation of sulcal regions and revealed five 

patterns of the left inferior frontal sulcus (IFS) (Coulon et al., 2012). As the averaging-based 

template missed lots of specific folding information of individual subjects, these features 

still cannot comprehensively characterize cortical folding.

Although the above studies identified several meaningful folding patterns of specific cortical 

regions, they were only applied to adult datasets with relatively small or moderate sample 

sizes, where many representative cortical folding patterns might have been missed. 

Moreover, the existing discovered cortical folding patterns of adults might not be 

representative of that of neonates, due to the remarkable postnatal development and 

environmental influence. To date, the prenatal developmental mechanisms and postnatal 

origins of representative cortical folding patterns are not clearly underpinned. Therefore, 

Meng et al. devised a method to discover the sulcal folding patterns using a large neonatal 

dataset (Meng et al., 2016). Specifically, they characterized sulcal folding based on the 

spatial distribution of sulcal pits (i.e., deep sulcal landmarks) and their relational graphs, and 

revealed several typical folding patterns in the central sulcus, STS and cingulate sulcus. For 

example, three and four sulcal folding patterns were discovered in STS and cingulate cortex, 

respectively. However, since the folding patterns were characterized based on sulcal pits, 

which are only applicable for deep sulci, this method is not suitable for mining gyral folding 

patterns. Indeed, sulci and gyri have distinct cortical properties, structural/functional 

connections, and developmental mechanisms (Van Essen, 1997; Nie et al., 2011; Li et al., 

2015a; Li et al., 2015b).
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In this paper, we propose a novel computational method for exploring the representative 

folding patterns in local regions (especially for gyri) of the infant cerebral cortex based on 

multi-view curvature features, by leveraging a large-scale neonatal dataset with 595 healthy 

subjects. Specifically, first we devise multi-view curvature features to comprehensively 

characterize the complex and multi-scale nature of cortical folding. Then, for each feature in 

a local cortical region, we build a similarity matrix to measure the affinity of cortical folding 

between any pair of subjects. Third, we nonlinearly fuse the similarity matrices from all 

features into a single matrix to retain both shared and complementary similarity information 

of multi-view features. Finally, based on the fused similarity matrix, we apply a hierarchical 

affinity propagation clustering approach to group subjects into several clusters, each with a 

representative folding pattern of the specific region. To show the applications of the 

proposed method, we explore the representative folding patterns in four cortical regions, 

including the superior temporal gyrus, inferior frontal gyrus, precuneus, and cingulate 

cortex. The motivation of choosing these regions is that most of them have shown notably 

variable folding patterns in previous adult studies, thus we can easily compare our 

discovered neonatal folding patterns with those discovered adult folding patterns. 

Meanwhile, we also analyze the sex effects and hemispheric asymmetries of our discovered 

folding patterns of these regions. Importantly, we also validate the proposed method on an 

adult dataset, i.e., the Human Connectome Project (HCP), and compare the cortical folding 

patterns as well as their hemispheric asymmetries between infant and adult brains.

2. Materials and Methods

2.1 Subjects and MR Image Acquisition

The Institutional Review Board of the University of North Carolina (UNC) School of 

Medicine approved this study. The dataset includes both healthy singletons and twin infants 

and is part of a large prospective study of early brain development. The UNC hospitals 

recruited the pregnant mothers during their second trimester of pregnancy. Parents of each 

recruited subject provided written informed consents. Infants with abnormalities on fetal 

ultrasound as well as mothers with major medical or psychotic illness were excluded from 

the study. None of infants in this study cohort suffered from congenital anomalies, metabolic 

disease, and focal lesions (Gilmore et al., 2012).

MR images were acquired from 595 healthy neonates in this study, including 308 males (119 

singletons and 189 twin children) and 287 females (124 singletons and 163 twin children). 

All infants were scanned unsedated. Before MRI scanning, infants were fed, swaddled, and 

fitted with ear protection. No significant difference was found in the gestational ages (GA) at 

birth and postmenstrual ages (PA) at MRI scan between male and female subjects. 

Demographic information of the infant cohort is shown in Table 1. The histogram of PA at 

MRI scan of infants in 8 sub-groups (related to male/female, singleton/twin and term-born/

premature) is displayed in Fig. 2.

T1-weighted and T2-weighted brain MR images were acquired on a Siemens head-only 3T 

scanner with a circular polarized head coil (Allegra, Siemens Medical System, Erlangen, 

Germany). T1-weighted images (160 sagittal slices) were acquired with a 3D magnetization-

prepared rapid gradient echo (MPRAGE) sequence (TR = 1820 ms, TE = 4.38 ms, inversion 
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time = 1100 ms, flip angle = 7º, and resolution = 1×1×1 mm3). T2-weighted images (70 

transverse slices) were acquired with the turbo spinecho (TSE) sequences (TR = 7380 ms, 

TE = 119 ms, flip angle = 150º, and resolution = 1.25×1.25×1.95 mm3).

2.2 Image Processing and Cortical Surface Mapping

All T1-weighted and T2-weighted MR images were processed using the UNC Infant 

Pipeline (Li et al., 2015c), which has been validated on >2000 infant MRI scans. Concretely, 

for image preprocessing, this pipeline includes the following main steps: 1) stripping the 

non-cerebral tissues through a learning-based method (Shi et al., 2012); 2) removing the 

cerebellum and brain stem by the HAMMER registration method (Shen and Davatzikos, 

2002); 3) correcting the intensity inhomogeneity using N3 algorithm (Sled et al., 1998); 4) 

segmenting the brain tissue into gray matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF) through an infant-specific level set based method (Wang et al., 2013; Wang et 

al., 2014b); 5) masking the non-cortical structures (i.e., lateral ventricles and subcortical 

structures) and filling these regions, and then dividing each brain into left and right 

hemispheres.

Cortical surfaces of each hemisphere for each subject were reconstructed by a deformable 

surface method (Li et al., 2012b; Li et al., 2014a) based on the segmented tissues. 

Specifically, first, topology defects were corrected based on a learning-based method (Hao et 

al., 2016), thus ensuring a spherical topology for each hemisphere. Then, the corrected white 

matter was tessellated as a triangular mesh and further deformed by preserving its initial 

topology to reconstruct the inner and outer cortical surfaces. Each inner cortical surface was 

further smoothed, inflated and mapped onto a standard sphere (Fischl et al., 1999). Each 

spherical cortical surface was aligned onto the UNC 4D Infant Cortical Surface Atlas1 (Li et 

al., 2015c) using Spherical Demons (Yeo et al., 2010), thus establishing the vertex-to-vertex 

cortical correspondences across all subjects. All cortical surfaces were finally resampled to 

the same standardmesh tessellation with 163,842 vertices.

2.3 Discovering Cortical Folding Patterns

The proposed method for exploring the representative cortical folding patterns of infants is 

shown in Fig. 3. Specifically, given the mean curvature map on the inner surface of each 

subject (Fig. 3-a), we first derive two kinds of curvature-related features: 1) decomposed 

curvature maps at multiple spatial-frequency scales (Fig. 3-b); and 2) gyral crest curves (Fig. 

3-c) extracted from the mean curvature map. These “multi-view” curvature features lead to a 

comprehensive characterization of cortical folding. Second, to better measure the similarity 

among subjects on multi-view features in a specific cortical region of interest (ROI), the 

folding difference between any pairs of subjects was firstly computed for each feature, thus 

obtaining multiple inter-subject distance matrices (Fig. 3-d), which were further converted as 

similarity matrices (Fig. 3-e). Third, leveraging the similarity matrix fusion (SNF) method 

(Wang et al., 2014a), these multiple similarity matrices were adaptively and nonlinearly 

fused together as a single comprehensive similarity matrix (Fig. 3-f) to carry both shared and 

complementary information across multi-view features. Ultimately, all subjects were 

1UNC 4D Infant Cortical Surface Atlas: https://www.nitrc.org/projects/infantsurfatlas
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clustered into several groups based on this fused similarity matrix, with each group 

representing a typical cortical folding pattern in the specific cortical region (Fig. 3-g). We 

detail each of these steps in the following sections.

