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Abstract

Ancient DNA (aDNA) studies often rely on standard methods of mutation calling, optimized for
high-quality contemporary DNA but not for excessive contamination, time- or environment-
related damage of aDNA. In the absence of validated datasets and despite showing extreme sen-
sitivity to aDNA quality, these methods have been used in many published studies, sometimes
with additions of arbitrary filters or modifications, designed to overcome aDNA degradation and
contamination problems. The general lack of best practices for aDNA mutation calling may lead
to inaccurate results. To address these problems, we present ARIADNA (ARtificial Intelligence for
Ancient DNA), a novel approach based on machine learning techniques, using specific aDNA
characteristics as features to yield improved mutation calls. In our comparisons of variant callers
across several ancient genomes, ARIADNA consistently detected higher-quality genome variants
with fast runtimes, while reducing the false positive rate compared with other approaches.
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1. Introduction ancient samples, although also leading to potentially compounding
3.412,15 Accuracy in

Prior to the development of next-generation sequencing (NGS) meth- effects on coverage, quality, and contamination.

ods for aDNA sequencing, comparative analysis relied on the physical
analysis of remains. The combination of increased quality from NGS
technology as well as new methodology for reliable extraction and li-
brary preparation of ancient DNA (aDNA) samples has led to an in-
flux of genomic studies of extinct species.' Early genomic studies
adopted mitochondrial genome sequence analysis representing a leap
forward in evolutionary research. Until now, many such aDNA stud-
ies have been mostly limited to mitochondrial and small genome
regions,” ™! given the problems with extraction of usable DNA in suf-

3,5,12—

ficient quantity. 4 Recent advances have enabled amplifying

enough nuclear DNA to allow for complete genome sequencing of

these studies is especially important for comparative and evolutionary
analysis against living species."®'%'2 Experimental and computa-
tional methods upstream of mutation calling were developed attempt-
ing to mitigate complications of aDNA sequencing including
contamination from microbes and human handling, fragmentation,
depurination, and deamination,>!>~1%:19-2%

Such methods often rely on detecting degradation of aDNA due
to extensive exposure to the environment and the physical handling
of samples over time,'****? which is used to differentiate between
sample and noise.**"**2° Filtering out contamination of contempo-

rary DNA from aDNA samples uses short read lengths, as aDNA is
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often highly fractured; thus long read lengths are comparatively rare
and likely a contemporary contaminant.”'321:2%27 QOther features
can be used for reducing error in aDNA studies, such as substitutions
arising from depurination events frequently occurring before strand
breaks,>* or deamination events often found at the ends of frag-
ments.>*** Compensation for these nucleotide change events is fre-
quently made by masking such substitutions if they occur towards
the end of reads.>'®

Although these methods have been shown to decrease the bias caused
by aDNA damage and contamination,>*?" there is yet to be a consensus
method to address the issue of mutation calling. Typical approaches are
often ad hoc extensions using existing algorithms, such as GATK.*
However, there is little similarity among these extensions in the filtering
of read depth, quality, masking locations, or mapping characteris-
tics.»>1¢71831 Eor example, recent publications on the sequencing of var-
ious woolly mammoth and ancient human whole genomes have all
utilized differing methods in the quality control of sequencing reads de-
spite working with similar datasets.>’ Additionally, a study in
Neandertal genomes has demonstrated that the use of GATK on even
highly processed sequence data potentially yields inaccurate results.*

Due to the variation of quality and quantity of usable DNA in an-
cient samples and divergent methods to extract the maximum
amount of information, there can be large discrepancies in aDNA

findings and interpretations,>!%16718:31

Many of the currently
employed variant calling algorithms are utilized with limited valida-
tion of results or proof of efficacy due to the constraints of aDNA
sample availability.

