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Abstract

Resting-state functional MRI (rs-fMRI) is one of the most prevalent brain functional imaging 

modalities. Previous rs-fMRI studies have mainly focused on adults and elderly subjects. Recently, 

infant rs-fMRI studies have become an area of active research. After a decade of gap filling 

studies, many facets of the brain functional development from early infancy to toddler has been 

uncovered. However, infant rs-fMRI is still in its infancy. The image analysis tools for neonates 

and young infants can be quite different from those for adults. From data analysis to result 

interpretation, more questions and issues have been raised, and new hypotheses have been formed. 

With the anticipated availability of unprecedented high-resolution rs-fMRI and dedicated analysis 

pipelines from the Baby Connectome Project, it is important now to revisit previous findings and 

hypotheses, discuss and comment existing issues and problems, and make a “to-do-list” for the 

future studies. This review article aims to comprehensively review a decade of the findings, 

unveiling hidden jewels of the fields of developmental neuroscience and neuroimage computing. 

Emphases will be given to early infancy, particularly the first few years of life. In this review, an 

end-toend summary, from infant rs-fMRI experimental design to data processing, and from the 

development of individual functional systems to large-scale brain functional networks, is provided. 

A comprehensive summary of the rs-fMRI findings in developmental patterns is highlighted. 

Furthermore, an extensive summary of the neurodevelopmental disorders and the effects of other 

hazardous factors is provided. Finally, future research trends focusing on emerging dynamic 

functional connectivity and state-of-the-art functional connectome analysis are summarized. In 

next decade, early infant rs-fMRI and developmental connectome study could be one of the 

shining research topics.
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Introduction

Functional MRI (fMRI) measures blood-oxygen-level-dependent (BOLD) signals, an 

indirect in vivo indicator of neural activity (Ogawa et al., 1990). fMRI is a non-invasive 

brain functional imaging technique that probes brain function with relatively high spatial and 

temporal resolutions compared to other techniques (Logothetis, 2008). Brain functional 

studies have a long history of task-related experimental design and have substantially 

advanced our understanding of how the human brain works. Like the task-related fMRI, rs-

fMRI is also a powerful tool to probe brain functions. BOLD signals during the resting state 

may reflect “spontaneous neural activity,” rather than the contextual, “task-evoked” activity 

(Biswal, 2012). The differences between rs-fMRI and task-related fMRI findings on 

development are not trivial but reflect substantially distinct neuromechanisms. The 

spontaneous neuronal activity is believed to relate to “intrinsic” (naturally existing) human 

brain functional organizations supported by the underlying structural connectivity substrates 

(Fox and Raichle, 2007; Fransson, 2006; Lowe, 2012; Snyder and Raichle, 2012). It is 

believed that spontaneous discharge of neuron groups spread to other neuron groups via 

axonal connections of the white matter, forming a large-scale, coordinated BOLD 

fluctuation pattern, or FC (Damoiseaux and Greicius, 2009; Friston, 2011; van den Heuvel 

and Hulshoff Pol, 2010). The spatial patterns of FC resemble the brain activation patterns of 

various task paradigms and are called functional brain networks or resting-state networks 

(RSNs) (Rosazza and Minati, 2011; Smith et al., 2009). The hypothetic roles of the 

spontaneous neural activity and RSNs include preparing for task execution (Smith et al., 

2009), continuously monitoring external and internal environments (Fransson, 2005), 

reflecting underlying anatomical connectivity patterns (Honey et al., 2009), balancing 

between the excitatory and inhibitory interactions (Menon, 2011), mind wandering (Fox et 

al., 2015), memory consolidation (Buckner and Vincent, 2007), and so on. A “dark energy” 

metaphor concludes that a tremendous portion of energy spent in the resting state is 

biologically meaningful and could be the key to higher-level cognition and the emergence of 

consciousness (Raichle, 2006; Zhang and Raichle, 2010). Together, rs-fMRI has become one 

of the most important techniques for neuroscience studies.

Rs-fMRI is also important for developmental neuroscience studies (Di Martino et al., 2014a; 

Dosenbach et al., 2010; Gao et al., 2016; Grayson and Fair, 2017; Keunen et al., 2017; 

Menon, 2013; Power et al., 2010; Richmond et al., 2016; Smyser et al., 2016a; Smyser and 

Neil, 2015; Vertes and Bullmore, 2015). While task-related fMRI has been widely adopted 

to investigate activations in older children, adolescents, and adults for probing brain 

functional development, for younger children, including neonates, infants, and toddlers, rs-

fMRI is still an indispensable tool by avoiding the need of performing specific tasks, which 

are clearly difficult for young children to comply. Various task-free paradigms have been 
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used in rs-fMRI-based neurodevelopmental studies (Redcay et al., 2007). These protocols 

include eye-opened with a fixation on a screen, eye-opened with a black screen, and eye-

closed but awake for older children. In contrast, for infants and neonates, eye-closed during 

natural sleeping (Fransson et al., 2009) or sedation (Kiviniemi et al., 2003), and eye-opened 

during passive movie watching or story listening have been employed (Emerson et al., 

2015). Among them, imaging during natural sleeping has been widely used in the recent 

neonate and infant studies, while passive movies watching or story listening is still useful for 

young children studies (Howell et al., 2018).

Usually, with rs-fMRI, FC between any pair of brain regions can be used for the 

developmental study, while the RSNs can also be extracted to obtain system-level brain 

functional measurements. Similar to the dramatically increased brain size in the first years of 

life (Li et al., 2018), brain functional development as reflected by the changes of FC and 

RSNs could be profound, reflecting rapid development of behavioral and cognitive functions 

at these ages (Gao et al., 2015a). The derived FC and RSNs can be compared with those of 

another cohort at later ages (e.g., adults) via a cross-sectional type of analysis, or compared 

with those of the same subjects in later developmental stages as a longitudinal study.

Rs-fMRI for infant brain development remains an emerging area. In the last decade (from 

2008 to 2017), we have witnessed a rapid growth of publications reporting results on 

characterizing early brain functional development using rs-fMRI, most of which were 

published within the last 5 years. However, infant brain rs-fMRI studies are relatively fewer 

than that of adult, adolescent, and geriatric rs-fMRI studies. For example, searching for rs-

fMRI studies published in the last two years led to more than 2000 papers; however, less 

than 100 papers were found if adding “infant” in the search keywords. Of these 100, many 

are not actually dedicated to infants. Such shortage of rs-fMRI reports for early brain 

functional development is likely due to factors such as 1) structural imaging is relatively 

faster than fMRI, with the latter usually requiring hundreds of volumes, 2) acquiring fMRI 

data during a resting state is difficult for the very young age groups, 3) the importance of 

brain functional development has long been ignored, and 4) the existing imaging protocols 

and image analysis methods are mainly based on the adult cohorts and cannot be easily 

adopted and applied to neonates/infants.

Thanks to the recent advancement of imaging techniques and data processing methods, the 

BCP project (also see Big Data on Early Development) is one of the largest data-sharing 

projects focusing on neonatal and infancy cohorts (Howell et al., 2018). With the anticipated 

availability of rs-fMRI data, future infant rs-fMRI study will be booming. This review article 

will be necessary to summarize current findings of probing early growth trajectories of the 

FC and RSNs at different scales using rs-fMRI, discuss pros and cons of achieving a 

promising pipeline, and attempt to conclude the current findings from the systems 

neuroscience viewpoint. We will also discuss previously formed neuroscience hypotheses 

and provide methodological suggestions for future studies. We acknowledge that, there are 

several excellent review papers on the FC and FC-based findings of the developing infant 

brains (Cao et al., 2016; Gao et al., 2016; Grayson and Fair, 2017; Hoff et al., 2013; Keunen 

et al., 2017; Mongerson et al., 2017; Power et al., 2010; Smyser et al., 2011; Uddin et al., 

2010). Therefore, a Review of Reviews is provided in Supplementary Materials to highlight 
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key points discussed in these previously published review articles. With rapid technical 

advancements, our understanding of early brain functional development is deepening. As a 

result, it is clearly difficult for a review article to cover all aspects. For example, both Cao et 

al. (2016) and Grayson and Fair (2017) focused on the large-scale brain FC networks and 

their changes in the whole lifespan rather than the early life specifically. Mongerson et al. 

(2017) focused on methodological issues about independent component analysis (ICA, a 

multivariate analysis method for data-driven brain network analysis based on blind source 

separation) for infant FC analysis. Gao et al. (2016) discussed infant brain plastics and 

alterations with genetic and environmental influences. During preparation of our review 

article, two additional review papers were published (Keunen et al., 2017; Ouyang et al., 

2017), focusing on the spatial emergence of different RSNs and short-range FC (FC between 

the closely located brain regions), respectively.

To differentiate from the previously published review papers, the current survey will focus 

on the early brain functional development as revealed by rs-fMRI from a very young age 

population spanning from neonates to young children. Theme 1 of this review will give the 

most up-to-date coverage of this research field. Theme 2 will summarize the consistent 

findings from previous studies and provide potential hypotheses to be tested in the near 

future. Theme 3 will provide the most interesting research trends for future studies. In the 

wake of the emerging big-data sharing projects, the most practical goal of this review is to 

facilitate the formulation of an rs-fMRI data processing pipeline. Figure 1 shows the big 

picture of rs-fMRI-based neonate/infant study in the context of different spatial and temporal 

scales.

In the following sections, we will review the current rs-fMRI studies focusing on different 

age groups with different experimental designs. Since there are fundamental differences 

between infant and adult rsfMRI, we detail the infant rs-fMRI preprocessing procedures 

with a specific focus on the differences from those in adult studies. A brief summary of the 

previous post-processing methods used for neonates and infants will be provided. Methods 

that are not well described in previous review papers will be highlighted. A summary of the 

developmental trajectories of several functional systems from the systems neuroscience 

point of view will be provided. We will also briefly review the current efforts on the 

investigation of the relation between rs-fMRI studies and those based on other imaging 

modalities. We will review the rs-fMRI findings in neurodevelopmental disorders and other 

risk populations. Finally, limitations and outstanding issues.

Subjects and rs-fMRI experimental designs

Most previous rs-fMRI studies focused on the school-aged children and older subjects 

(Dosenbach et al., 2010; Fair et al., 2007; Gu et al., 2015; Sole-Padulles et al., 2016). For a 

review, please see Vertes and Bullmore (2015). The use of rs-fMRI for neonatal brain studies 

only emerged in the past 10 years. After the first rs-fMRI study (Biswal et al., 1995), the 

first neonatal rs-fMRI study was published only one decade ago based on term-equivalent 

preterm infants (Fransson et al., 2007). The first healthy, term infant rs-fMRI study was 

conducted one year later (Liu et al., 2008) based on eleven 12-month-old infants. 

Longitudinal rs-fMRI studies of infants have an even shorter history. The first longitudinal 
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rs-fMRI study on preterm infants with a decent sample size focused on the period between 

26 weeks of postmenstrual age (PMA) and term-equivalent age (Smyser et al., 2010). In 

another similar but pseudo-longitudinal study from 29 weeks PMA to term-equivalent age, 

the spatiotemporal development of functional networks was reported (Doria et al., 2010). 