2.3.1 Computing Multi-View Curvature-based Features—Cortical folding can be 

characterized at multiple scales and aspects (Li et al., 2010b; Mangin et al., 2010; Duan et 

al., 2017a; Duan et al., 2017b). For instance, the mean curvature has been extensively used 

to study the fine-scale features of cortical folding, as it is informative in the highly-bended 

regions, such as gyral crests and sulcal bottoms. Sulcal depth has been used to explore the 

relatively coarse scale features of cortical folding, as it can capture the gradual slopes of gyri 

and sulci. However, both curvature and sulcal depth can only characterize cortical folding to 

some extent, and their intrinsic relationships remain unclear. To this end, we leveraged over-

complete spherical wavelet transformation to decompose the mean curvature map of the 

cortical surface into multiple spatial-frequency scales for a natural multi-scale 

characterization of cortical folding. Meanwhile, we further extracted the gyral crest curves 

based on the curvature map as high-level characteristics. Thus, we obtain multi-view 

curvature features to comprehensively characterize the infant cortical folding.

Multi-scale Decomposition of Curvature Map: First, we computed the mean curvature 

map of the inner cortical surface (with a spherical topology) for each subject (Fig. 4-a) and 

further decomposed the mean curvature map into multiple complementary spatial-frequency 

scales (Fig. 4-b), by using over-complete spherical wavelets (Yeo et al., 2006; Yeo et al., 

2008). Of note, the conventional spherical wavelets (e.g., orthogonal/bi-orthogonal wavelet 

transforms) would fail to meet our purpose, since they suffer from sampling aliasing and 

thus lack translational and rotational invariance in surface parameterization (Yu et al., 2007). 

In contrast, over-complete spherical wavelets address this issue by guaranteeing that each 

scale is sufficiently sampled, and thus are much more robust and accurate in characterizing 

cortical folding.

Let c be an input mean curvature map mapped onto a spherical cortical surface, and hl l = 1
L

be the spherical analysis filters at L frequency levels. By convolving each filter hl with c in 

the spherical domain, we can obtain a set of wavelet coefficients ρl at multiple spatial-

frequency scales as:ρl = c * hl, which can thus encode multi-scale information of the original 

surface characteristics (Fig. 4). Herein, the analysis filter is defined as:hl = Qlψ, where Ql is 

a nonlinear dilation operator and l is the frequency level (with a larger l corresponding to a 

narrower filter). ψ denotes the mother wavelet filter, which is defined as a Laplacian-of-

Gaussian filter in our application.

To ensure the shape analysis is rotation-invariant, we over-sampled the wavelet coefficients 

with 163,842 vertices on the spherical surface. As the underlying wavelet basis functions 

have local supports in both space and frequency, multi-scale wavelet coefficients encode rich 

information of cortical folding at different levels. As shown in Fig. 4, the original mean 

curvature map of one subject was decomposed into 7 frequency levels, thus generating a 

natural multi-scale characterization of cortical folding. Specifically, at coarser levels, the 
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wavelet coefficients encode larger scale folding information, while at finer levels, the 

wavelet coefficients capture smaller scale folding information. These 7 levels are sufficient 

to capture multi-scale folding information, since the level 7 already mainly contains less 

useful high-frequency noises.

Extraction of Gyral Crest Curves: Gyral crest curves are high-level features of cortical 

folding and thus can be used as reliable landmarks for characterizing the inter-subject 

variability of cortical folding. To extract gyral crest curves, first, we partitioned the original 

mean curvature map of each surface into small patches, called supervertices (Li et al., 

2012a). Herein, the boundaries of supervertices aligned well with the gyral crest curves and 

sulcal fundi in the highly bended cortical regions. Next, we automatically linked boundaries 

of these supervertices to form gyral crest curves. The flowchart of extraction of gyral crest 

curves is shown in Fig. 5.

The supervertices partition of the cortical surface was formulated as a labeling problem, i.e., 

assigning a supervertex label to each vertex by taking into account the spatial contextual 

information. First, a total of 1280 seeds, which were relatively uniformly distributed on the 

cortical surface (Fig. 5-a), were initialized as the seeds of supervertices (Li et al., 2012a). 

Next, the label of each vertex belonging to a supervertex was determined based on geometric 

information by minimizing the following energy function:

E = ∑x (1 − exp(−α|gsx
(x)|)) + λ∑ x, y ∈ 𝒩w(x, y) ⋅ (1 − δ(|sx − sy|)) (1)

where the first term is a data term, the second term is a spatial smoothness term, and λ is a 

weight determining the tradeoff between these two terms. Specifically, the data term was 

determined by the curvature-weighted geodesic distance gsx
(x) between each vertex x and 

each seed representing a supervertex label sx. The gsx
(x) was computed by the fast marching 

method on triangular meshes (Kimmel and Sethian, 1998; Li et al., 2010a), with a marching 

speed setting as exp(−β|c(x)|), where c(x) denotes the mean curvature of a vertex x. Herein, 

we set λ = 0.1, α = 0.2, and β = 0.3, as suggested in (Li et al., 2012a). Intuitively, given the 

seed of a supervetex, if a geodesic path connecting the supervertex seed and another vertex 

passes through regions with large magnitudes of curvature, typically corresponding to sulcal 

bottoms or gyral crests, their weighted geodesic distance will be large. Thus the cost of 

labeling this vertex as the current supervertex is large.

In the smoothness term, w(x, y) was a spatially-adaptive weight between a pair of vertices in 

the neighborhood 𝒩 on the cortical surface, defined as:

w(x, y) = 1
4(exp( − |c(x) | ) + exp( − |c(y) | )) ⋅ (1 + n(x) ⋅ n(y)) (2)

where n represents the normal direction. Accordingly, the cost of labeling two neighboring 

vertices x and y is small at flat regions, but large at highly-bended regions, i.e., sulcal 
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bottoms or gyral crests, especially for two vertices on the same sulcal bank. Hence, the 

above energy function encourages the boundaries of supervertices to align well with sulcal 

fundi or gyral crest curves at highly bended regions. This energy minimization problem was 

efficiently solved by alpha-expansion graph cuts method (Boykov et al., 2001). An example 

of supervertices partition is shown in Fig. 5-b and 5-c.

Based on supervertices partition, we extracted the gyral crest curves using a two-step 

threshold method. Note that the mean curvatures of the vertices on gyral crest curves are 

negative values on the cortical surface with inward-oriented normal vector field. First, we 

marked the boundaries with the average mean curvature smaller than a low threshold Tlow as 

‘strict’ segments of gyral crest curves, and marked those with the average mean curvature 

smaller than a high threshold Thigh as ‘candidate’ segments. We empirically set Tlow = −0.3 

and Thigh = −0.2, as suggested in (Li et al., 2012a). Then, from each strict segment, we 

performed curve linking by adding the adjacent strict or candidate segments with the 

minimum transition angle between them, thus obtaining the linked gyral crest curves, as 

shown in Fig. 5-d. Of note, if we set the thresholds as positive values, we can extract the 

sulcal fundi. Thus, the whole framework is applicable to discover folding patterns for both 

gyri and sulci as needed.

2.3.2 Computing Similarity Matrices of Multi-view Features—To integrate the 

high-dimensional multi-view features of a specific cortical region for clustering, a simple 

way is to first concatenate them together and then calculate a similarity matrix. However, it 

is very difficult to define appropriate weights for different features and also difficult to 

leverage their complementary and common information. To address this issue, we first 

computed the similarity matrix of each feature and then adaptively and nonlinearly 

integrated all similarity matrices together, by leveraging an effective similarity network 

fusion (SNF) method (Wang et al., 2014a). To this end, for each feature we first devised a 

distance matrix for measuring inter-subject dissimilarity of cortical folding in a specific 

region, and then converted it as a similarity matrix.

For the multi-scale curvature features obtained via over-complete spherical wavelets, we 

only leveraged the levels 2 to 6 for our task. This is because level 1 only captures very large 

scale information that is highly similar across individuals, thus only containing the 

indistinctive information. As for level 7, it mainly contains useless high frequency noises, as 

shown in Fig. 4, making the results unreliable and unstable. Thus, both level 1 and level 7 

were not useful for mining folding patterns. Given a specific cortical ROI, its distance 

matrices for decomposed curvature levels 2 to 6 were calculated as:

Dl(i, j) = ∑x (ρl
i(x) − ρl

j(x))2, l ∈ {2, 3, 4, 5, 6} (3)

where i and j indicate the i-th subject and the j-th subject, respectively, l is the decomposed 

level, and x represents a vertex in the specific cortical ROI. Thus, we obtained five distance 

matrices {D2, … , D6} for all subjects.
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As for the gyral crest curves on each surface, we first calculated their geodesic distance map 

on the aligned spherical cortical surface, with each vertex value denoting the geodesic 

distance between itself and its nearest gyral crest curve. For any pair of subjects i and j, 
given their gyral crest curves Ci and Cj in a specific cortical ROI, a point on Ci is denoted as 

a, a point on Cj as b, the corresponding closest point of a as aˊ on Cj, and the corresponding 

closest point of b as bˊ on Ci. The distance matrix of the specific cortical region was defined 

as:

DCrest (i, j) = 1
2

1
vi

∑a ∈ Ci
dist(a, a′) + 1

V j
∑b ∈ C j

dist(b, b′) (4)

where dist(∙) defines the geodesic distance between two points on the aligned spherical 

cortical surface. Vi and Vj are the total numbers of points on gyral crest curves Ci and Cj in 

the specific ROI, respectively.