Here, we introduce ARIADNA (ARtificial Intelligence for Ancient
DNA), a novel approach for detecting single-nucleotide variants
(SNVs) in aDNA samples. Given the lack of validated ground truth
datasets for aDNA, it uses common and unique variants in multiple
woolly mammoth genomes to train a predictive machine learning
(ML) model. ARIADNA employs our fast GROM genome scanning
engine®> to find all potential SNVs (PSNVs) found as deviations be-
tween sample and reference genomes and then utilizes a boosted re-
gression tree algorithm for training and classification of potential
mutation sites. The unique features of the corresponding sites are used
by our algorithm to determine the difference between bona fide muta-
tions in aDNA and noise due to aDNA degradation or contamination.
We compared ARIADNA results on (i) woolly mammoth genomes
with both the most commonly employed mutation caller, GATK, and
a recently developed Bayesian model, AntCaller,®* (ii) the Altai
Neandertal genome with GATK and AntCaller, as well as with SNV
calls from two studies,** and (iii) a simulated aDNA genome. Our
comparisons demonstrate that ARIADNA provides the most accurate
and comprehensive mutation call sets with stable nucleotide substitu-
tion frequencies and high call quality in these ancient genomes.

2. Materials and methods

The backbone of our method consists of a ML algorithm tailored for
aDNA mutation calling by utilizing unique features found in aDNA
samples. We implement the use of boosted regression tree models®’
with the available python library, scikit learn,>® building a succession
of additive decision trees to best classify known data (training set).
The algorithm assigns thresholds for feature values used within the
trees from given data of true positive (TP) and false positive (FP) calls
in the training set. Through a series of these trees, prediction devi-
ance from known truth is continually reduced. Our feature set is gen-
erated using a modification of our comprehensive mutation caller

GROM?’ to act as a genome scanner and output feature information
at potential mutation locations. These features include common
measures such as read depth, SNV count, read and base quality as
well as features unique to aDNA, such as distance from read end,
C—T substitutions, and neighbouring mutation rates (Table 1).
Once this series of trees is built from the training data, a model is
constructed and classification of further data (known, for testing, or
unknown, for implementation) can take place (Fig. 1). A hold back
set of known mutations is used to test performance. The known val-
ues of the holdout set are not used in any way during training.

We tested our method on four woolly mammoth samples M4, M25,
Wrangel Island, and Oimyakon.'®'” These samples originated from two
different studies, with the M4 and M25 samples being suspected of
experiencing high levels of problems associated with aDNA sequenc-
ing.*! WGS fastq files for woolly mammoths M4 and M25 were down-
loaded from the Sequence Read Archive (SRA), http:/swww.ncbi.nlm.
nih.gov/sra (project accession number: PRJNA281811). WGS fastq files
for the Wrangel and Oimyakon woolly mammoths were downloaded
from the European Nucleotide Archive (ENA), http://www.ebi.ac.uk/ena
(accession number: ERP008929). WGS fastq files were mapped to the
African Elephant reference genome loxAfr3, downloaded from UCSC
(https://genome.ucsc.edu,  http://hgdownload.soe.ucsc.edu/goldenPath/
loxAfr3/bigZips/), using BWA MEM, version 0.7.4, with default param-
eters. Duplicates were removed using SAMtools,”” version 0.1.19.
ARIADNA, GATK, and AntCaller were run on the resulting alignment
files using default parameters. We limited analysis to supercontigs/scaf-
folds >1,000,000 bases. PSNVs were detected using GROM, custom-
ized to include output of additional features from Table 1.

Simulated aDNA was generated using Gargammel.*® Alignment
data from scaffold_100 of the elephant Parvathy'® against the African
Elephant reference genome was used to guide creation of the simulated
aDNA sample. Variant sites to be used as a known validation were
reported using SAMtools mpileup,
Gargammel, and required a minimum variant allele frequency of
20%. Allele frequencies up to 70% were considered heterozygous and
those greater than 70% homozygous. Six independent aDNA read

before modification by

simulations between 5x and 30x read coverage were constructed us-
ing Gargammel. The simulated aDNA reads were then aligned to the
African Elephant reference genome loxAfr3 using BWA MEM as de-
scribed above. ARIADNA, GATK, and AntCaller were run using de-
fault parameters. Comparison between the SAMtools output (pre-
simulation) and the various caller outputs (post-aDNA simulation)
were used to calculate the False Discovery Rate (FDR).