Lin et al. (2008) conducted the first longitudinal rs-fMRI study for healthy term neonates 

from birth to 2 years of age with a 3-time-point design (2-week-, 1-year-, and 2-year-old) 

focusing on the primary functional systems, followed by Gao et al. (2009) reporting the 

maturation processes of the default mode network (DMN).

Several unique characteristics associated with young children could have profound 

implications for the experimental design of rs-fMRI. These factors include imaging in 

different states of consciousness states, a smaller brain size, faster respiratory and cardiac 

rates and, sometimes, the presence of severe motion artifacts. Therefore, experimental 

designs will need to minimize these confounding factors. More detailed discussion of these 

factors is provided below.

Consciousness states

For preterm neonates, imaging studies during natural sleep or under anesthesia or sedation 

have been conducted (Kiviniemi et al., 2000; Kiviniemi et al., 2003). For healthy neonates, 

natural sleep is the most widely used approach for resting-state fMRI (Fransson et al., 2009; 

Lin et al., 2008; Liu et al., 2008). However, caution should be taken when interpreting 

results since FC and RSNs can be modulated by the differences in the consciousness states: 

sleep stages, anesthesia, or wakefulness state (Graham et al., 2015; Liang et al., 2015).

For children older than 3 years old, it becomes more difficult to conduct rs-fMRI during 

natural sleep. Passive movie watching or story listening could be a good option to keep 

subjects still and concentrated (Emerson et al., 2015). However, the utilization of these 

passive tasks could again affect the spatial configurations of the functional networks due to 

active engagement of visual/auditory stimulus. As shown in Figure 2 (unpublished data), 2D 

embedding of the whole-brain FC across ages and subject’s statuses (sleeping vs. movie 

watching) shows clearly distinct clusters (indicating different FC patterns). A recent study 

reported by Mitra et al. (2017) found that the infant FC networks during natural sleep were 

more similar to those of the adults during slow-wave sleeping than wakefulness, 

demonstrating reduced FC in the DMN. Only by comparing the same sleeping state (but not 

between infant sleep and adult wakefulness) could they reveal significant developmental 

patterns of fading thalamic earliness in terms of the BOLD signal propagation (Mitra et al., 

2017).

For longitudinal studies focusing on brain functional development during the first years of 

life, e.g., 0–5 years of age, the experimental settings may not be easily kept identical 

between newborns and the 5 years old. If different strategies are used for the same subject at 

different ages, the interpretation of FC trajectories from the same subjects would at least 

respect the systematic differences caused by the utilization of different experimental 

protocols.
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Spatial and temporal resolution

Given inherently small brain size of infants, high-spatial-resolution fMRI has been 

considered. HCP project acquires 2-mm isotropic high-resolution rs-fMRI data at 3-T and 

1.6-mm isotropic rs-fMRI at 7-T. However, since an infant brain is about 1/3 of an adult’s 

brain, the voxel dimension should be scaled to 1/3 of the 3-mm voxel dimension that is 

commonly used in adult rs-fMRI studies (Nooner et al., 2012) to ensure an equivalent partial 

volume effect, which is about 2 mm isotropic. Therefore, at least 2-mm isotropic voxel size 

should be used for infant studies. The imaging protocol of the BCP (see Big Data on Early 

Development) would be sufficient.

A high temporal resolution is also critically important for conducting rs-fMRI for infants 

since their respiratory and heart rates are faster than that of adults and show significant age-

dependent patterns (Bar-Haim et al., 2000). To remove the artifacts, a high temporal 

resolution will be necessary. In addition, the high temporal resolution is needed when dFC 

(dynamic FC) analysis (calculating time-varying FC instead of stationary FC) or the FC in 

high-frequency bands are of interest. Multiband echo-planar imaging (EPI) sequence that 

used in HCP (Glasser et al., 2013) should be adopted if hardware allows.

Motion artifacts

Among all the factors, head motion is the leading cause of failure of obtaining usable images 

(Fair et al., 2007). A systematic study conducted by Yerys et al. (2009) reports that the 

failure rate can be as high as 20–40% for 4–6 years old subjects. A recent sleeping-state 

infant fMRI study indicated that 35% (4-month-old) and 57% (9-month-old) failure rates 

could be encountered (Damaraju et al., 2014b). Foam cushions between headphone and head 

coil are necessary, but more cushioning could be necessary for neonates and infants due to 

the smaller head size. Leg cushion under the knees and weighted sandbag on the feet have 

also been suggested (Yerys et al., 2009). It is helpful having an adult inside the MRI room 

with young children during imaging to keep them calm. Training in the mock scanner is 

helpful (Raschle et al., 2012; Yerys et al., 2009), but could be difficult for children younger 

than 3 years old. For infants, imaging should be carried out after feeding and changing to a 

dry diaper to maximize the success of sleep scans. It has been suggested to wait until sound 

sleep is established to reduce the risk of interruption due to wakefulness (Raschle et al., 

2012).

Choosing a proper scanning time could be also important for obtaining useable rs-fMRI 

data. While there is a general consensus that the acquisition time for rs-fMRI should be as 

long as possible, preferably around 20 min per HCP protocol (Smith et al., 2013), it is 

unlikely that infants/toddlers can keep still for such a long time. A shorter scanning time 

(e.g., 5-min) at each run with multiple runs in each session is thus recommended (Raschle et 

al., 2012). In addition, Birn et al. (2013) suggested that an rs-fMRI scan of 5–13 min should 

be sufficient to obtain reliable FC results, so as Van Dijk et al. (2010). However, it remains 

unclear how many runs of rs-fMRI will be sufficient for infant studies. Additional 

investigations are needed.
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Before the experiment, the recruitment sample size should be adjusted due to the high failure 

rate in the neonate and infant studies (Yerys et al., 2009). Generally, 20–40% more subjects 

should be on the recruitment plan, depending on the age. The younger the subjects are, the 

more sample size should be planned.

Head motion has been shown to correlate with subject’s neurobiological traits, with reduced 

distance FC in the DMN areas for the subjects with greater head motion or weaker 

impulsiveness (Kong et al., 2014; Zeng et al., 2014). Therefore, deliberately choosing 

subjects with a small degree of head motion may result in the creation of an unwanted 

subgroup with systematic differences compared to the population and thus deteriorate the 

quality of the study.

Preprocessing methods and pipelines for infant rs-fMRI

Preprocessing of infant rs-fMRI data requires special considerations. Directly adopting adult 

rs-fMRI preprocessing pipelines could lead to severe methodological issues. Several 

previously published review articles have separately discussed a few methodological 

problems for preprocessing pipelines, such as head motion, image distortion, lacking age-

specific atlas, ethical considerations, and others (Graham et al., 2015; Smyser and Neil, 

2015). In this section, we will review several important issues, such as atlas and registration. 

In addition, we will propose an HCP-style pipeline for infant rs-fMRI preprocessing.

Infant rs-fMRI registration should be guided by anatomical image (e.g., T1-weighted image) 

registration. Compared to the adult brains, the neonatal brain is smaller, with less 

gyrification and folding (Li et al., 2018). The neonatal brain also exhibits different contrasts 

in early months of life (i.e., before 6 months old, the T1 contrast is inverted compared to the 

adult’s; during 6–9 months old, the T1 image has an “isointense” appearance). These unique 

features associated with neonates pose challenges for intensity-based registration to the adult 

T1 template. Labeled image-based registration is helpful, however, the conventional 

segmentation methods (i.e., FAST in FSL1 and Unified Segmentation or New Segment in 

SPM2) are often infeasible. An infant dedicated registration algorithm and template are 

necessary. In addition, a longitudinal registration algorithm (within-subject registration 

across different ages, followed by inter-subject registration can also be helpful (Zhang et al., 

2017b, c; Zhang et al., 2017d)). Finally, standard brain atlases for neonates and infants are of 

the great interest in the previous studies. For more details, please see the review paper in the 

same issue (Li et al., 2018).

Infant brain templates and atlases

Although well-accepted infant brain atlas still lacks, several infant templates have been 

proposed and will be discussed below.

A preterm template deriving from preterm subjects at the PMA of 28 to 44 weeks was made 

available by Serag et al. using group-wise registration, which can be used for fetus and 

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
2http://www.fil.ion.ucl.ac.uk/spm/
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neonates studies (Serag et al., 2012). The same team further published their neonatal brain 

atlas consisting of 107 brain regions that are consistently shown in the adult’s brain (Blesa et 

al., 2016). They also published a T1-, T2-and diffusion metrics’ (e.g., fractional anisotropy 

(FA) and mean diffusivity (MD)) templates for registration and atlas propagation, forming 

longitudinal templates including more (nine) age time points with 2 weeks intervals (Blesa 

et al., 2016). Similarly, the “Imperial College London neonatal brain probabilistic atlas” was 

derived from preterm neonates from 29 to 44 gestational weeks. It includes T1 images, three 

different brain tissue probability maps, plus subcortical grey matter and brain stem 

probability maps (Kuklisova-Murgasova et al., 2011). The “ALBERTs” atlas was 

constructed using 14 preterm infants scanned at term age, with another version of this atlas 

generated based on 5 term neonates. The advantage of this template is that 50 brain regions 

were manually delineated for each subject and fused to form group-consistent brain 

parcellations. The T1 and T2 templates were created by inter-subject registration and the 

second round of registration using group-averaged first-round registered images (Gousias et 

al., 2012; Gousias et al., 2013).

The “Cincinnati 9–15-month-old template” was derived from a group of infants aged 

between 9 – 15 months old using a complex, multi-pass, and iterative segmentation 

algorithm (Altaye et al. (2008). This template includes T1 images and three tissue 

probability maps that are compatible with SPM. Thus, they could be more easily applied 

based on the widely used preprocessing toolboxes (e.g., SPM or FSL).

A “UNC 0–1–2-year-old infant brain atlas” (Shi et al., 2011) is available and has been 

widely used. It consists of a set of brain atlases, including the average T1-weighted brain 

(intensity) images with and without skull and scalp, brain-tissue hard-segmentation maps 

(white matter, grey matter and cerebrospinal fluid (CSF)), tissue probability maps of the 

three tissues, and an automated anatomical labeling (AAL)-based ROI parcellation map. 

This atlas was based on fuzzy segmentation and atlas-based segmentation from 95 subjects. 

However, more fine-grained ages (such as 3- and 6-month-old) are not included in this atlas. 

Moreover, the atlas is not in the standard space and thus a further registration to the MNI 

space is required.

Sanchez et al. (2012) released a set of publicly available multi-age-group templates3 from 2 

weeks to 4 years old based on 13 different age cohorts with relatively large sample size 

(from an NIH MRI study of normal brain development (NIHPD) with both longitudinal and 

cross-sectional datasets). Among all available templates, this template likely covers the 

widest age range. However, this template was constructed from the subjects with preterm 

birth or growth delay. In 2016, they further widened the age range and provided more age-

specific templates with 3-month intervals through 1-year-old, and with 6 months intervals 

through 19.5 years (Richards et al., 2016). However, like its previous version, this wide-age-

range atlas was mainly based on subjects with diseases or risks of diseases and did not use 

longitudinal datasets. Another publicly available neonate brain atlas is the JHU Neonate 

Brain Atlas (and Neonate Brain Multi Atlas) (Oishi et al., 2011), built based on 25 term 

neonates and consisting of T1, T2, and DTI images. This atlas also provides a single-

3http://jerlab.psych.sc.edu/neurodevelopmentalmridatabase
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subject-based template, with Talairach’s atlas-based 122-ROI brain parcellation atlas. 