After calculating the distance matrices, we converted them into similarity matrices through a 

scaled exponential kernel (Wang et al., 2014a), defined as:

W f (i, j) = exp −
D f

2(i, j)
μεi, j

(5)

where Df is one of the distance matrices: {D2, … , D6} and DCrest. μ is a hyperparameter of 

the kernel function, and set as 0.8 as recommended in (Wang et al., 2014a). εi,j is defined as:

εi, j =
mean(D f (i, Ri)) + mean(D f ( j, R j)) + D f (i, j)

3 (6)

where mean (D f (i, Ri)) denotes the average distance between i-th subject and its K nearest 

neighbors. Herein, we empirically set K = 30. We thus obtained six similarity matrices Wf :

{W2, … , W6} and WCrest, for comprehensively measuring inter-subject similarities of 

cortical folding in a specific region.

2.3.3 Fusing Similarity Matrices of Multi-view Features—As mentioned above, to 

properly integrate the similarity matrices of multi-view curvature features, we leveraged the 

effective SNF method (Wang et al., 2014a). Specifically, SNF nonlinearly fuses these 

similarity matrices together by propagating reliable information across them, thus capturing 

both shared and complementary information for effectively discovering folding patterns. For 

each similarity matrix Wf, two corresponding matrices were derived: 1) Pf, which contains 

the full similarity information of each subject to all others; 2) Sf, which only carries the 

important sparse similarity information of each subject with its K nearest neighbors. The 

matrix Pf was obtained by normalizing the similarity matrix Wf as:
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P f (i, j) =

W f (i, j)
2∑k ≠ iW f (i, k) , j ≠ i

1
2, j = i

(7)

By setting P f (i, i) = 1
2 , the normalized matrix will be numerically stable, since the self-

similarities on the diagonal entries of Wf were excluded. Let Ri denote the subject i’s K 
nearest neighbors including i. The sparse similarity matrix is defined as:

S f (i, j) =
W f (i, j)

∑k ∈ Ri
W f (i, k) , j ∈ Ri

0, otherwise
(8)

Through this equation, only the K highest values in each row of Wf were normalized, and all 

elements with low similarity were set to zero. This is based on the assumption that elements 

with higher similarity values carry the most important information for pattern discovery, 

while those with low similarity values carry less useful information. By setting P f
t = 0 = P f , 

these matrices were iteratively updated using the following equation:

P f
t + 1 = S f ×

∑k ≠ f Pk
t

5 × (S f )
T (9)

where P f
t + 1 was the status matrix of f-th feature after t iterations and was normalized after 

each iteration based on Eq. 7. Thus, the isolated weak similarities disappeared, while the 

strong similarities were added to others. Meanwhile, the weak similarities supported by all 

matrices were retained, depending on their neighborhood connections across features. After 

convergence at t∗ iterations, the fused full similarity matrix was defined as the average of all 

P f
t *, which are typically similar to each other. In our experiments, this procedure typically 

converged in 20 iterations.

2.3.4 Clustering of Folding Patterns based on the Fused Similarity Matrix: To 

discover the representative patterns of cortical folding, a proper data-driven clustering 

method is needed to identify the groups of similar subjects. The majority of existing 

clustering methods require to predefine the number of clusters. However, there is no 

universally best method to choose a good cluster number, although there are many kinds of 

clustering quality measures, which typically lead to different results. As an exploratory study 

without prior knowledge on how many patterns existing in each region, we should choose 

one clustering method which decides the cluster number automatically based on the 

underlying characteristics of data. Thus we leveraged the widely used AP clustering method 
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(Frey and Dueck, 2007), which doesn’t need to define cluster number. Moreover, since AP 

treats all the data points as potential exemplars in the beginning, it is more robust and 

unbiased by initialization. In AP, the real-valued information ‘responsibility’ and 

‘availability’ propagate between data points until the final exemplars and corresponding 

clusters emerge.

However, since cortical folding is typically complex and highly variable across subjects, too 

many clusters unexpectedly emerged in our study. To discover the most representative 

patterns of cortical folding, we further clustered the identified exemplars in a hierarchical 

way until the final cluster number was in a moderate range. Specifically, after performing the 

AP clustering, we obtained the subjects’ cluster map (i.e., assigned cluster labels to each 

subject) and exemplars. First, we constructed a new similarity matrix among these 

exemplars. Second, we performed the AP based on this new similarity matrix and obtained 

the exemplars’ cluster map (i.e., assigned cluster labels to each exemplar of previous 

hierarchy) and new exemplars. Third, we modified the subjects’ cluster map according to the 

exemplar’s cluster map obtained in the second step. We repeated these three steps to reduce 

the cluster number hierarchically. After several iterations, the resulted cluster number 

decreased to a moderate value, e.g., no more than M. For a compact inspection of major 

patterns, we set M = 5 in this study, since the number of major folding patterns in some 

stable regions (e.g., the cingulate cortex, central sulcus, and superior temporal sulcus) are 

typically no more than 5 in most adult studies (Yücel et al., 2001; Sun et al., 2009; Pereira-

Pedro and Bruner, 2016; Bruner et al., 2017). Of note, the proposed framework is generic for 

discovering folding patterns at other desired numbers.

3. Experiments and Results

We evaluated our method using a large-scale dataset including 595 healthy neonates. 

Specifically, we discovered representative cortical folding patterns independently in each of 

our selected four representative cortical regions, including the superior temporal gyrus 

(STG), inferior frontal gyrus (IFG), precuneus, and cingulate cortex, which were 

automatically labeled by the method in (Li et al., 2014c) based on the protocol in (Desikan 

et al., 2006). Then, we investigated the sex difference as well as hemispheric asymmetries in 

our identified infant folding patterns of these four regions. We also further validated our 

method on the public Human Connectome Project (HCP) dataset (Van Essen et al., 2013) 

(500 release version) with 511 healthy adults, and compared the discovered folding patterns 

as well as their hemispheric asymmetries between infant and adult cortical surfaces.

3.1 Validation on the Superior Temporal Gyrus

As a novel exploratory study with absence of ground truth, we validated our method on STG 

by the following manners: 1) to visually validate the discovered patterns, we displayed the 

discovered cortical folding patterns as well as included examples of each pattern in 

representative individuals; 2) to show that the proposed method can capture much richer 

information and identify more representative folding patterns, we compared the discovered 

patterns by our method based on multi-view curvatures and those by the original mean 

curvatures and gyral crest curves separately; 3) to evaluate the reproducibility of the 
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identified patterns and the effectiveness of cluster number selection, we used two different 

clustering methods (i.e., hierarchical AP and spectral clustering); 4) to validate the 

reproducibility and scalability of the proposed method, we performed an additional 2-fold 

cross-validation, as conventionally adopted in exploratory neuroscientific studies; and 5) to 

validate the reliability of the proposed method, we further applied our method on simulated 

datasets.

Fig. 6 shows the four discovered representative patterns of STG by the proposed method and 

representative individuals in each pattern, where we note the high intra-pattern similarity and 

low inter-pattern similarity. Herein, STG includes the cortical regions with labels of STG, 

transverse temporal cortex (Heschl’s gyrus), and banks of the superior temporal sulcus 

(STS) in the Desikan cortical parcellation (Desikan et al., 2006). In pattern 1, STG is 

relatively straight, and its posterior region is flat as shown in the close-up view (second 

column of Fig. 6). In pattern 2, STG slightly bends around its posterior region. Compared 

with pattern 2, pattern 3 is even more curved in the posterior part, with a small gyral fold in 

the anterior bank, as highlighted by a dashed arrow in the close-up view of pattern 3. Pattern 

4 is the most bended pattern with a notable gyral branch in the posterior part. In 595 

neonates, the percentage of each of the four identified patterns is 36.3%, 25.0%, 18.5%, and 

20.2%, respectively.