Additional testing was performed on the Altai Neandertal chro-
mosome 1, using BAM files hosted at Max Planck Institute for
Evolutionary Anthropology (http://cdna.eva.mpg.de/Neandertal/al
tai/). Calls and feature information were produced by GROM. The
VCF files produced by GATK and snpAD from the respective publi-
cations'*?
the hosted Neandertal files at Max Planck Institute for Evolutionary
Anthropology (for the 2014 dataset: http://cdna.eva.mpg.de/
Neandertal/altai/AltaiNeandertal/VCF/, for the 2017 dataset: http://
cdna.eva.mpg.de/Neandertal/Vindija/VCF/) to better observe muta-
tion rates and nucleotide change frequencies. The GATK output was
filtered, removing all listed “Low quality” calls from the vcf file be-

were used for comparison. These were downloaded from

fore any comparisons were made. Further comparisons were made
from 20 random genomes of the 1,000 Genomes Project;>” 10 indi-
viduals from the European population group, and 10 individuals
from the East Asian population group. These two groups are be-
lieved to be the contemporary populations that are most related to
the Neandertals. Here mutation information was provided through
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Classification of training data, true
: positive or false positive, using the
four available mammoth genomes.

Construction of decision tree based
on feature profiles of true positive

: and false positive mutations from the
| two mammoths used in training.

= : Feature collection of potential
= - ~ mutations for testing (pictured) or
' implementation.

| I_|_I Classification of potential mutations.
Noise

Mutation Event Noise

Figure 1. The design of the ML method for training and implementation.

Table 1. Features used in the ML classification algorithm

Mutation probability A count (low mapq) A prior nucleotide SNV base quality (high mapq)

Read depth (high mapq) C count (low mapq) T PRIOR NUCLEOTIDE SNV base quality (high and low mapq)
Read depth (low mapq) G count (low mapq) C prior nucleotide SNV mapping quality (high mapq)
Unmapped (forward) T count (low mapq) G prior nucleotide SNV mapping quality (high and low mapq)
Unmapped (reverse) A reference A following nucleotide SNV base quality read count (high mapq)
Soft-clipping read depth T reference T following nucleotide SNV mapping quality read count (high mapq)
A count C reference C following nucleotide SNV read count (high and low mapq)

C count G reference G following nucleotide SNV position in read

G count A SNV A and soft-clipping SNV forward strand

T count T SNV C and soft-clipping

Repeat region C SNV G and soft-clipping

Nearby SNV count G SNV T and soft-clipping

the 1,000 Genomes Project VCF (ftp:/ftp.1000genomes.ebi.ac.uk/ database (http://ogee.medgenius.info/browse/). Only genes desig-
voll/ftp/release/20130502/). nated as “essential” were used in the analysis. Variants found in

To identify variants affecting essential genes, a list of essential hu- these genes were uploaded to the Ensembl Variant Effect Predictor
man genes was downloaded from the Online GEne Essentiality (https://www.ensembl.org/vep) to categorize impact. The inbred
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region of the Neandertal genome analysed (chromosome 21:
17081807-35881807) was selected according to Priifer et al.>>

Given the lack of validated aDNA datasets, we used two simplify-
ing assumptions for the development of our training and testing sets.
First, we considered PSNVs shared between all woolly mammoth
genomes to be TP locations (we did not take zygosity into account
when designing our datasets). Conversely, potential mutation loca-
tions that only occurred in a single individual were deemed FP. We
reasoned that these two sets will contain large numbers of primarily
TP and FP, respectively, sufficient to train an effective classifier. The
shared PSNVs that occurred in all woolly mammoth samples served
as validation that the mutation did not occur as a result of contami-
nation, degradation, or sequencing artefact, as opposed to unique
PSNVs. Additionally, the use of woolly mammoth training samples
for this study (as compared with Neandertal or ancient human) re-
duced the risk of misrepresented calls due to misalignment or con-
tamination by closely related human samples when analysing the
Altai Neandertal genome. >