However, only neonate templates/atlases are available.

Since most of these templates (except the NIHPD-based templates) cover only part of the 

early brain developmental stages, more templates spanning a large age range, providing 

more accurate (longitudinal) registration and segmentation, and including brain parcellations 

obtained from infant population rather than simply adopting from the adult populations are 

needed. The newly developed brain atlases should also have temporally consistent patterns 

in geometric, morphometric, and ROIs. In addition, they should be in NIfTI format for easily 

integrating with the widely used toolboxes.

Infant brain registration

Until now, there has been no well-accepted and easy-to-implement infant rs-fMRI 

preprocessing pipeline. Previous studies have used existing toolboxes such as FSL to 

conduct “ordinary” preprocessing including slice timing correction, head motion correction, 

spatial smoothing, temporal linear trend removing, temporal band-pass filtering, and 

nuisance signals regression (Gao et al., 2013; Zhang et al., 2017c). All of these steps and 

parameter configurations are similar to those for adult studies. Among them, however, 

spatial registration should be carefully considered for infant studies.

Early studies used infant T2-weighted templates for direct rs-fMRI (also T2-weighted 

images) registration. For example, the template provided by Dehaene-Lambertz et al. (2002) 

was used to conduct registration based on SPM’s intensity-based registration (Fransson et 

al., 2007). Several studies directly used the UNC 0–1–2-year-old infant brain atlas (Shi et 

al., 2011) as the target images with commonly-used adult-brain registration algorithms or 

toolboxes. After registration was completed for each of the three age groups, the parcellation 

provided by the atlas can be applied for ROI-wise BOLD signal extraction. In several recent 

studies, each subject at a specific age group can be registered to the group-mean “template” 

for the corresponding age group using an attribute-based algorithm like HAMMER (Shen 

and Davatzikos, 2002). Some other studies used a simpler algorithm in FSL (i.e., FLIRT

+FNIRT) by nonlinearly registering each subject’s T1 images at certain ages to a 

“longitudinal template” made by a single-subject scanned at different ages (Alcauter et al., 

2014; Gao et al., 2015a; Gao et al., 2015b; Gao et al., 2014). The longitudinal templates are 

then registered to the MNI standard space by using 4D registration algorithm (Gao et al., 

2013), such as 4D HAMMER (Shen and Davatzikos, 2004). With this strategy, any seed 

coordinates defined in the stereotaxic space can be projected back to individual rsfMRI data 

for seed-based FC analysis. The main advantage of such an approach is its simplicity and the 

straightforwardness. There are other alternative methods. Cao et al. (2017a) used neonatal 

subjects’ co-registered T2-weighted images as guidance to nonlinearly register the rs-fMRI 

data to a preterm neonate’s T2 template based on SPM. They further generated a 

customized, data-specific template by averaging all registered brain images and then 

conducted another round of nonlinear registration to improve registration accuracy. 

Damaraju et al. (2014b) used the FSL framework (mainly FNIRT) by selecting one subject 

as the target and registering other subjects’ brains to the target. All of the registered brain 

images were further averaged to form a group- and age-specific template for the 4 months 
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old. Affine transformation was then used to register the newly generated 4-month-old 

template to the existing 9-month-old Cincinnati template (Altaye et al., 2008). Some recent 

studies even directly used FSL nonlinear registration with a neonate T1 template (He and 

Parikh, 2016; Toulmin et al., 2015).

In summary, the commonly used strategy is to generate or use age-specific templates and 

conduct nonlinear registration based on the intensity images. Choosing both FSL and SPM 

with the specified template(s) and conducting multi-stage deformation field combination/

transformation seem to be a feasible and easy way.

To further increase spatial registration accuracy, one can use the labeled image (generated 

from segmentation) and conduct registration to a labeled template. A more accurate, 

learning-based brain segmentation algorithm using multimodal images and/or longitudinal 

images is proposed and a greatly improved registration performance has been reported based 

on the label maps (Wei et al., 2017). In addition, state-of-the-art registration algorithms, such 

as a multi-stage, group-wise 4D longitudinal registration (Dong et al., 2017) and deep-

learning-based deformable image registration (Cao et al., 2017c), could achieve better 

registration accuracy. Moreover, surface-based registration using accurate longitudinally-

consistent 4D level-set segmentation (Wang et al., 2014) and topology-preserving 

deformable algorithm (Li et al., 2012; Li et al., 2015a) could further improve surface 

registration performance. For details, please see the review paper in the same issue (Li et al., 

2018). These steps are highly recommended for future rs-fMRI studies, especially those 

focusing on more detailed structures (e.g., within-thalamus FC), which require more 

accurate registration.

Motion correction

As extensively discussed above, head motion is another important factor to consider in infant 

rs-fMRI studies. Even during natural sleep, some subjects may still have large head motions, 

e.g., > 5mm or > 5 degrees, as shown by Cao et al. (2017a). Only discarding subjects with 

excessive cumulative head motion as done in traditional SPM-based studies is inadequate. 

Framewise head motion should also be considered and the “bad” frames should be corrected 

or at least removed before FC analysis (Power et al., 2012; Van Dijk et al., 2012). The 

criteria for excluding framewise head motion-affected data vary from study to study and the 

specific criterion of “bad” frame identification remains lacking for infant rs-fMRI studies. 

For example, Cao et al. (2017a) used mean frame-wise displacement across the entire 

scanning time for subject exclusion, while Gao et al. (2014) used single-time-point frame-

wise displacement (frame-wise displacement > 0.2 mm) and global signal changes (> 0.3%) 

to remove the frames with head motions. It has been shown that micro-head motion could 

alter functional network measurements, e.g., abnormally decreased FC in the DMN and 

central executive network (CEN), and increased local FC and bilateral motor-area FC (Van 

Dijk et al., 2012). If this is the case, several early development studies could bear a high risk 

of under-estimation of the FC in higher-level cognitive function-related networks (DMN and 

CEN) and over-estimation of the sensorimotor network FC (Fransson et al., 2009). 

Furthermore, lacking well-accepted criteria to determine “bad” frames could reduce 

reliability and reproducibility of various rsfMRI metrics (Yan et al., 2013). Simple temporal 
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band-pass filtering and global signal removal are unable to reduce such influence (Power et 

al., 2014). Data censoring is not recommended as it could destroy the temporal continuity of 

the data, which will affect dynamic FC analysis (Hutchison et al., 2013). To solve this issue, 

creating noise-free new 4D volumes by replacing “bad” frames with new interpolated 

volumes has been suggested (Hutchison et al., 2013). Alternatively, wavelet-based rs-fMRI 

time series denoising (de-spiking) (Patel and Bullmore, 2016), as well as ICA-based 

structured artifact removal, e.g., ICA-FIX (Salimi-Khorshidi et al., 2014) or ICA-AROMA 

(Pruim et al., 2015) seems to be better than simple interpolation and could be used in the 

future for infant rs-fMRI motion artifact removal.

Infant rs-fMRI data processing pipeline

The unprecedented success of the HCP and its state-of-the-art, “HCP-style” rs-fMRI 

preprocessing pipeline can be considered as a starting point for an optimal preprocessing 

pipeline for infant rs-fMRI, especially for the data (from BCP) with high temporal and 

spatial resolutions. Specifically, the preprocessing procedures for the infant rs-fMRI data 

from BCP are proposed to be consistent with the HCP-style (Glasser et al., 2016b): 1) 
avoiding multiple interpolations of rs-fMRI data to minimize interpolation-related BOLD 

signal alterations by combining different transformation and deformation fields into a single 

deformation field with one-step resampling; 2) integrating both surface-based and 

volumetric registration by either representing cortical vertices and subcortical voxels in a 

common grayordinates system, or using surface-guided volumetric registration in a unified 

framework; 3) using better brain parcellation atlas either as suggested by the HCP4 (Glasser 

et al., 2016a) or based on age-specific functional parcellations; 4) increasing the precision of 

data analysis by preprocessing data in each subject’s native space (Glasser et al., 2016a); and 

5) systematic ICA-based structured noise removal.

A tentative HCP-style infant rs-fMRI processing pipeline is shown in Figure 3. Specifically, 

it includes three modules: minimal preprocessing (Figure 3A), extensive preprocessing 

(Figure 3B) and post-processing for resting-state FC metric calculations (Figure 3C). For the 

minimal preprocessing, after head motion correction and EPI distortion correction, the 

corrected single-band reference image is linearly registered to the corresponding T2-

weighted images using boundary-based registration. The T2 image is aligned to the 

corresponding T1-weighted image. Both T1 and T2 images are used to conduct learning-

based segmentation based on iBEAT v2.05 (to be released), which generates labeled images 

(grey matter, white matter, and cerebrospinal fluid). Then, the labeled images of the same 

subject at different ages can be longitudinally registered using a toolbox, such as 4D 

HAMMER (skipping this step if the subject has only one scan). Next, the aligned labeled 

images from multiple subjects within a specific age range are registered to the corresponding 

age-specific labeled atlas, and the latter is further registered to the labeled atlas in the 

standard space (i.e., MNI space). All of the deformation fields and translation matrices can 

be combined and applied to the raw 4D rs-fMRI data, followed by one-step spatial 

resampling to each volume of the rs-fMRI. Of note, there could be more than one strategy 

4http://balsa.wustl.edu/WN5
5https://www.nitrc.org/projects/ibeat
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and/or toolbox to conduct spatial registration, such as surface-based registration; the bottom 

line is using the labeled image and combining all deformation flows (Figure 3D) with one-

step resampling to the original rs-fMRI data.

During the extensive preprocessing, after high-pass temporal filtering, ICA-FIX in FSL 

(Salimi-Khorshidi et al., 2014) can then be applied to each subject’s minimally preprocessed 

rs-fMRI data for extensive artifact removal. The conventional nuisance regression analysis 

can be also conducted including the motion parameters. Head motion effects can be further 

reduced by applying wavelet-based time series de-spiking (Patel and Bullmore, 2016; Patel 

et al., 2014). Other preprocessing steps including band-pass filtering, global signal 

regression, and adaptive spatial smoothing are optional (Gao et al., 2015b). The 

aforementioned infant rs-fMRI analysis has been scripted and pipelined (to be released) 

based on the modified HCP pipeline6. In a recently published article by the dHCP group 

(Makropoulos et al., 2017), a similar fully automated minimal processing pipeline7 was also 

proposed, along with 4D spatiotemporal atlases for 28-to-45 gestational weeks.

After preprocessing, different brain parcellation atlases can be adopted to generate 

regionally averaged signals for subsequent FC and dFC analyses, which can be the HCP-

proposed multimodal imaging-based atlases, or the age-specific functional atlases derived 

from infant rs-fMRI using clustering analysis or group ICA (GICA, a method for brain 

network detection based on a group of rs-fMRI data). For the coming BCP data 

dissemination, the raw rs-fMRI data, minimally preprocessed data, extensively preprocessed 

data, and the ROI time series data can be included to facilitate future brain functional 

development studies.