We compare the results by our proposed multi-view curvature features with those of using 

the original mean curvature map and gyral crest curves separately. We display in Fig. 7 the 

identified patterns by using the original mean curvature map (Fig. 7(a)), gyral crest curves 

(Fig. 7(b)), and the proposed multi-view curvature features (Fig. 7(c)). Note that, in our 

hierarchical AP, the resulting cluster number decreases from the earlier hierarchy to the later 

hierarchy. Based on the original mean curvature map, only 2 patterns (L1 and L2) emerge in 

the clustering result of the last hierarchy. Hence, we further display the clustering results of 

the penultimate hierarchy, which revealed 6 patterns (P1-P6). However, compared with the 

results (M1 to M4) by the proposed multi-view curvatures, all the patterns including L1 to 

L2 and P1 to P6 discovered based on the original mean curvature map can be actually 

grouped into two patterns M1 and M2. Notably, patterns M3 and M4 have not been 

identified based on the original mean curvature map, due to its limited capability in 

characterization of cortical folding. In addition, we compared the identified patterns by using 

gyral crest curves (G1 to G4) with our results (M1 to M4). As we can see, the patterns G1 
and G3 are similar to our pattern M2, and the pattern G4 is similar to pattern M3. However, 

the pattern G2 is a transition state of the flat pattern M1 and the bended pattern M2. And the 

bended pattern M4 with a notable gyral branch is missing, indicating that gyral crest curves 

alone are also not able to comprehensively characterize cortical folding. In contrast, our 

proposed multi-view curvature features are able to better capture the complexity of cortical 

folding, and thus are more capable of revealing the diverse representative folding patterns.

To evaluate the reproducibility of our results and the effectiveness of cluster number 

choosing, we compare our hierarchical AP method with an alternative clustering method: 

spectral clustering method (Ng et al., 2002; Von Luxburg, 2007), based on our fused 

similarity matrix. The results of spectral clustering with cluster number M = 3, 4 and 5 are 

shown in the first three rows in Fig. 8. As we can see, when the cluster number was set to M 
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= 4, which is identical to the automatically determined cluster number by hierarchical AP, 

both clustering methods revealed very similar patterns. However, when M = 3, the third 

pattern A-3/4 by hierarchical AP has not been captured in the discovered patterns S-1/3 to 

S3/3 (corresponding to patterns A-1/4, A-2/4 and A-4/4, respectively) by spectral clustering. 

When M = 5, the first two patterns S-1/5 and S-2/5 discovered by spectral clustering actually 

can be summarized in one pattern similar to the pattern A-1/4, and the remaining patterns 

S-3/5 to S-5/5 correspond to patterns A2/4 to A-4/4. These results indicate that our 

hierarchical AP is able to automatically discover a proper number of distinctive folding 

patterns and also that our findings are reproducible using a different clustering approach.

To further validate the reproducibility and scalability of the proposed method, we use 2-fold 

cross-validation to examine the differences of the revealed cortical folding patterns in these 

two sub-populations (Fig. 9), which were obtained by randomly and equally dividing the 

whole dataset. The first two rows in Fig. 9 display the discovered folding patterns of STG in 

the first and second sub-populations and the third row displays the folding patterns based on 

the whole dataset. As can be seen, the four folding patterns identified using both sub-

populations are highly consistent and also similar to those identified using the whole dataset, 

indicating that our method can obtain reproducible and scalable results.

To further validate the proposed method, we apply it on simulated datasets, which are 

generated based on the simulated deformation of our discovered folding patterns in real 

neonatal dataset. The details of generation of the simulated datasets are described in Eq. 1 in 

Supplementary Materials. To simulate different degrees of deformation, we set the 

deformation ‘rate’ to 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. Several surfaces simulated with 

typical deformation rates 0.3 and 0.5 are shown in Fig. S1 in Supplementary Materials. The 

discovered folding patterns of these two simulated datasets are shown in Fig. S2. As we can 

see, the discovered folding patterns in the simulated datasets are largely consistent with the 

folding patterns discovered in our neonatal dataset. The average discovery accuracies of 

correctly clustering the simulated surfaces into their corresponding patterns in the five 

simulated datasets with deformation rates 0.1, 0.2, 0.3, 0.4 and 0.5 are 100%, 100%, 100%, 

93.5% and 85.2%, respectively. These results indicate that the proposed method is reliable 

and effective for cortical folding discovery.

3.2 Discovered Folding Patterns in Other Cortical Regions

For the precuneus, we discovered three typical patterns shown in Fig. 10. Specifically, in 

pattern 1, the precuneal gyrus shows a lowercase ‘m’ shape, with the precuneal sulcus 

(highlighted by the dashed arrow) reaching the edge of the precuneus. In pattern 2, the 

precuneal gyrus is similar to a capital ‘M’ shape. The precuneal sulcus does not reach the 

edge of the precuneus, while one additional sulcus branch shows in the middle of the dorsal 

peaks of the ‘M’ shape. As for pattern 3, compared to the first two patterns, we note the 

absence of the gyral structure right in the middle part of the precuneus and the presence of a 

long deep sulcus, thus exhibiting as an ‘II’ shape. The three discovered patterns occupy 

47.7%, 27.1%, and 25.2% of our dataset, respectively.

In the inferior frontal gyrus (IFG), four representative folding patterns are discovered as 

shown in Fig. 11. Of note, IFG includes the pars opercularis, pars triangularis and pars 

Duan et al. Page 13

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



orbitalis in the parcellation protocol in (Desikan et al., 2006). Pattern 1 resembles a slightly 

deformed capital ‘N’ shape, with an additional sulcus in the pars opercularis, as indicated by 

the dashed arrow. Pattern 2 has two continuous bended turns, showing as a lowercase ‘m’ 

shape slightly flattened around the middle. Compared with pattern 2, pattern 3 becomes 

more bended and is interrupted by a sulcus (highlighted by a dashed arrow) in the middle, 

thus morphing into a capital ‘M’ shape. As for pattern 4, it appears as a combination of 

pattern 2 or 3 with pattern 1 to some extent, as its anterior part is similar to that of patterns 2 

or 3, while its posterior part is similar to that of pattern 1 with an additional sulcus in the 

pars opercularis (highlighted by a dashed arrow). These IFG patterns represent 25.2%, 

29.6%, 30.8%, and 14.4% of our dataset, respectively.

For the cingulate cortex, we found that the individual variability mainly locates in sulci 

rather than in gyri. Since the cingulate sulcus is spatially interlaced with the superior frontal 

gyrus, we examined a relatively large region, including the posterior cingulate cortex, caudal 

anterior-cingulate cortex, rostral anterior cingulate cortex, medial orbital frontal cortex, 

paracentral lobule, and medial superior frontal gyrus in the Desikan parecellation (Desikan 

et al., 2006). Five typical folding patterns were identified in the cingulate cortex, as shown in 

Fig. 12. Specifically, pattern 1 shows a long cingulate sulcus interrupted by a narrow gyrus 

in the posterior part. Pattern 2 shows a long continuous cingulate sulcus with a set of small 

folds topping its anterior part. The cingulate sulcus in pattern 3 is interrupted in the middle 

part, while pattern 4 contains two long parallel sulci. Pattern 5 can be seen as a 

representation of pattern 1 with an additional shallow parallel sulcus in the anterior part. The 

percentage of each pattern in our dataset is 19.8%, 16.6%, 18.7%, 23.0%, and 21.9%, 

respectively.

3.3 Sex Differences of Cortical Folding Patterns

Our dataset contains 595 healthy neonates, and the numbers of males and females are 

relatively balanced, i.e., 308 males (51.8%) and 287 females (48.2%). However, in each 

discovered pattern, the male percentage is not always similar to the female percentage. To 

examine the possible association between folding patterns and sex, cross tabulation and 

Pearson chi-square test were performed in each region (Table 2). According to the results of 

our statistical analysis, sex difference in folding patterns was observed in the STG, IFG and 

cingulate cortex, but not in the precuneus. Moreover, the proportions of male/female infants 

listed in Table 2 for different patterns in four cortical regions were displayed in Fig. T1 in 

Supplementary Materials, in which the patterns with significantly different proportions 

between male and female infants were marked based on Two-Proportions Z-Test.

In Table 2, the p-value obtained by the Pearson chi-square test for STG is 0.001, which 

suggests that the folding patterns of STG are significantly associated with sex. We also note 

that pattern 3 is significantly less associated with males (15.2%) than females (22.0%), while 

pattern 4 is significantly more associated with males (26.3%) than females (13.6%), as 

marked in Fig. T1. As for patterns 1 and 2, they were largely evenly associated with both 

males and females. In IFG, the folding patterns are also significantly associated with sex 

with p-value = 0.022 given by Pearson chi-square test. From Fig. T1, we clearly see that 

pattern 3 contains significantly fewer males (26.6%) than females (35.2%), while pattern 4 
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contains significantly more males (17.9%) compared with females (10.8%). Another region 

with folding patterns significantly associated with sex is the cingulate cortex (p-value = 

0.015), in which pattern 1 contains significantly fewer males (15.3%) than females (24.7%) 

as marked in Fig. T1. However, we did not observe significant sex difference in the 

precuneus (p-value = 0.154). In addition, we further performed two-sample t-test for testing 

the statistical dependence of sex distribution between different folding pattern pairs as 

shown in Table S1 in Supplementary Materials. According to Table S1, significant 

differences (p<0.05) of sex distributions were found between certain pairs of cortical folding 

patterns in STG, IFG and cingulate cortex, except for Precuneus. These results indicate that 

the sex differences of cortical folding patterns present in STG, IFG and cingulate cortex. 

Additionally, since sex is related to brain size, we investigated whether the folding patterns 

are related to brain volume using one-way analysis of variance (ANOVA). The 

corresponding results in Table S2 and corresponding brain volume distributions in Fig. T2 in 

Supplementary Materials show that the folding patterns are not related to brain volume in 

most cortical regions: STG, precuneus and cingulate cortex. However, brain volumes in 

different folding patterns of IFG significantly differ.

3.4 Hemispheric Asymmetries of Cortical Folding Patterns

As all the above presented results are from the left hemisphere, to explore the left-right 

hemispheric asymmetries of infant cortical folding patterns, we further apply the proposed 

method onto the corresponding regions in the right hemispheres. The comparisons of 

discovered cortical folding patterns on both hemispheres are shown in Fig. 13, in which the 

most similar patterns are placed in the same column in each region. Besides, the percentages 

of each discovered infant folding pattern in the left and right hemispheres in four cortical 

regions are displayed in Table S6 in Supplementary Materials. As we can see, significant 

asymmetries are observed in STG, and slight asymmetries are observed in the cingulate 

cortex, while no hemispheric asymmetry is observed in IFG and precuneus.

In STG, the first two patterns in the right hemisphere are more curved than the 

corresponding first two patterns in the left hemisphere, thus no flat STG pattern is found in 

the right hemisphere. And the third pattern in the right hemisphere is much shorter than that 

of the left hemisphere and also no small gyral fold is found in the anterior bank of STS as 

shown in the close-up view of Fig. 6. Moreover, the most asymmetric pattern is the fourth 

pattern. Unlike the corresponding pattern with a notable gyral branch in the posterior part in 

the left hemisphere, there is only a small gyral fold in the inferior-posterior region of the 

banks of STS on the right hemisphere. As for the cingulate cortex, we found that most 

cortical folding patterns are similar on both hemispheres except the second and third 

patterns. Different from the corresponding patterns in the left hemisphere, the second pattern 

shows a cingulate sulcus without a set of small folds in the anterior part, and the third pattern 

shows a long smooth sulcus without interruption in the middle part in the right hemisphere.

3.5 Other Confounding Factors

Considering other confounding factors which may affect folding patterns, we further analyze 

the effects of postmenstrual ages (PA) at scan, twins, and preterm birth in our discovered 

folding patterns (see Supplementary Materials). To investigate whether the discovered 
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folding patterns are related to PA at scan, one-way ANOVA is performed as shown in Table 

S3, and the distributions of PA at scan in different patterns of four regions are shown in Fig. 

T3. We can see that the folding patterns are not related to PA at scan in all regions except for 

the cingulate cortex. As for the other two factors, we firstly apply the proposed method on 

the subsets with either only singletons or only term-born neonates, respectively, to visually 

examine whether the discovered folding patterns are influenced by twins or premature 

neonates. The comparison of the discovered cortical folding patterns of the whole dataset 

and the singleton subset is shown in Fig. S3, and the comparison with the term-born neonate 

subset is shown in Fig. S4. These two figures indicate that the majority folding patterns are 

not influenced by the factors of twin and premature infants. Besides, to statistically analyze 

the independence of the cortical folding patterns with singleton/twin infants, the Pearson 

chi-square test is performed in each region as shown in Table S4. The proportions of 

singleton/twin infants in each pattern are displayed in Fig. T4, in which the patterns with 

significantly different proportions between singleton and twin infants are marked based on 

Two-Proportions Z-Test. Similarly, the results for studying the independence of folding 

patterns with term-born/premature infants are displayed in Table S5, and the corresponding 

plot is shown in Fig. T5. Moreover, since subjects overlapped in singleton/twin and term-

born/premature groups, the Pearson chisquare test is further performed to analyze the 

independence of discovered cortical folding patterns and four subject groups (i.e., Singleton 

- Term-born, Twins - Term-born, Singletons - Premature, and Twins - Premature) in specific 

regions, as shown in Table S8. These tables and figures indicate that the folding patterns are 

independent of the factors singleton/twin, term-born/premature, and their combinations. In 

conclusion, all these results suggest that the majority of our discovered folding patterns 

cannot be significantly influenced by these confounding factors. (see Supplementary 

Materials for more details).

3.6 Validation on Adults

To investigate the applicability of our method to adult data, and more importantly, to 

compare the infant and adult folding patterns more intuitively and reveal their underlying 

relations, we apply the proposed method on a widely used adult dataset, i.e., the Human 

Connectome Project (HCP) (Van Essen et al., 2013). Herein, the HCP 500 Subjects + MEG2 

Data Release2 is adopted. Our experiment uses 511 young adults’ cortical surfaces, which 

are obtained through the HCP structural preprocessing pipeline and HCP FreeSurfer pipeline 

(Glasser et al., 2013). We extract the cortical features and discover the folding patterns using 

the same steps detailed in Section 2. Similarly, we explore the same four cortical regions in 

our infant study, including the left STG, precuneus, IFG, and cingulate cortex. Fig. 14 shows 

the comparisons of the discovered infant and adult cortical folding patterns. The majority of 

folding patterns discovered in the four cortical regions of adult brains are largely consistent 

with those of infant brains, indicating that our method is reliable and applicable to both 

infant and adult datasets. However, in STG, an extra pattern emerges in adult brains, which 

shows a notable gyral branch occupying the middle STS; as for IFG, pattern 1 discovered in 

the infant brain disappears in the adult brain.

2HCP 500 Subjects + MEG2 Data Release: https://www.humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-
release
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To explore the left-right hemispheric asymmetries of adult cortical folding patterns, and 

reveal the relations of the hemispheric asymmetries of infants and adults, we further apply 

the proposed method on the right hemispheres in HCP dataset. The comparisons of the 

discovered adult folding patterns in left and right hemispheres are shown in Fig. 15. The 

percentages of each discovered adult folding pattern in both hemispheres in four cortical 

regions are displayed in Table S7 in Supplementary Materials. As we can see, most of the 

discovered cortical folding patterns of adults in the four regions are largely symmetric on 

two hemispheres, while the hemispheric asymmetries are observed in STG and cingulate 

cortex. In STG, the posterior part of the third pattern in the right hemisphere is more bended 

and shorter than that in the left hemisphere, and no small gyral fold is found in the anterior 

bank of STS in the right hemisphere. Moreover, the most notable asymmetric pattern is the 

extra pattern presenting in the left hemisphere but absenting in the right hemisphere. As for 

the cingulate cortex, the asymmetric pattern is observed in the third pattern, which shows a 

long smooth sulcus in the right hemisphere, but shows a sulcus with an interruption in the 

middle part in the left hemisphere.