Post-processing of infant rs-fMRI data

There are generally activity- and co-activity-based post-processing for rs-fMRI. The first 

category mainly includes the BOLD signal fluctuation-based metrics such as Amplitude of 

Low-Frequency Fluctuations (ALFF) and fractional ALFF (fALFF), which calculated raw 

and standardized BOLD fluctuation amplitude at a specific frequency band (usually 0.01–

0.08 Hz) (Zang et al., 2007). An early study on preterm vs. term infants revealed increased 

BOLD fluctuations in the low-frequency band at the basal ganglia for subjects at 36-month-

old but not at 18-month-old (Damaraju et al., 2010). A more recent study (Long et al., 2017) 

demonstrated that ALFF in the frontoparietal areas and precuneus increases linearly with 

age, while those in the sensorimotor, visual and auditory cortices, as well as the inferior 

medial temporal lobe, show age-related linear reductions from 2 to 6 years of age. However, 

the results from within-subject longitudinal studies remain largely variable. In a recent 

longitudinal study on the BOLD signal fluctuation frequency and power, Alcauter et al. 

(2015b) showed a significant global and network-wise increase in the major BOLD 

fluctuation frequency in the first year of life, with the peak fluctuation power in the 

sensorimotor and visual networks correlating with later behavioral scores.

6https://github.com/Washington-University/Pipelines
7https://github.com/DevelopingHCP/structural-pipeline
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Another type of post-processing analysis is the co-activity-based FC. Previous review papers 

have covered several widely used FC metrics, such as seed-based correlation, local FC or 

Regional Homogeneity (ReHo, measuring the temporal synchronization between each voxel 

and its first-degree neighboring voxels) (Long et al., 2017), pairwise inter-regional FC and 

the analysis of the constructed complex brain functional networks (or functional 

connectome) with graph analysis (Gao et al., 2011), ICA (Gao et al., 2015b), and inter-

hemisphere homotopic FC (characterizing cross-hemisphere FC between mirroring voxels) 

(Zuo et al., 2010). For example, Thomason et al. (2013) investigated inter-hemispheric FC in 

fetuses and found that a half of brain areas have prominent inter-hemispheric FC during the 

second and third trimesters of pregnancy, which become stronger with increased gestational 

age. As one of the earliest results, Hagmann et al. (2010) found that, for 2-to-30 years old 

subjects, the averaged nodal degree and network efficiency increased, while local clustering 

coefficient (reflecting local efficiency) decreased with age. They also found that, although 

small-worldness index was significantly higher compared to a random network throughout 

the development, it decreased with age, which could be attributed to the reduced local 

efficiency. The structural connectivity network modularity (reflecting functional segregation) 

was found to decrease with age, with stable compactness within each module but increased 

inter-modular connections (Hagmann et al., 2010). More importantly, the structural-

functional-connectivity association increased in adolescents (> 13 years old) when compared 

to young subjects (< 4 years old). The brain functional network focusing on the first two 

years of life, however, suggests both increased local efficiency and global efficiency (Gao et 

al., 2011). More studies using complex network analysis are needed in the future, such as 

betweenness centrality and rich club; please see more discussion in Di Martino et al. 

(2014a). ICA is one of the most commonly used RSN detection methods and has been used 

since 2007 for neonates with both individual ICA and GICA (Fransson et al., 2007), where 

five components were reported (with three involving the primary networks and two covering 

the parietal and frontal areas, respectively). Please refer to the previous review papers for the 

development studies with these traditional FC analyses (Cao et al., 2016; Gao et al., 2016; 

Menon, 2013; Sporns, 2013; Zuo et al., 2017).

Aside from traditional stationary FC or static FC (calculated based on the entire rs-fMRI 

time series by assuming no changes for FC during the entire scan), dFC is an emerging area 

of research (Hutchison et al., 2013) and should be applied to infant rs-fMRI studies to 

characterize developmental “chronnectome” (see Research Trends). “High-order” FC 

network can be built based on traditional FC networks and dFC networks (Zhang et al., 

2017a) and could be used to provide useful supplementary information to the traditional 

developmental studies based on “low-order” FC (based on BOLD time series 

synchronization), see Research Trends. Since there are relatively few dFC- and high-order 

FC-based infants studies, we mainly focus on other FC methods that have been already used 

for infant studies, including FC-based brain functional parcellation and inter-network 

connectivity.

Inter-network connectivity

A preterm vs. term study in children at 3 years old revealed reduced inter-network FC 

(Damaraju et al., 2010). The authors hypothesized that the weak inter-network FC could be 
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more vulnerable to the environmental risks, which could be potentially more helpful for 

detecting early developmental disorders. The negative functional association between the 

DMN and the task-positive networks (including the attention networks and the CEN) has 

been consistently observed and well accepted as a normative pattern indicating a suppressive 

or competing relationship between large-scale networks (Menon, 2013). Limited attention 

resources could cause an anti-correlation between the inner environment-orientated DMN 

and the exterior environment-orientated task-positive networks. The reduced anti-correlation 

could indicate an imbalanced brain, leading to mental disorders. The interaction between 

DMN and the dorsal attention network (DAN) in the first years of life has been investigated 

(Gao et al., 2013), where the anti-correlation observed in adults was found to be absent in 

the neonates, becoming apparent in 1 year old, and even more enhanced in 2 years old. Such 

a two-way network-level connectivity can be further extended by decomposing the task-

positive networks into two functional networks, i.e., CEN and salience network (SN). The 

multi-way network-level relationship among all these networks has significant cognitive and 

behavioral implications, and their developmental trajectories could be an interesting topic in 

the future.

Functional parcellation

Functional parcellation based on region- or voxel-wise FC profiles could be an attractive 

method for developmental neuroscience studies. It could reveal functional segregation in the 

whole brain or even within the same brain region, thus uncovering developmental changes in 

the intrinsic functional organization. Focusing on a specific brain region, Alcauter et al. 

parcellated the thalamus (2014) and insula (2015a) (Figure 4A, B), while Zhang et al. 

(2017c) parcellated the high-level function-related medial prefrontal cortex (Figure 4C). 

Apart from more integrated thalamus in neonates, other two regions were found to be 

functionally segregated in neonates. From the methodological viewpoint, only not long-

range FC, but also short-range FC can be used for better functional parcellation. This is 

because that less matured long-range FC in the early life could reduce the specificity of the 

functional segmentation. An example can be found in Wu et al. (2017) for local-FC-based 

hippocampus subfield segregation. Finally, if longitudinal data is available, better functional 

parcellation can potentially be achieved by considering temporal smoothness constraint, as 

the functional segregation is supposed to be gradually changed (Yan et al., 2017).

Developmental patterns of different brain functional networks

In early studies characterizing early brain functional development, Pearson’s correlation and 

individual ICA were used to examine the FC of the three primary functional systems in 

infants and young children (Kiviniemi et al., 2000; Kiviniemi et al., 2003). Later studies 

using both GICA and seed-based correlation also consistently reported the three primary 

functional networks in neonates; see recent review papers (Grayson and Fair, 2017; Keunen 

et al., 2017). Primary functions mediated by the visual, sensorimotor, and auditory networks 

are mainly for domain-specific information processing.

The sensorimotor system is of importance for neonates and infants as it interacts with the 

outside world via receiving sensory inputs and exerting coordinated motor movement. 
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Therefore, the sensorimotor network serves as the first test bed to verify the existence of the 

functional networks in neonates (Liu et al., 2008). It has been demonstrated that the three 

primary networks are slightly lateralized (Liu et al., 2008), rather than the symmetric 

patterns observed in the adults, possibly due to the immature interhemispheric white matter 

myelination in the early years of life. The visual system is another important functional 

network for humans because it processes visual information from outside world and is 

consistently found to develop first (Lin et al., 2008). In addition, the visual processing is also 

important for the maturation processes of other functional networks, such as attention 

networks, since attention requires accurate and prompt visual information processing. A 

healthy visual network is thus critical to ensure healthy higher-level functional development. 

Congenitally blind studies have shown an extensive plasticity throughout the brain (Liu et 

al., 2007), but how the visual deprivation affects early brain functional development requires 

further study (Dale et al., 2017).

High-level cognitive functions include language, attention, memory, social interaction, 

emotion, reward, self-cognition, and so on. Compared to the primary functional networks, 

these high-level networks are less studied, with inconsistent findings reported. Although 

early studies found that these higher-order networks are quite immature when compared to 

the adult networks (Gao et al., 2015b), other recent studies have implicated that these 

networks may have already emerged even in the neonates or even earlier, and that the 

subsequent development of the high-level networks is just spatial refinement. See recent 

review papers (Grayson and Fair, 2017; Keunen et al., 2017) for the excellent summary.

Similar to the primary networks, the high-level networks seem also highly vulnerable to 

early environmental exposure, especially the factors related to high-level functions. A 

“social brain” is recently proposed to be correlated with early maternal touch in a five-year-

old rs-fMRI study focusing on the FC between temporal association areas and the 

dorsomedial prefrontal cortex (Brauer et al., 2016). In a recent rs-fMRI study on early brain 

FC development based on the subjects between 2 and 6 years old, although some regions 

exhibited local FC increases (as measured by ReHo), decreases of FC in other brain regions 

were also observed. The regions with increased ReHo are mainly located in the frontal and 

parietal association areas (i.e., included in the CEN) (Long et al., 2017). In the same study, 

the global FC, as revealed by eigenvector centrality, shows a different developmental pattern 

when compared with the local FC, where the age-related increase in FC is mainly in the 

superior temporal gyrus and cingulate cortex, with the latter mediating various higher-order 

cognitive functions. Interestingly, some regions in the visual association areas (included in 

the high-level visual network) in both dorsal and ventral visual pathways have divergent 

developmental trajectories of the local (increasing along development) and global FC 

(decreasing along development).

Language development is one of the most prominent behavioral milestones in the first two 

years of life. Emerson et al. (2016) investigated longitudinal changes of the inter-

hemispheric FC in the language-related areas and found an interesting inverted U-shape 

developmental pattern. An increased hemispheric FC symmetry for both Broca’s and 

Wernicke’s areas is observed at age one, and reaches its peak at about 1 year old, followed 

by increasing FC asymmetry, similar to the adults’ pattern at age two. More interestingly, the 
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trajectory of language-related FC between the Broca’s area and its counterpart during the 

first postnatal year could predict later language performance measured at 4 years old. In 

addition to interhemispheric homotopic FC, within-language network FC has a log-linear 

developmental pattern, indicating continuous optimization of the language network with 

increasing functional integration. The authors further proposed a hypothetic model that the 

interhemispheric FC is unselectively becoming stronger in the early infancy but is later 

selectively becoming asymmetric, probably due to the use-dependent FC strengthening 

within the traditional left-sided language networks.

The DMN has long been an important topic in the rs-fMRI community. The first age-

equivalent neonate DMN study was based on anesthetized preterm infants, where the DMN 

was found to be divided into the anterior and posterior parts (Fransson et al., 2007). Such an 

incomplete neonatal DMN was further validated by another study with the full-term 

neonates (Fransson et al., 2009). The first natural sleeping DMN study was conducted by 

Gao et al. (2009) with a cross-section design, where the DMN at 2 weeks, 1 year and 2 years 

old were compared among different ages. The general finding is that the DMN has a weaker 

FC in the neonatal stage, but qualitatively including both anterior and posterior parts of the 

DMN. The quantitative DMN completion analysis indicated that the DMN is growing more 

and more similar to its adult form. While the FC between the posterior cingulate cortex 

(PCC) and the medial prefrontal cortex (MPFC) was found to be already significant at birth, 

their FC strength might linearly increase from neonate to adulthood. Recently, a “prototype” 

of the DMN was detected in utero (Seshamani et al., 2016). While these studies use similar 

ICA-based methods, whether the DMN is split or largely complete in the neonatal stage is 

still under debate. Another difference regarding the neonatal DMN between Fransson et al. 

(2009) and Gao et al. (2009) is that the latter study revealed the medial-lateral DMN 

subdivisions rather than the anterior-posterior subdivisions. Taken together, the 

developmental trajectory of the DMN and its different parts are quite complex. However, it 

is generally accepted that the DMN becomes topologically similar to that observed in adults 

at 1-year-old (Gao et al., 2015a).

In addition to the DMN, there are two other high-level RSNs: CEN (covering the 

frontoparietal association areas) and SN (encompassing the insular and anterior cingular 

area). Both of them were found to closely interact with the DMN (Menon, 2011). Previous 

studies have shown that these three high-level RSNs are not fully developed until age two 

(Gao et al., 2013; Smyser and Neil, 2015). Specifically, Gao et al. (2015a) conducted a 

longitudinal study of the SN and CEN within the first year of life. They found that both 

networks are still in their premature forms by 1 year old, with less specific spatial pattern 

and less involvement of the dorsolateral prefrontal cortices for the SN, and less completed 

frontal part of the CEN. The anterior insula has been further identified to have a weaker 

within-SN FC and inter-network FC in children compared to adults, leading to a hypothesis 

that weaker FC in the SN could be more vulnerable to neuropathological attacks (Menon, 

2013). Alcauter et al. (2015a) found a consistent anterior-posterior insular functional 

parcellation, indicating that the functional divergence in the insular area has been largely 

formed at birth, but with their respective long-range FC yet complete. They further found a 

more rapid SN-related FC increase in the first year than the second year of life.
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The subcortical region undergoes a significant development during the first year of life 

(Alcauter et al., 2014; Toulmin et al., 2015). Despite the homogeneous thalamocortical FC at 

birth, the thalamocortical FC to the primary areas was found to be well matured (Alcauter et 

al., 2014). Thalamus-to-SN FC emerges at the neonate and expended in the first year of life, 

while thalamus-to-DMN FC emerges at 1 year old and expended in the year two (Alcauter et 

al., 2014). In particular, early thalamus-to-SN FC was found to predict later working 

memory ability (Alcauter et al., 2014). Focusing on the thalamocortical FC, Toulmin et al. 

(2015) found similar results from the term-equivalent preterm infants.

In addition to intra-network FC, inter-network FC is another important topic. A series of 

investigations on the developmental inter-network FC during early brain development have 

been conducted (Gao et al., 2015b; Gao et al., 2013). In addition to anti-correlation between 

the DMN and DAN, a more comprehensive whole-brain network-wise FC analysis among 

multiple functional networks was also conducted (see summary in Gao et al. (2016)). Gao et 

al. (2015b) further proposed that, with growth, inter-network FC will decrease and intra-

network FC will increase. However, the results from whole-brain ROI-based pairwise 

correlation indicate different developing patterns with inter-network FC increased with age 

(Damaraju et al., 2014b; Zhang et al., 2017c).

In large-scale RSN studies, an interesting question is – based on data-driven algorithms like 

ICA, how many functional networks can be detected at birth and later ages? By comparing 

the early RSNs with adult brain networks, one can quantify maturity index based on the 

topological resemblance between the early RSNs and adult RSNs. Moreover, the total 

number of RSNs detected from the infants could provide another indicator of functional 

maturity. The first ICA study on preterm children imaged at a full-term equivalent age only 

detected five RSNs, with the high-level RSNs exhibit prominent differences compared with 

the adults’ (Fransson et al., 2007). Gao et al. (2015b) found the largest number of RSNs with 

thorough 0–1–2-year-old RSN detection. Future study based on high-resolution, well quality 

controlled and noise reduced rs-fMRI data could probably detect more RSNs due to 

increased spatial specificity and image SNR. In addition, study with varying total numbers 

of independent components should be carried out to exclude “model order effect” (Huang et 

al., 2016; Lu et al., 2017). Results from such an analysis could be used to generate age-

specific functional parcellation atlas of the early brain.

Relation between functional and structural connectivity and other imaging 

modalities

Brain developmental studies can also be accomplished using DTI (Tymofiyeva et al., 2014) 

and structural MRI (Giedd and Rapoport, 2010). Integrating these imaging modalities with 

rs-fMRI could provide a better understanding of brain development. However, studies along 

this direction are scarce. Hagmann et al. (2010) conducted the first functional-structural 

connectivity association study in the early life. Although structural connectivity generally 

matures earlier than FC (Vertes and Bullmore, 2015), some studies have provided different 

results. For example, a study with young children showed that the FC between the PCC and 

the medial temporal lobes of the DMN is similar to that of adults while the anatomical 
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connectivity is still weak (Supekar et al., 2010). In addition, previous studies have shown the 

possibility of using structural connectivity (estimated from DTI) to predict FC with a 

computational model (Honey et al., 2009). Whether such results can be replicated in 

neonates and infants should be investigated. Such prediction accuracy could be interpreted 

as anatomical constraints to the FC, an interesting topic of the developmental neuroscience.

The rs-fMRI-based early brain developmental findings should be compared with those 

obtained from EEG and magnetoencephalography (MEG). An EEG study on premature 

infants identified temporal theta activity, a robust neural biomarker, indicating the emerging 

development of the temporal region during auditory stimulus (Routier et al., 2017). 

Although EEG offers relatively poor spatial information, it is more convenient for the study 

of early brain development with superior temporal resolution. For example, Jones et al. 

(2003) showed that regulating action based on feedback inherent to detect errors in 

childhood has been developed in 1 year old with different amplitude and latencies, 

indicating a simpler version of conflict detection using a different strategy. Similarly, near-

infrared spectroscopy (NIRS) with high-density optical tomography could be more suitable 

for neonate and infant studies, because it is easy to operate and less sensitive to head motion 

(Ferradal et al., 2016; Graham et al., 2015; Smyser and Neil, 2015; Zhang et al., 2011; 

Zhang et al., 2010). These different functional imaging techniques could effectively 

supplement the rs-fMRI studies.

Neurodevelopmental disorders and other diseases or hazardous factors

Brain development is a prolonged process. Early disruptive events may cause life-long 

impacts, such as neuropathological diseases, mental and behavioral disorders during late 

childhood and later stages. It is quite prevalent (11–15%) to develop psychopathological 

disorders in the childhood and adolescence, and 36.7% of the participants had at least one 

psychiatric disorder (Costello et al., 2003). Studies on the neuropsychiatric disorders have 

proposed a “miswired brain” theory from the developmental viewpoint (Di Martino et al., 

2014a; Uddin et al., 2013), where the miswired brain during early development could affect 

the normative developmental trajectories (Di Martino et al., 2014a). For example, attention 

deficit hyperactivity disorder (ADHD) could be associated with delayed brain connectome 

development, while autism spectrum disorder (ASD) has been related to premature but then 

delayed brain connectome development (Uddin et al., 2013). Finally, preterm birth is usually 

linked to an overall delayed brain connectome development (Chang et al., 2016). With the 

brain connectome as features, machine learning could help automatically differentiate 

atypical from typical development (Levman and Takahashi, 2015a, b; Smyser et al., 2016a).

The utilization of rs-fMRI for early diagnosis of ASD could be a highly promising area of 

research. Currently, ASD detection studies are still largely based on the data at late 

childhood from ABIDE-I (Di Martino et al., 2014b) or ABIDE-II8 (Di Martino et al., 2017). 

Exciting results have started showing that ASD can be now be diagnosed in early childhood 

and early infancy (Mevel and Fransson, 2016; Uddin et al., 2013). According to the well-

accepted hypothesis, ASD-type brain functional connectome may develop abnormally, with 

8http://fcon_1000.projects.nitrc.org/indi/abide/
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hyper-connectivity more likely to occur at young ages, followed by hypo-connectivity later 

in life (Uddin et al., 2013). Nevertheless, while increasing evidence suggests that ASD 

symptoms can start at 24 months of age, there are still very few studies on ASD diagnosis at 

0–5 years old (Ozonoff et al., 2010) or earlier (Dinstein et al., 2011). Hazlett et al. (2017) 

found that brain anatomical feature can be used an early (between 6 and 12 months of age) 

sign of ASD. Later on, Emerson et al. (2017) investigated whether there exist putative FC-

based early indicators of ASD with a longitudinal, prospective study on infants with high 

familial risks of ASD. They successfully (with 92.7% averaged accuracy) identified 

clinically best-estimated ASD subjects based on 6-month-old brain FC patterns using 

machine learning. Their finding was further validated by significant correlations between 6-

month-old FC and 24-month-old social behavioral, language, motor development and 

repetitive behavior scores. Furthermore, from the subjects who were diagnosed with ASD 

one and a half years later, many links were found to have already been significantly 

weakened at 6 months of age. Independent validations using new datasets are urgently 

needed to test this classification model. The discrepancy between early ASD studies 

showing hypo-connectivity (Dinstein et al., 2011; Emerson et al., 2017) and hyper-

connectivity in studies in older children (Uddin et al., 2013) requires further studies, 

especially long-term follow-up, to delineate developmental trajectories of ASD abnormal FC 

from early infancy to adolescence.

Perinatal high-risk factors and their potential influence in the early brain development are 

one of the most prominent topics. Among all the influencing factors, early exposure to the 

environment (preterm delivery) has gained increasing attention (Kwon et al., 2015; Kwon et 

al., 2014; Scheinost et al., 2016; Scheinost et al., 2015). Due to early exposure, the brain FC 

development in the preterm infants at term age could be quite different compared to term 

infants, which also has a long-term effect, such as aberrant cognitive abilities at later ages 

(Ball et al., 2015). A pattern analysis study using whole-brain FC networks reported a 

significant FC pattern difference between preterm neonates at term-equivalent ages and term 

neonates, indicating the early exposure could unselectively alter FC throughout the brain 

(Smyser et al., 2016b). Other studies, however, suggested that early exposure could 

selectively affect the formation of macroscale thalamocortical FC, especially the FCs 

between the thalamus and motor cortex, as well as those between thalamus and brainstem 

connections (Smyser et al., 2010).