4. Discussion

4.1 Computational Method

One main contribution of this paper is that we have developed a novel computational 

framework based on multi-view curvature features for discovering the representative patterns 

of cortical folding in large-scale datasets. Our proposed method has several appealing 

aspects. First, we leveraged multi-view curvature features, i.e., the decomposed curvature 

maps at multiple spatial-frequency scales and high-level gyral crest curves, to 

comprehensively characterize the cortical folding. Indeed, the proposed multi-view features 

are able to identify the most representative patterns of cortical folding, a few of which were 

not depicted when using the original curvature map or gyral crest curves (Fig. 7). Second, 

we showed that our framework is robust to the clustering methods and that the identified 

patterns using affinity propagation clustering methods are reproducible when using an 

alternative clustering method (i.e., spectral clustering). Third, the proposed framework can 

easily integrate more geometric features, such as local gyrification (Luders et al., 2006; 

Schaer et al., 2008; Li et al., 2014d) and sulcal depth (Im et al., 2006b; Fornito et al., 2008) 

through the adaptive nonlinear fusion procedure. Fourth, it is generic and can be easily 

applied to any cortical region or even the whole cortex. Noting that most existing studies in 

this field generally group the folding patterns based on visual inspection (Ono et al., 1990; 

Borst et al., 2014; Garrison et al., 2015; Pereira-Pedro and Bruner, 2016; Bruner et al., 

2017), the proposed method greatly contributes to neuroimaging research with a sharp focus 

on folding morphology analysis of specific cortical regions.

4.2 Comparison of Infant and Adult Folding Patterns

Another main contribution of this paper consists in unravelling the distinctive representative 

folding patterns of four typical cortical regions: STG, IFG, precuneus, and cingulate cortex, 

in both infant and adult brains. STG plays an important role in higher-order auditory 

processing, language processing and social perception (Buchsbaum et al., 2001; Bigler et al., 

2007; Leff et al., 2009; Chang et al., 2010; Jou et al., 2010). Current evidence indicates that 
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STG is structurally and functionally altered in many neurodevelopmental disorders, e.g., 

schizophrenia and autism (Delisi et al., 1994; Keshavan et al., 1998; De Bellis et al., 2002; 

Kasai et al., 2003; Bigler et al., 2007; Lee et al., 2007; Takahashi et al., 2009). Hence, 

discovering the typical folding patterns of STG might help spot atypical changes due to 

specific neurodevelopmental disorders. Herein, we discovered four typical folding patterns 

of STG in infants, which display similar morphologies to a large extent with the first four 

patterns discovered in HCP adult dataset, while an extra fifth folding pattern with a notable 

gyral branch occupying the middle STS is shown in the discovered adult patterns (Fig. 14-a). 

As for the fifth pattern, the reason for its absence in infants and existence in adults is unclear. 

It might emerge with postnatal neurodevelopment, since STG develops rapidly in folding 

degree during infancy (Li et al., 2014d). However, this needs to be further investigated in 

future studies. To the best of our knowledge, no previous studies have explored typical 

folding patterns of STG. Only a few studies explored the folding patterns of STS (Sun et al., 

2009; Meng et al., 2016; Le Guen et al., 2018), which overlaps with the STG, thus providing 

meaningful information to our discovery. For instance, Le Guen et al. found the sulcal 

interruption (equal to the gyral branch in our study), named plis de passage (PP), in STS on 

the average surface of a subset from HCP. In particular, two types of PPs were found 

respectively in the posterior STS and in the middle STS. These findings are consistent with 

our discovered fourth pattern in both datasets and the fifth pattern in adult dataset, 

respectively. These also indirectly demonstrate the reliability of our discovered STG folding 

patterns. For the first time, we revealed representative neonatal folding patterns of STG in a 

large-scale dataset. These could be employed as references for the future comparative 

studies of normal and abnormal folding patterns of STG.

Precuneus is an important region involved in visuo-spatial integration, self-awareness, 

egocentric memory, motor imagery and autonoesis (Cavanna and Trimble, 2006; Bruner et 

al., 2017). In our experiment, the discovered folding patterns in precuneus of infant brains 

are largely consistent with that of adult brains, as shown in Fig. 14-b, which are also similar 

to other discoveries in the related existing adult studies. For instance, through multiple times 

of visual examination on a dataset with 50 adult specimens (Pereira-Pedro and Bruner, 2016; 

Bruner et al., 2017), Pereira-Pedro et al. classified the precuneus into three categories, totally 

14 types, based on different sulcal connections and sulcal shape patterns. Among these 

types, their identified patterns B2, B3 and C3 are actually very similar to our discovered 

patterns 1, 2 and 3, respectively. Notably, they indicated that in B category, patterns B2 and 

B3 account for 88% of their whole dataset; while in C category, pattern C3 is the most 

frequent type. These findings on adults are largely in line with our results on neonates, and 

further emphasize that the three patterns discovered by our method are prevalent since early 

postnatal brain development.

IFG is critical for motor control (Swann et al., 2009; Hampshire et al., 2010; Swann et al., 

2012) and language processing, including word comprehension and production (Indefrey 

and Levelt, 2000; Costafreda et al., 2006). In addition, IFG is the core structure of emotional 

empathy, involved in emotional contagion and emotion recognition (Schulte-Rüther et al., 

2007; Shamay-Tsoory et al., 2009). Several studies have focused on studying the folding 

patterns of IFG in adults through visual inspection (Ebeling et al., 1989; Clark and Plante, 
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1998; Tomaiuolo et al., 1999). Ebeling et al. classified IFG folding patterns into four types, 

and Clark et al. further classified the third type into four subtypes. In our study, we 

discovered four distinct folding patterns in infants, among which, the last three folding 

patterns ‘mirrored’ the discovered adult folding patterns in HCP dataset, as shown in Fig. 

14-c. Based on our qualitative comparison with previous studies, we found that the infant 

folding patterns 1 and 4 (Fig. 11) correspond to the subtypes of ‘TYPE III’ in (Clark and 

Plante, 1998), which show an additional sulcus in the posterior IFG. Furthermore, both 

pattern 2 and the bended pattern 3 ( a small extra sulcus presents in its middle part), 

correspond to the ‘TYPE I’ in (Clark and Plante, 1998). Since Clark et al. classified IFG 

folding patterns based on the structural connections of its surrounded sulci, they did not 

identify the gradual folding we discovered in patterns 2 and 3 with the same type of 

surrounded sulci. Overall, patterns ‘TYPE I’ and ‘TYPE III’, which have corresponding 

folding patterns in our results, are most prevalent (Clark and Plante, 1998) to represent 

93.9% of their depicted 7 IFG patterns in adults. This indicates that our proposed method 

can discover the most representative folding patterns of IFG, and also suggests that the adult 

folding patterns in IFG are largely established at term birth.

As for the cingulate cortex, existing studies have reported that the anterior cingulate cortex is 

involved in emotional processing and performance monitoring of cognitive control 

(Devinsky et al., 1995; Rainville et al., 1997; Carter et al., 1998; Bush et al., 2000; 

MacDonald et al., 2000; Critchley et al., 2003; Botvinick et al., 2004; Kerns et al., 2004). 

The morphological differences in the cingulate cortex could associate with hallucinations 

and inhibitory control (Borst et al., 2014; Garrison et al., 2015). Herein, we discovered five 

typical folding patterns of infants, including both single sulcus types and parallel sulci types, 

which are largely consistent with our discovered patterns of adults in HCP dataset (Fig. 14-

d), and are also in line with the discoveries in previous studies in adults and infants (Ono et 

al., 1990; Sun et al., 2009; Cachia et al., 2016; Meng et al., 2016). Specifically, the four 

types of the cingulate cortex patterns in adults (Sun et al., 2009) correspond to our neonatal 

patterns 4, 2, 3 and 5, respectively, while the four neonatal patterns identified in (Meng et 

al., 2016) correspond to our patterns 1, 4, 3 and 5, respectively. Thus, compared to both 

studies, our proposed method is able to identify an additional representative folding pattern, 

which represents more than 15% of subjects in the whole dataset, indicating the advantage 

of our method.

4.3 Sex Difference of Cortical Folding Patterns

The influence of sex on the cortical folding patterns is still largely unknown. To fill this 

knowledge gap, for the first time, we explored the sex difference in our discovered cortical 

folding patterns in the STG, IFG, cingulate cortex, and precuneus. As shown in Table 2, sex 

is significantly associated with cortical folding patterns in STG, IFG, and cingulate cortex, 

but not in precuneus. This indicates that some typical folding patterns may present male or 

female dominant trends. Some studies on older children and adults showed gender 

differences in cortical folding (Awate et al., 2010; Li et al., 2014d; Takerkart et al., 2017). 