Non-Central Nervous System (CNS) diseases could also alter brain FC in the newborns. A 

neonatal congenital heart disease study found that hub or rich-club nodes had reduced FC in 

full-term newborns with neonatal congenital heart disease when compared to the healthy 

term controls (De Asis-Cruz et al., 2018). It also indicates that such a pathological attack 

only targets local hub regions in the subcortical regions and brain stem, as well as the 

thalamocortical connections. A study on childhood drowning-induced anoxic brain injury 

also found that cognitive function-related brain functional networks were largely preserved 

while the motor network was disrupted if the injury occurred at 4 years old or younger 

(Ishaque et al., 2017).
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Research trends

Big data on early development

The developing HCP (dHCP)9 is a six-year (2014–2020) collaborative, large-scale, €15 

million European project led by King’s College London, Imperial College London, and 

Oxford University and managed by Connectome Coordination Facility (CCF). The main 

goal of dHCP is to provide a 4D developing connectome from fetus to birth (prenatal–

neonatal stages). The subjects will be “well-phenotyped” (including imaging, clinical and 

behavioral information) and “well-genotyped”. The dHCP proposed to collect multimodal 

MRI data (including rs-fMRI) from around 1500 well-characterized fetuses and newborns 

and has reached 600 neonatal scans by May 2018. The first data release only included 40 

representative neonates’ structural MRI, DTI, and rs-fMRI (15 min, 2300 volumes, 9× 

accelerated multiband EPI, TR = 392 ms, and 2.15 mm isotropic voxel size), as well as the 

preprocessed data based on the HCP-style preprocessing. Since the preparation of this 

review paper, no rs-fMRI article based on or detailing the dHCP has been published yet, 

except for a conference abstract showing the preliminary rsfMRI data processing 

(Fitzgibbon et al., 2017). In addition to healthy fetuses and neonates, dHCP will also focus 

on high-risk subgroups of the subjects.

Another recently launched NIH-funded HCP-style brain development project is a $4 million 

infant HCP project from the United States’ side, a.k.a. Baby Connectome Project (BCP)10. 

This project is carried out by University of North Carolina at Chapel Hill (UNC) and 

University of Minnesota (UMN). See details on the protocol design in the same issue 

(Howell et al., 2018). BCP focuses on acquiring image data and conducting comprehensive 

behavioral/cognitive assessments from 500 typically developing children during the first five 

years of life. Of the 500 children, 285 subjects will undergo longitudinal imaging (4–6 visits 

at different ages). The imaging protocol follows the HCP style with modifications tailored to 

the unique characteristics of the specific age group. Similar to the HCP data, for rs-fMRI 

acquisition, different phase-encoding directions (anterior-to-posterior (AP), and posterior-to-

anterior (PA)) are used, generating two rs-fMRI data sets in each visit (Figure 5). Children 

younger than 3 years of age are imaged during natural sleep while older subjects (> 3 years 

old) are imaged during passive movie watching during rs-fMRI acquisition. This 

unprecedented infant brain data will deepen our understanding of the development of human 

brain connectome, establish links between brain connectome and behavioral development. 

With future establishment and sharing of the BCP dataset, the issue of a small sample size 

could be overcome, reliable and robust conclusions can be generated, and the validity of the 

developmental changes can be ensured.

BCP has been continuously collecting data (Howell et al., 2018). The imaging quality of the 

rs-fMRI is guaranteed in terms of intensity homogeneity, signal loss, and spatial details. 

Multimodality imaging results from the same neonate (Figure 6, left) shows good 

correspondence across different modalities and satisfactory imaging quality. A preliminary 

seed-based correlation result (seeds were manually located at the left hand knot, left lingual 

9https://data.developingconnectome.org
10http://babyconnectomeproject.org
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gyrus, and left posterior cingulate cortex) is shown from a subject (aged 190 days). 

Individual ICA results (number of components = 40, results were integrated based on 40 

times ICA with different initial values) reveal a putative primary motor network, a primary 

visual network and the DMN (Figure 6, right). Despite limited preprocessing (head motion 

correction and band-pass filtering (0.01–0.1 Hz)), the results from AP and PA rs-fMRI data 

are significantly overlapped. More complex HCP-style data processing for the BCP data 

(based on the pipeline shown in Figure 3) is ongoing and the raw and preprocessed BCP data 

will be released. Until now, there is no other neonate or infant brain dataset that is publicly 

available except a small number of pre-released dHCP data.

Theoretical models of early brain functional development

A better understanding of how the brain undergoes dynamic re-organization during early 

infancy could facilitate the identification of hazardous factors leading to negative impacts on 

early brain development as well as early detection of atypical development. An intuitive 

“stability landscape” model was previously proposed by Knudsen to explain how the brain 

connections become stabilized and how this process is affected by early experience during 

sensitive periods (Knudsen, 2004). Such a model assumes that brain connectivity is unstable 

during early infancy and exposures to a healthy environment will strengthen proper 

connections while weakening the inappropriate ones. On the other hand, atypical 

experiences (e.g., preterm, visual deprivation) could drive brain connectivity towards 

abnormal patterns temporarily or permanently. In lieu of this model, it is highly plausible 

that the young brain will undergo functional reorganization in response to environmental 

exposures during early infancy since the white matter constraint has not been well 

established. As the brain continues to mature, white matter constraints are strengthened, 

leading to a more matured and stable functional network.

Similarly, Menon (2013) proposed that weak connections could be more easily altered. For 

example, the salient network (SN), which mediates emotional processing, has been shown to 

exhibit weak FC with other RSNs, these connections could be more affected by 

neuropathological attacks in younger ages. This may explain why mood disorders are 

common in the young population. Fransson et al. (2011) proposed that brain regions and 

connections for higher-order cognitive functions mature later, thus are more vulnerable to 

environmental and experience effects (Gao et al., 2016).

The definitions of FC instability and vulnerability are not yet proposed. Recent advances in 

dynamic FC (dFC) could provide a potential means to assess FC instability and vulnerability 

(Allen et al., 2014; Calhoun et al., 2014; Chen et al., 2017b; Hutchison et al., 2013). The 

variability of the dFC during the entire scanning time could measure the stability of FC 

(Hutchison et al., 2013). It is highly plausible that the dFC could be more variable in 

neonates compared to that at later ages. Other studies suggested that the time-varying 

topology of the brain functional networks and their quantitative metrics could also help 

explain the functional flexibility and brain adaptation (Chai et al., 2017; de Pasquale et al., 

2017). With the advancement of analysis tools, dFC could become one of the important tools 

to shed light on early brain functional development.

Zhang et al. Page 21

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prediction and early detection

One of the major topics of research in early brain functional development is to determine if 

the FC obtained during early infancy can predict cognitive and/or behavioral outcome in 

later ages. Several studies have employed baseline FC in early ages to predict the subjects’ 

learning ability (Zhang et al., 2017c), language performance (Emerson et al., 2016), and 

other higher-level cognitive performance at later ages (Alcauter et al., 2014). In a 

preliminary study, Zhang et al. (2017c) used the 1-month-old FC among the medial 

prefrontal subregions of 25 infants to predict early learning composite score at 4 years old. 

They achieved an area under the ROC (receiver operating characteristic) curve of 0.72 using 

support vector machine (SVM) with leave-one-out cross-validation. Their results indicate 

that, although high-level cognitive-related brain regions are less developed in neonates, the 

FC patterns during early infancy could provide a means to predict later cognitive 

performance.

Early identification of risk populations from typically developing subjects has profound 

clinical implications (Ball et al., 2015; Kwon et al., 2014). In particular, one of the main 

strategic plans for research of the National Institutes of Mental Health (NIMH) is to “Chart 

Mental Illness Trajectories to Determine When, Where, and How to intervene (Objective 

2)”. It has been suggested that mental illness has a continuous spectrum and long developing 

trajectories. Therefore, it is plausible that subtle changes in brain function can begin years 

earlier than the emergence of the clinical symptoms. FC could potentially be a sensitive 

biomarker of atypical early brain functional alterations prior to the presentations of clinical 

symptoms. Emerson et al. demonstrated that FC measured at 6 months old can potentially 

predict infants who received a research clinical best estimate diagnosis of ASD at 24 months 

of age with a high accuracy (Emerson et al., 2017), demonstrating the potential clinical 

utility of FC in neurodevelopmental disorders.

Both prediction and early detection could benefit from multivariate analyses. Techniques 

such as pattern recognition, machine learning, and deep learning are powerful tools to 

integrate relevant features (e.g., multiple FC links, brain network properties) to potentially 

achieve better classification performance. A detailed review of the utilization of these 

approaches for disease diagnosis has been provided by Levman and Takahashi (Levman and 

Takahashi, 2015a, b). Below, we will focus on better feature extraction from the infant rs-

fMRI and provide comments on future works using multivariate analyses. First, effort should 

be made in developing approaches capable of achieving accurate brain functional 

abnormalities at the earliest stage, such as preclinical and even presymptomatic stages. 

Second, it is critically important to develop robust and reliable rs-fMRI analysis methods to 

mitigate imaging artifacts and noise. Third, additional resting-state FC metrics beyond the 

traditional metrics are needed to improve the sensitivity of early detection of subtle 

abnormalities. For example, the recently proposed “high-order FC (HOFC)” has been 

demonstrated capable of capturing higher-level (more complex) brain functional 

organization, which appears highly sensitive for early brain disease detection (Chen et al., 

2016a; Chen et al., 2017a; Chen et al., 2016b; Zhang et al., 2016; Zhang et al., 2017a; Zhang 

et al., 2017e) and early prognosis (Liu et al., 2016), see Figure 7 for different types of the 

HOFC metrics. Another promising resting-state metric is dFC, or “chronnectome” (Abrol et 
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al., 2016; Calhoun et al., 2014; Chen et al., 2017b; Zhu et al., 2016). Based on dFC, the 

flexibility of functional network affiliations (Li et al., 2015b; Liu and Duyn, 2013), the 

statuses of the brain functional networks and their dwelling time (Damaraju et al., 2014a), 

occurring frequency (Abrol et al., 2017), and transition probability (Allen et al., 2014) could 

be extracted and adopted as informative features for early detection. Finally, with more 

longitudinal FC becoming available, the development of 4D prediction methods that jointly 

consider the longitudinal information to achieve better classification performance are greatly 

needed (Meng et al., 2016; Rekik et al., 2017).

Genetic vs. environmental effects on brain functional network development

To the best of our knowledge, there is only one rs-fMRI study reporting results on genetic 

and environmental effects on brain functional networks during the first years of life (Gao et 

al., 2014). To disentangle the contributions from the two sources, Gao et al. (2014) used a 

large group of typically developing infants including singletons, dizygotic twins, and 

monozygotic twins and investigated their FC development during the first two years of life. 

Low individual variability in the FC at the primary functional systems whereas higher 

individual FC variability in higher-order functional regions was found at birth. Such a 

difference in individual FC variability persisted throughout the first two years of 

development. The relationship between genetic effect and inter-subject variability was found 

to be spatially and temporally complex. They further observed that genetic control was 

related to increased subject variability in some brain regions but such a relation was inverted 

in other brain regions or at a different age. Recently, a multi-site, multi-country collaboration 

project, namely ENIGMA Consortium11, has been carried out focusing on the genetic effect 

of brain networks in different scales (Thompson et al., 2016). This large-scale and high 

profile study is likely to further advance our understanding of how genes and environment 

jointly and/or individually shape early brain development. In future, more twin studies 

should be carried out to investigate such dynamic processes during the early development, in 

addition to the studies from childhood to adulthood.

Early brain functional development charts

Characterizing normative developmental trajectories of functional connectome in the early 

life using a large group of subjects with a careful sampling strategy is essential to detect 

early development abnormalities (Kessler et al., 2016). Before the availability of imaging-

based developmental charts, fetus head biparietal diameter (BPD) and infant’s head 

circumference charts have long served as pivotal developmental metrics. Recently, charting 

the FC networks has been proposed to identify early attention impairment in youth (Kessler 

et al., 2016). Using rs-fMRI data from more than 500 youths, Kessler et al. (2016) calculated 

a set of cross-subject co-varied components in the functional connectome. Subsequently, 

expressive scores on each co-varied component from each subject can be jointly used to 

form a normative growth curve. Based on the growth curves of different components, a 

“maturation deviation score” can be calculated, which has been showed to correlate with the 

subjects’ attention performance. In addition, their results suggested a pattern of “shallow 

maturation” for ADHD children, where their developmental trajectory is in parallel with that 

11http://enigma.ini.usc.edu
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of normal subjects but with lower completeness. Kaufmann et al. proposed a different 

approach to chart normal development using the individual distinctiveness of functional 

connectome. Specifically, they calculated the identification ability of a particular subject 

from a group of subjects with a similar age solely based on their functional connectome 

(Kaufmann et al., 2017). They found that healthy children’s functional connectome grew 

apart (with increasing difference in functional connectome among different children), 

especially for higher-level cognition-related functional systems (e.g., the DMN); they also 

discovered that the functional connectome in the children with different mental disorders 

(such as ADHD and depression) also grew more and more distinct. To date, there is no FC-

based brain maturity indexing or brain age prediction for infants, but a promising 

preliminary result of age prediction has shown the promising feasibility (Figure 2).

Functional gradients and the relation to the developmental order

Brain FC networks are organized in a hierarchical fashion (Margulies et al., 2016). In a 

recently proposed “gradient of connectivity” theory, two types of gradients from the 

organization of the brain functional connectome have been suggested: one spanning different 

sensory inputs (from V1, sensorimotor, and to A1), and the other following different 

functional information processing levels (from unimodal, heteromodal and to para-limbic/

limbic/DMN) (Margulies et al., 2016). This model indicates that the topographical 

organization of the brain cortex could facilitate efficient information processing, with 

unimodal inputs further processed at the heteromodal regions and then integrated at the 

DMN (Figure 8A–D). The above findings based on adult rs-fMRI could have intriguing 

indications on the studies of brain functional network development, since the maturing order 

of different brain functional networks seems also following such gradients, i.e., from 

posterior to anterior, from inferior to superior, from medial to the lateral areas, as well as 

from primary functional systems to the high-level cognition-related networks (Gao et al., 

2015a). Of all the primary brain functional networks, the visual area seems to develop earlier 

and mature faster (becoming topologically consistent with that observed in adults while 

sensorimotor networks continue to split into unilateral halves) (Doria et al., 2010). Could 

such “maturation orders” reflect the aforementioned FC gradients as described in this 

model? To answer this question, future brain functional development studies may consider 

this “functional gradient” method.

Dynamic FC, multilayer network analysis, and temporal network analysis

It is widely accepted that the dFC is not pure noise but reflecting nontrivial brain adaptation 

to the changing environment (Calhoun et al., 2014; Hutchison et al., 2013). While a few 

pioneering studies have investigated dFC in children (Chai et al., 2017), dFC studies in 

neonates and early infants remain scant. Yet, dFC may provide great insights into early brain 

functional development that could be not available if using static FC. In particular, young 

brains could be more plastic and flexible due to fewer myelinated axons and less structural 

connectivity constraints. For example, less matured connections or regions may be 

temporally unstable, while the weaker inter-network connections in the early ages may lead 

to less flexibility of brain regions in participating across multiple brain functional systems 

(connecting more within functional systems instead of between functional systems).
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One of the most widely used analysis approaches for dFC is sliding window correlation, 

which calculates FC for each overlapping or non-overlapping small temporal segments of rs-

fMRI. Various postprocessing methods can be used to quantify time-varying connectome. 

Among them, clustering and other data decomposition methods have been commonly used 

to identify brain “statuses”. Subsequently, occurrence frequency and dwelling time for each 

status, as well as the transition probabilities between any two statuses could be calculated 

(Calhoun et al., 2014). Alternatively, the link-wise variability of dFC time series can also be 

a flexibility metric (Chen et al., 2017b). To further investigate temporal associations among 

the dFC times series, dynamics-based HOFC (dHOFC) can be used (Chen et al., 2016a), see 

Prediction and Early Detection and Figure 7D. In dHOFC, the sliding-window-derived dFC 

time series between a pair of brain regions is further used to calculate the temporal 

correlation with another dFC time series between another pair of brain regions, thus 

characterizing the temporal associations of the FC dynamics, a higher-order, more complex 

functional association measurement (Chen et al., 2016a; Chen et al., 2017a; Liu et al., 2016). 

All of the above dFC-based metrics could potentially provide complementary information to 

the traditional static FC studies.

In addition to the aforementioned approaches, two advanced data analysis methods, 

multilayer network analysis, and temporal network analysis warrant further discussion.

The multilayer network analysis approach connects the nodes across different time windows 

forming a multilayer network where each layer represents a transient brain FC network. This 

is in great contrast to the traditional network analysis approaches, which mainly focus on 

single-layer networks. Mucha et al. (2010) proposed and outlined how the multilayer 

network analysis approach enables network-based modularity detection from a social 

network, where additional cross-layer edges were added to link different network layers, 

forming a supra-adjacency matrix (Figure 8I). Subsequently, a multilayer generalized 

Louvain (GenLouvain12) algorithm or other network analysis methods (Battiston et al., 

2017; De Domenico, 2017; Stanley et al., 2016) can be used to detect the network modules. 

The inter-layer edges serve as a constraint, making the network topology of each transient 

FC network more temporally consistent (Bassett et al., 2011), thus more suitable for dFC 

(small time scale) or early developmental (large time scale) studies. Specifically, the cross-

layer edges can be added to connect corresponding nodes between two neighboring network 

layers for dFC, different ages in longitudinal developmental studies, or across all layers 

(fully connected) for multi-subject analysis in cross-sectional static FC study to ensure inter-

subject consistency. Finally, the multilayers of networks can also be formed by calculating 

frequency-specific FC networks with different frequency bands (De Domenico, 2017) 

(Figure 8E–F), or by calculating connectivity networks from different imaging modalities 

for cross-modularity integration (Battiston et al., 2017) between the functional and structural 

connectivity networks. Temporal network analysis has been recently proposed to rigorously 

analyze dFC networks with network properties defined in a spatiotemporal way (Thompson 

et al., 2017; Thompson and Fransson, 2016) (Figure 8G, H), such as dynamic community 

(Bassett et al., 2013) (Figure 8J, K), temporal betweenness, closeness centrality, and 

12http://netwiki.amath.unc.edu/GenLouvain
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reachability. This method allows investigation of information flow along a short time period 

(Thompson et al., 2017).

Findings in developmental patterns and trajectories during the first five 

years of life

In this section, we will summarize the developmental patterns and trajectories in the first five 

years of life that have been widely reported. Since this area of research is still at its early 

“infancy,” interpretations of these results should consider the aforementioned limitations 

associated with rs-fMRI. These developmental patterns and trajectories are depicted in 

Figure 9.

1. The large-scale functional networks (RSNs) could have been largely formed 

(even though in the prototypes for some of them) after the third trimester (Doria 

et al., 2010; Jakab et al., 2014; Schopf et al., 2012; Seshamani et al., 2016). At 

birth, most of them can be identified, although the connection strengths may be 

weaker than that in adults, and the topologies may not be completely consistent 

with that observed in adults, especially for the DMN (Doria et al., 2010; 

Fransson et al., 2009; Fransson et al., 2007; Gao et al., 2015a; Gao et al., 2009).

2. Different functional systems have distinct developmental trajectories. The 

maturation trajectories could follow such orders: from the primary functional 

systems, the temporal and parietal association cortices (e.g., those mediate 

primary language and spatial attention), and then to the higher cognitive 

functional systems (e.g., social cognition and executive control) (Gao et al., 

2015a; Gao et al., 2015b; Lin et al., 2008; Liu et al., 2008; Ouyang et al., 2017). 

Spatially, the maturing patterns start from posterior to anterior regions, from 

inferior to superior regions, and from medial to lateral regions (Gao et al., 

2015a). Most higher-order association cortices and the projections from them to 

the subcortical areas could have protracted maturation processes (Zhang et al., 

2017b).

3. With the exception of homotopic FCs in the primary functional systems, long-

term FCs are generally weak and more vulnerable in neonatal brains, possibly 

due to unmyelinated white matter (Deoni et al., 2011; Keunen et al., 2017). 

Short-range FCs dominate where spatially proximal regions tend to be densely 

connected (Di Martino et al., 2014a). With development, gradual and 

myelination processes could lead to strengthened long-range FCs (Fair et al., 

2009; Power et al., 2010; Smyser et al., 2011; Vertes and Bullmore, 2015; Vogel 

et al., 2010; Zuo et al., 2017), leading to weaker spatial constraint (Zuo et al., 

2017). In contrast, pruning processes could selectively weaken some connections 

(mostly short-range FCs) (Collin and van den Heuvel, 2013; Hagmann et al., 

2010; Hoff et al., 2013; Vertes and Bullmore, 2015) (Figure 9B, D).

4. The modular structure is largely preserved throughout early brain development 

(Power et al., 2010; Vertes and Bullmore, 2015), but could have different spatial 

configurations at different ages. At birth, the modules likely involve anatomically 
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proximal regions, followed by limited (not extensive) reconfigurations of 

modular structures by rewiring during early infancy and eventually in toddlers 

(Di Martino et al., 2014a). As a result, functional hubs could also shift from 

primary regions to higher-level association regions (Fransson et al., 2011).

5. Intra- and inter-network FC reorganization could both increases during early 

brain development, but with a different pace or slope (Figure 9A) (Damaraju et 

al., 2014b). The brain becomes more functionally specified (Gao et al., 2015b) 

but also with a small number of strong inter-modular connections (Damaraju et 

al., 2014b) for functional integration (i.e., locally segregated and globally 

integrated, Figure 9C) (Cao et al., 2017b; Dosenbach et al., 2010; Menon, 2013).

6. Global efficiency of the large-scale whole-brain FC network could increase 

during the first years of life and maintains its level with only slightly increase 

from childhood to adulthood (Gao et al., 2011; Hagmann et al., 2010). The 

whole-brain FC network’s local efficiency could probably follow a similar trend 

(Figure 9C) (Cao et al., 2017b; Gao et al., 2011) since increasing functional 

segregation could be reflected by increasing local efficiency (Cohen and 

D’Esposito, 2016). Rewiring could make the brain functional network changing 

from one efficient scheme to another (more) efficient scheme, with small-

worldness guaranteed all the time (Power et al., 2010). It should be mentioned 

that network-level efficiency development for the structural connectivity 

networks could be different from FC networks (Cao et al., 2016; De Domenico et 

al., 2016), possibly with opposite findings (Tymofiyeva et al., 2014; Vertes and 

Bullmore, 2015).