For instance, Takerkart et al. found the gender differences in the spatial organization of 

sulcal pits in parts of the frontal cortex (overlapped with IFG) and the cingulate cortex, 

which are partially consistent with our results. In addition to cortical folding, many studies 
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found gender differences in the STG, IFG and cingulate cortex in terms of cortical 

morphology (e.g., cortical volume, cortical thickness, and surface area) and functional 

activations (Blanton et al., 2004; Schirmer et al., 2004; Hofer et al., 2006; Im et al., 2006a; 

Koch et al., 2007; Wang et al., 2007; Schulte-Rüther et al., 2008; Brun et al., 2009; Li et al., 

2014d; Meng et al., 2014). Specifically, the cortical volume of IFG, the cortical thickness of 

IFG and STG, and the surface areas of auditory structure (parts of the STG) and cingulate 

region, are larger in females than in males, which might be related to the general higher 

language skills in females (Blanton et al., 2004; Im et al., 2006a; Brun et al., 2009). These 

studies show that structural and functional gender differences exist in the STG, IFG and 

cingulate region, which might also be related to cortical folding morphology as highlighted 

by our findings.

4.4 Hemispheric Asymmetries of Cortical Folding Patterns

Human brain exhibits hemispheric asymmetries in terms of structure and function (Toga and 

Thompson, 2003). In existing infant studies, cortical hemispheric asymmetries, which 

appear before term birth and largely preserve during postnatal brain development, have been 

observed in various cortical measurements, e.g., surface area, sulcal depth, cortical 

thickness, vertex position, as well as sulcal pits distribution (Hill et al., 2010; Li et al., 

2014d; Meng et al., 2014; Li et al., 2015a; Le Guen et al., 2017; Takerkart et al., 2017; Im 

and Grant, 2018). Herein, we found hemispheric asymmetries present in STG and cingulate 

cortex by comparing our discovered cortical folding patterns in left and right hemispheres of 

both infant and adult brains. Consistent with a number of studies in infants (Hill et al., 2010; 

Glasel et al., 2011; Li et al., 2014b; Li et al., 2014d; Meng et al., 2014; Leroy et al., 2015; Li 

et al., 2015a) as well as adults (Im et al., 2009; Leroy et al., 2015; Maingault et al., 2016; Le 

Guen et al., 2018), we found that the most significant hemispheric asymmetries of cortical 

folding are in STG, which might be related to the lateralization of language functions and 

the asymmetric genetic programs. Specifically, in infants, the most asymmetric folding 

pattern of STG exists an obvious gyral branch in the banks of STS on the left hemisphere, 

while no such gyral branch is found on the right hemisphere, as shown in Fig. 13. 

Interestingly, in adults, this folding pattern is present in the right hemisphere, occupying a 

small percentage in the HCP. The most asymmetric folding pattern in adults is the extra 

folding pattern with a notable gyral branch in the middle STS, which is only present in the 

left hemisphere, as displayed in Fig. 15. Recently, it has been shown that STS is the most 

asymmetric sulcus in both children and adults, and the asymmetry of STS is associated with 

more frequent sulcal interruptions, i.e., PPs, shown in the left hemisphere (Leroy et al., 

2015; Le Guen et al., 2018). This is consistent with our discovered fourth pattern in both 

datasets and the fifth pattern in HCP in the left hemisphere. Le Guen et al. also found that 

when the PPs are present in the right hemisphere, they are mostly located at the junction 

between the STS main horizontal branch and its caudal branch, and the pattern with this 

kind of PPs occupies a small percentage (11.2%) in their dataset. This supports our finding 

that the fourth pattern with gyral branch in the posterior STG exists in the right hemisphere, 

and it also occupies a small percentage (11.7%, see Table S7 in Supplementary Materials). 

Moreover, we also found that the posterior temporal region of third and fourth patterns in the 

right hemisphere is much shorter than those in the left hemisphere, which is in line with 

previous findings that the right Sylvian fissure is shorter than the left one (LeMay, 1984) and 
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the left hemisphere presents a larger planum temporale (Geschwind and Levitsky, 1968; 

Glasel et al., 2011). As for the cingulate cortex, slightly asymmetric patterns are found based 

on the presence and extension of the paracingulate sulcus. From Tables S6 and S7, and Fig. 
13and 15, we clearly see that the paracingulate sulcus occur more pronounced and more 

often in the ACC of the left hemisphere (patterns 2, 4, and 5) as compared to that of the right 

hemisphere in both infant and adult datasets, in line with a previous study in adults (Huster 

et al., 2007). More importantly, from Tables S6 and S7, we can see that in precuneus, IFG, 

and cingulate cortex, the percentages of most of the corresponding patterns in the left and 

right hemispheres are largely similar, while the percentages in STG with significant 

hemispheric asymmetries are quite different. This further indicates that the discovered 

folding patterns presenting hemispheric asymmetries are reliable. In summary, our findings 

suggest that hemispheric asymmetries of cortical folding patterns in adults are likely present 

in neonates.

4.5 Limitations and Future Work

This work has several limitations. First, in our current method, we only leveraged curvature-

derived multi-view features for discovering cortical folding patterns. One can also use the 

proposed generic framework to incorporate more cortical features, e.g., local gyrification 

and sulcal depth, to examine the possible relevance of other features. Second, although the 

most representative cortical folding patterns discovered in each region are largely consistent 

when applying the method on different sub-datasets, the cluster number automatically 

determined by hierarchical AP is not always very stable and the appearance of a few folding 

patterns could slightly change. As shown in Fig. S3 and Fig. S4 in Supplementary Materials, 

several folding patterns occupying small percentages in the whole dataset may not be 

discovered when using small sub-datasets, but the major cortical folding patterns are 

consistently present. Third, although we found that the discovered cortical folding patterns 

of neonates are largely in line with our discovered adult patterns in HCP and reported visual 

examination results in related studies, we also found few STG and IFG patterns differed 

between infants and adults. The mechanisms driving such differences are still unclear, but it 

may relate to rapid development of cortical folding in STG and IFG during infancy (Li et al., 

2014d). Further studies are needed to give more insights into these findings. Last, we also 

note that little is known about the underlying mechanisms of forming these variable folding 

patterns from a smooth neuronal tube during prenatal brain development. As white matter 

fiber connectivity is thought to be a major driving force of cortical folding formation (Van 

Essen, 1997; Nie et al., 2011; Li et al., 2015b), it would be interesting to investigate the 

relationship between these discovered folding patterns and the underlying fiber connectivity 

using diffusion tensor imaging. In our future work, we will further apply our proposed 

method to fetal datasets at different gestational ages to examine when these major folding 

patterns emerge, and apply it to toddler and also other adult datasets. These findings will 

thus reveal the evolution of cortical folding patterns during prenatal and postnatal brain 

development. Moreover, we will investigate the identified cortical folding patterns in relation 

to genetics, cognitive scores, and early neurodevelopmental disorders.
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5. Conclusion

We have presented a novel computational method to automatically explore the most 

representative folding patterns of the cerebral cortex in a large-scale dataset of neonates. 

Leveraging the multi-view curvature-derived representations, our method is capable of 

comprehensively capturing the complexity and variability of cortical folding patterns. We 

unprecedentedly identified in neonatal brains the representative distinct folding patterns of 

the superior temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and cingulate 

cortex. On one hand, most of the folding patterns in the infant cortex are in line with those in 

the adult cortex discovered through our method, and also in line with previous reports in 

adult studies largely based on laborious and time-consuming visual inspection, suggesting 

that the variability of folding patterns has been largely established at term birth. On the other 

hand, our results revealed a few new folding patterns of specific cortical regions that were 

absent in the state-of-the-art studies. Moreover, for the first time, we found sex differences 

of neonatal folding patterns in the STG, IFG and cingulate cortex, as well as hemispheric 

asymmetries of folding patterns in the STG and cingulate cortex. Our method can be widely 

applied to automatically identify cortical folding patterns and study their possible 

relationships with cognition, function, connectivity, and brain disorders. (Li et al., 2015c)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. A novel method for exploring representative folding patterns of human brains;

2. Applications to discover representative folding patterns in several cortical 

regions;

3. Folding patterns show region-specific sex differences and hemispheric 

asymmetries;

4. Certain major cortical folding patterns of adults are largely established at term 

birth.
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Fig. 1. 
Large variability of cortical folding patterns across 20 neonates, which are randomly 

selected from our dataset with 595 neonates. Cortical surfaces are color-coded by mean 

curvature, with the red denoting the sulci and the blue denoting the gyri.
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Fig. 2. 
Histogram of postmenstrual ages at MRI scan of our dataset.
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Fig. 3. 
Pipeline of the proposed computational framework for exploring cortical folding patterns. 