7. The brain network topology exhibits local segregation with global integration 

consistent with the known small world topology immediately after birth (Gao et 

al., 2011), indicating an efficient brain at birth. At 1 year old, the brain functional 

topology becomes more region-based, without evidence of substantial, long-

distance connections whereas connectivity becomes more evenly distributed, 

with increased long-distance connections in year two (Zhang et al., 2017b).

Remaining issues

While we have extensively discussed many aspects of rs-fMRI in early brain development, 

many issues remain. First, early brain rs-fMRI processing pipelines are different in different 

studies, making it difficult to integrate of results from different studies. A unified, well 

accepted, end-to-end neonate/infant rs-fMRI analysis pipeline similar to the HCP pipeline is 

greatly needed. Second, age-specific 4D brain templates and atlases at every 3 months (even 

every 1 month for the first year of life) during the first years of life are the key to develop a 

pipeline dedicated to pediatric subjects. Third, considering the aforementioned limitations 

associated with rs-fMRI, test-retest reliability or reproducibility studies, particularly for 

early brain functional network development, are urgently needed (Zuo et al., 2012; Zuo et 

al., 2017). Fourth, previous infant rs-fMRI-based brain FC network studies have largely 

adopted parameters and settings from that used in adults, such as ROI definitions, module 

assignment, FC matrix binarization, and so on. As a result, biases may be introduced. Fifth, 
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how to combine longitudinal results from natural sleep to passive movie watching data in the 

same subjects but at different ages remains to be an active area of research. In particular, 

most of the studies with children younger than 2–3 years of age were typically done during 

natural sleep while studies with older children (> 3 years old) have been done during the 

awake state. Finally, the results based on pseudo-longitudinal data should be carefully 

interpreted, as the differences could come from other confounding factors, rather than 

development itself.
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Scope and synopsis

Early brain development in human beings is a fascinating yet largely unknown research 

field. Previous developmental and cognitive neuroscience studies mainly focused on the 

“maturing” process of children from school ages to mid-adulthood. Comparing to these 

studies, brain development during early infancy remains largely elusive, especially on 

how brain functional connectivity (FC) and functional networks emerge and develop at 

the first years of life. Many attempts have been made to fill this gap and probe the 

developmental processes of young brains by using functional magnetic resonance 

imaging (fMRI). Since it is unlikely that children will corporate to perform specific tasks, 

previous studies used either task-free paradigms, a.k.a. the “resting state,” or passive 

task-related paradigms. In this review, we summarized major infant developmental 

findings based on resting-state fMRI (rs-fMRI) by providing a comprehensive survey of 

early brain functional maturation (i.e., under 5 years old).

Despite great interests, rs-fMRI-based brain functional developmental studies in the first 

years of life are still in its infancy. With a thorough literature review in PubMed between 

2008 and 2017, less than 250 papers were found to document the rs-fMRI studies on the 

first years of life. Of which, studies specifically dedicated to the use of rs-fMRI for early 

brain development are even fewer. Dozens of review papers (mainly published in recent 

years) provide the trending of abstracting well-accepted models, forming reasonable 

hypotheses, and standardizing processing methods (see Review of Reviews in 

Supplementary Materials). However, considerable growth in the field of early brain 

development remains ahead of us. Recently, exciting news has been released on the 

ongoing big-data projects, including developing Human Connectome Project (dHCP) and 

Baby Connectome Project (BCP). These projects can significantly boost both 
methodological development and hypothesis generations. Therefore, this review paper 

focuses on the pressing issues and opportunities previously omitted, including 1) 
development of brain FC networks in the first five years of life, 2) the newly emerging rs-

fMRI analysis methods that have been used or can be useful for these studies, 3) large-

scale data-sharing projects, and 4) current issues and future trends. Importantly, we aimed 

to integrate the existing findings to the best of our knowledge, to form a big picture of the 

field of early brain development and to generate hypotheses for future studies. 

Particularly, we will emphasize an HCP-style data processing pipeline for infant rs-fMRI 

analyses. Results of recent advances in the brain functional “connectome” and “dynamic 

functional connectivity (dFC)” will be highlighted. Finally, it is one of our goals that a 

unified infant rs-fMRI pilot processing pipeline can be formulated through this review 

article.
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Figure 1. 
A big picture of rs-fMRI-based early brain developmental study in the context of temporal 

(horizontal axis) and spatial dimensions (vertical axis) with different scales.
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Figure 2. 
Influence of the age and scanning status on the whole-brain functional connectivity (FC). 

The result is from unpublished data, where longitudinal rs-fMRI images were obtained from 

subjects at the ages of 2 weeks, 3 months, 6 months, 9 months, 12 months, 18 months, 24 

months, 3 years, 4 years, 5 years and 6 years old, enrolled in the “Multi-visit Advanced 

Pediatric brain imaging study for characterizing structural and functional development 

(MAP Study)”. Whole-brain FC is calculated based on Pearson’s correlation between every 

pair of 268 brain regions (Shen et al., 2013). Rs-fMRI were obtained during natural sleep for 

the scans at 24 months old or earlier, and during passive movie watching for the scans at 3 
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years old or later. T-Distributed Stochastic Neighbor Embedding (t-SNE) was used to 

represent the distribution of the whole-brain FC patterns in a 2D plane, where each dot 

represents one subject of a certain age, and their distance in the 2D plane is proportional to 

the high-dimensional Euclidean distance between the 268 × 268 FC features. Different 

colors and dot sizes indicate different ages. Dark red indicates the FC patterns during passive 

movie watching, while others indicate the FC patterns during natural sleeping. Clear 

clustering pattern can be identified, indicating systematic differences between the functional 

connectome in different states and at different ages.
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Figure 3. 
The proposed full-automated infant rs-fMRI processing pipeline. The pipeline is 

recommended to process BCP rs-fMRI data, which uses an HCP-style rs-fMRI protocol with 

high spatial and temporal resolutions. There are three modules in the pipeline: minimal 

preprocessing (A), extensive preprocessing (B), and post-processing (C). During minimal 

preprocessing, the flow of spatial registration can be combined into a single deformation 

field and directly used to warp raw infant rs-fMRI data (D). DOF: degree of freedom; DMF: 

deformation field; SE: spin echo; AP/PA: phase-encoding direction from anterior to 

posterior and that with the opposite direction; MB: multiband; SB: single-band (traditional 

EPI); Ref-Img: single-band, single volume EPI data used as a reference during the spatial 

registration; BBR: boundary-based registration; ICA-FIX, FLIRT, and TOPUP are all the 

functions in FSL; Labeled Img: segmented anatomical image with each voxel labeled as 

grey matter, white matter, or cerebrospinal fluid. See main text for details.
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Figure 4. 
The functional connectivity (FC)-based parcellation of the brain regions and their 

developmental changes. (A) The functional parcellation result in the thalamus (different 

colors indicate different thalamocortical FC). Adapted from Alcauter et al. Journal of 

Neuroscience 2014 (Alcauter et al., 2014), modified with permission. (B) The functional 

parcellation result in the insular lobe. Adapted from Alcauter et al. Cerebral Cortex 2015 

(Alcauter et al., 2015a), modified with permission. (C) The functional parcellation results in 

the medial prefrontal cortex based on independent component analysis, with different colors 

indicating different sub-regions (three of them are respectively connected with the CEN, SN, 

and DMN). Adapted from Zhang et al. Connectomics in NeuroImaging (CNI) 2017 (Zhang 

et al., 2017c), modified with permission. SM: sensorimotor network; SN: salience network; 

MV: medial visual network; DMN: default mode network; CEN: central executive network; 

m: month.
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Figure 5. 
Raw resting-state fMRI data from one exemplary subject aged 18 days (at the neonate 

stage). Different phase encoding scans (AP and PA) are acquired for future distortion 

correction.
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Figure 6. 
Multimodal imaging data from BCP. (A) Raw T1-weighted, T2-weighted and rs-fMRI data 

(phase encoding direction: AP) from the same neonate with a chronological age of 18 days 

as Figure 5. (B) Functional connectivity results from another infant with a chronological age 

of 190 days (~ 6 months old). Both seed-based correlation (with the seeds put at the left 

primary motor, left primary visual and posterior cingulate cortex for sensorimotor, visual 

and the default mode networks, FC maps threshold: r > 0.4) and independent component 

analysis (ICA, threshold: z > 2) results were shown. Red areas indicate the results from the 

multiband rs-fMRI data with AP phase encoding direction. Green areas represent the results 

from the multiband rs-fMRI data with PA phase encoding direction. Yellow areas show their 

overlap. Of note, ICA results in two sensorimotor networks in both hemispheres in separate 

components and they were merged together to form the complete sensorimotor network.
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Figure 7. 
The diagram of traditional FC or low-order FC (LOFC, A), and different metrics of high-

order FC (HOFC, B-D). Topographical profile-based HOFC (tHOFC) is illustrated in (B) 

and its variant, associated HOFC (aHOFC), is illustrated in (C). For simplicity, only a few 

regions are used to demonstrate the LOFC and the HOFCs. The LOFC profiles of each 

region in (B) involve five brain regions. Different line width indicates different connectivity 

strength. The black lines indicate LOFC, the blue curves represent tHOFC, and the red curve 

depicts aHOFC. The calculation of dynamic FC-based HOFC (dHOFC) is illustrated in (D). 

With a further correlation of dynamic FC time series, dHOFC geometrically increases the 

amount of information compared to the LOFC network. An n×n LOFC matrix generates a 

larger n×(n−1) × n×(n−1) dLOFC matrix. After calculating the dynamic FC for two pairs of 

brain regions (i and l, and j and k, respectively), two dynamic FC time series are further 

correlated to produce one dHOFC value among the four regions. The figure is adopted from 

Zhang et al. 2017 Front Neurosci (Zhang et al., 2017a).
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Figure 8. 
State-of-the-art analysis methods that are promising in future brain functional development 

study. (A-D) Functional gradients that resemble the developmental order, adapted from 

Margulies et al. PNAS 2016 (Margulies et al., 2016), modified with permission. (E-F) The 

multi-layer network constructed based on multiple frequency-specific networks, adapted 

from De Domenico et al. Front Neurosci 2016 (De Domenico et al., 2016). (G-H) The 

typical sliding window-based dynamic FC time series and the temporal network analysis, 

adapted from Thompson et al. Network Neuroscience 2017 (Thompson et al., 2017). (I) 

Different across-layer link types: full connected and neighboring connection, adapted from 

Mucha et al. Science 2010 (Mucha et al., 2010). (J-K) Two different network topological 

organizations, adapted from Bassett et al. PLoS Comput Biol (Bassett et al., 2013), modified 

with permission.
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Figure 9. 
Consistently suggested functional developmental patterns or trajectories for various FC and 

FC network (FCN) metrics from birth to 5 years old (see main text for more details). Subplot 

(A) is for developmental trajectories of intra- and inter-network FC, with that of FC network 

modularity. Subplot (B) depicts short- and long-range FC between primary and higher-level 

association regions. Subplot (C) is for FCN properties, including local and global efficiency, 

and both of the developmental trajectories fall in the small-world zone. Subplot (D) depicts 

the trajectories of inter- and intra-hemispheric FC. For inter-hemispheric FC, both FC 

between homotopic regions and between non-homotopic regions are plotted.
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