(a) The original mean curvature maps on inner cortical surfaces of all the subjects. Here, 

N=595 is the total number of subjects in the dataset. (b) The decomposed curvature maps at 

multiple scales using overcomplete spherical wavelets. (c) The extracted gyral crest curves 

based on the original mean curvature maps. (d) The six distance/dissimilarity matrices based 

on curvature-derived features for measuring the folding difference between any pair of 

subjects in a specific cortical ROI. (e) The six corresponding similarity matrices. (f) The 

fused similarity matrix by nonlinear fusion of six similarity matrices using SNF. (g) The 

discovered cortical folding patterns in a specific region (herein the superior temporal gyrus) 

using clustering.
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Fig. 4. 
Decomposed multi-scale curvature maps based on over-complete spherical wavelets. (a) The 

original mean curvature map of the inner cortical surface. (b) The decomposed curvature 

maps at levels 17. As we can see, at coarser levels, the wavelet coefficients encode the larger 

scale folding information; while at finer levels, the wavelet coefficients capture the smaller 

scale folding information.
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Fig. 5. 
Extraction of gyral crest curves. (a) The original mean curvature surface with initial seeds of 

supervertices. (b) The boundaries of partitioned supervertices. (c) The results of 

supervertices partition, where different colors indicate different supervertices. (d) The 

extracted gyral crest curves.
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Fig. 6. 
Representative patterns of the superior temporal gyrus (STG). The first column displays the 

four discovered patterns. The second column presents the close-up views of distinct parts. 

The dashed arrows in patterns 1 and 2 point to the flat and bended posterior regions of STG, 

while in patterns 3 and 4 they point to the distinct gyral folds. Columns 3–7 display five 

typical individuals in each pattern, which indeed demonstrated that our discovered patterns 

exist in the dataset.
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Fig. 7. 
Comparison of discovered patterns of the superior temporal gyrus by using (a) the original 

mean curvature map (L1 to P6), (b) the gyral crest curves (G1 to G4), and (c) the proposed 

multi-view curvature features (M1 to M4). Herein, patterns L1 to L2 and patterns P1 to P6 
are the last hierarchy and penultimate hierarchy clustering results of using the original 

curvature feature, respectively. As we can see, the proposed method discovered four 

distinctive folding patterns, while using the original curvature feature or gyral crest curves 

essentially only discovered two or three distinct patterns, as several patterns are similar 

among their discovered folding patterns.
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Fig. 8. 
Comparison of discovered patterns of the superior temporal gyrus by using spectral 

clustering (top rows) and hierarchical AP (bottom row). For spectral clustering, the cluster 

number M is predefined as 3, 4 and 5, and the corresponding discovered folding patterns are 

shown in the first three rows, respectively. While for the hierarchical AP, the four patterns 

A-1/4 to A-4/4 automatically emerge without predefining the cluster number.
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Fig. 9. 
Comparison of discovered patterns of the superior temporal gyrus using 2-fold cross-

validation (rows 1–2) vs. the whole dataset (bottom row). The identified folding patterns are 

similar across different sub-populations and also consistent with patterns discovered using 

the whole dataset, indicating that our results are reproducible, scalable, and reliable.
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Fig. 10. 
Representative patterns of the precuneus. The first column displays the three discovered 

patterns. The dashed arrow highlights the precuneal sulcus, which reaches the edge of 

precuneus in patterns 1 and 3. Columns 2–6 display five typical individuals for each pattern.
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Fig. 11. 
Representative patterns of the inferior frontal gyrus. The first column displays the four 

discovered patterns. The dashed arrows point to the additional sulci. Columns 2–6 display 

five typical individuals for each pattern.
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Fig. 12. 
Representative patterns of the cingulate cortex. The first column displays the five discovered 

patterns. Columns 2–6 show five typical individuals for each pattern. In pattern 1 and pattern 

3, the dashed arrows point to the locations, where the posterior and middle parts of the 

cingulate are interrupted.
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Fig. 13. 
Comparisons of the discovered infant folding patterns in the left and right hemispheres. (a) 

Superior Temporal Gyrus; (b) Precuneus; (c) Inferior Frontal Gyrus; (d) Cingulate Cortex.
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Fig. 14. 
Comparisons of the discovered folding patterns in infant and adult brains. (a) Superior 

Temporal Gyrus; (b) Precuneus; (c) Inferior Frontal Gyrus; (d) Cingulate Cortex.
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Fig. 15. 
Comparisons of the discovered adult folding patterns in the left and right hemispheres. (a) 

Superior Temporal Gyrus; (b) Precuneus; (c) Inferior Frontal Gyrus; (d) Cingulate Cortex.
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Table 1.

Demographic information of the infant cohort. (GA: gestational age, PA: postmenstrual age. The range in the 

bracket denotes the age range of each group. All the ages are measured in ‘weeks’.)

All Male Female

Subjects 595 308 287

GA at birth 37.2 ± 2.8 (28.6 – 42.1) 37.4 ± 2.8 (28.9 – 41.7) 37.1 ± 2.7 (28.6 – 42.1)

PA at scan 41.6 ± 1.8 (36.7 – 46.5) 41.8 ± 1.9 (36.7 – 46.4) 41.4 ± 1.7 (37.4 – 46.5)

Singleton - Term-born 230 109 121

GA at birth 39.6 ± 1.1 (37.0 – 42.1) 39.6 ± 1.0 (37.0 – 41.7) 39.6 ± 1.2 (37.0 – 42.1)

PA at scan 42.6 ± 1.4 (38.9 – 46.1) 42.5 ± 1.3 (38.9 – 46.1) 42.6 ± 1.5 (39.1 – 45.7)

Singleton - Premature 13 10 3

GA at birth 35.8 ± 0.6 (34.4 – 36.4) 35.7 ± 0.7 (34.4 – 36.3) 36.0 ± 0.4 (35.6 – 36.4)

PA at scan 40.2 ± 1.8 (37.9 – 44.4) 39.8 ± 1.4 (37.9 – 42.3) 41.7 ± 2.4 (40.3 – 44.4)

Twin - Term-born 137 72 65

GA at birth 37.8 ± 0.5 (37.0 – 39.9) 37.6 ± 0.5 (37.0 – 39.9) 37.9 ± 0.6 (37.0 – 39.0)

PA at scan 41.8 ± 1.9 (38.6 – 46.5) 41.3 ± 1.6 (38.6 – 46.4) 42.3 ± 2.1 (39.2 – 46.5)

Twin - Premature 215 117 98

GA at birth 34.4 ± 2.2 (28.6 – 36.9) 34.5 ± 2.3 (28.9 – 36.9) 34.2 ± 2.2 (28.6 – 36.9)

PA at scan 40.6 ± 1.5 (36.7 – 44.9) 40.7 ± 1.6 (36.7 – 44.9) 40.5 ± 1.4 (37.4 – 44.1)

Neuroimage. Author manuscript; available in PMC 2020 January 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Duan et al. Page 46

Table 2.

The folding patterns * sex cross tabulation and chi-square test results. ‘%’ is the percentage within patterns. 

‘p-value’ denotes the 2-sided asymptotic significance of Pearson chi-square test. The significance value 

highlighted in bold means that sex difference (p-value < 0.05) was observed in the corresponding region. 

(Each percentage in the bracket denotes the ratio of the number of male (female) infants in each pattern to the 

total number of male (female) infants.)

Region Pattern Male (%) Female (%) Total p-value

Superior Temporal Gyrus Pattern 1 108 (35.1%) 108 (37.6%) 216 0.001

Pattern 2 72 (23.4%) 77 (26.8%) 149

Pattern 3 47 (15.2%) 63 (22.0%) 110

Pattern 4 81 (26.3%) 39 (13.6%) 120

Precuneus

Pattern 1 137 (44.5%) 147(51.2%) 284

0.154Pattern 2 93 (30.2%) 68 (23.7%) 161

Pattern 3 78 (25.3%) 72 (25.1%) 150

Inferior Frontal Gyrus

Pattern 1 83 (26.9%) 67 (23.3%) 150

0.022
Pattern 2 88 (28.6%) 88 (30.7%) 176

Pattern 3 82 (26.6%) 101 (35.2%) 183

Pattern 4 55 (17.9%) 31 (10.8%) 86

Cingulate Cortex

Pattern 1 47 (15.3%) 71 (24.7%) 118

0.015

Pattern 2 52 (16.9%) 47 (16.4%) 99

Pattern 3 53 (17.2%) 58 (20.2%) 111

Pattern 4 79 (25.6%) 58 (20.2%) 137

Pattern 5 77 (25.0%) 53 (18.5%) 130
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