3. Results and discussion

3.1 Mammoth genomes

We used GROM to scan the mammoth genomes for any evidence of
difference with the reference genome. This yielded an average of one
PSNV per 140 bp, i.e. between 18 million and 23 million locations
per genome. Of these, 15 million PSNVs shared some evidence in all
woolly mammoth genomes, while 6.6 million sites were unique to
single woolly mammoth genomes. In the absence of validated SNV
datasets, we used shared PSNVs as TPs and unique PSNVs as FPs
(the remaining PSNVs were shared between 2 or 3 mammoths and
not used for training). Although it is certain that some true mutations
were picked up in the FP set, we reasoned that the effects of this mis-
classification of events would be diminished due to the high
frequency of real FPs among unique PSNVs. Additionally, the valida-
tion of TPs across four genomes should alleviate problems with mis-
classification during application of the trained model. Mutation
events shared between either two or three of the woolly mammoth
samples were ignored in ARIADNA model training to eliminate
excessive uncertainty.

We utilized two woolly mammoth genomes from separate studies
for the purpose of training our ML model, a specimen from Wrangel
Island and an M4 sample (a noisy and potentially contaminated can-
didate). One million shared and one million unique PSNVs from
each of the two woolly mammoths in our training set were selected
at random, resulting in four million training sites total. For the test
set we used the two additional woolly mammoths from each study,
Oimyakon and M25, and examined the results from the largest con-
tig (contig_0). The data from these two genomes are not used in any
way as part of the training set in order to avoid over-fitting or learn-
ing the unique characteristics of all available SNVs. In contig_0, the
Oimyakon and M25 samples contained 799,849 and 960,816
PSNVs, respectively. Our algorithm utilized a feature set (Fig. 1)
from the GROM genome scanner and the boosted regression tree
ML module implemented using scikit learn.® This gave our algo-
rithm 435 different features to utilize (Table 1). The parameters of the
boosted regression trees algorithm in scikit learn were set to 200
trees in the construction of the classifier, and a learning rate of 0.01.

ARIADNA identified 607,354 and 599,847 mutations in contig_0
of the Oimyakon and M25 woolly mammoth samples, respectively.
Of these, 569,556 (Oimyakon) and 587,621 (M25) mutation sites

are shared between all four woolly mammoths. Additional 32,050
(Oimyakon) and 87,130 (M25) mutation sites are shared with at
least one other woolly mammoth. Only a small number of variants
identified by ARIADNA in either woolly mammoth sample are
unique, 5,748 (Oimyakon) and 12,226 (M25), making up 1.0%
(Oimyakon) and 2.0% (M25) of all mutation calls.

To compare our results with other methods, we also employed the

commonly used GATK HaplotypeCaller®°

and the more recently de-
veloped AntCaller® on all available woolly mammoth genomes.
GATK made more calls than ARIADNA (as we anticipated), while
AntCaller made the fewest number of calls, with both GATK and
AntCaller having the high proportion of low-support calls (Figs 2
and 3, Tables 2 and 3). In the Oimyakon sample GATK made
825,955 calls, a 36% increase over our method and AntCaller made
497,718 calls, an 18% decrease compared with ARIADNA. In the
M25 sample, 1,214,873 calls were made by GATK, more than twice
as many as ARIADNA, while AntCaller made the fewest number of
calls, 432,188 (Table 3). However, the most drastic increase is in the
number of calls made by GATK that had no evidence of a variant in
any other woolly mammoth. For Oimyakon this was 47,663 muta-
tions and 280,049 mutations for M25 (Fig. 2C). This comprised
5.8% and 23.1% of the calls GATK made in their respective
genomes (Fig. 2A), a striking discrepancy, suggesting that GATK
over-predicted mutations at a very high rate in ancient genomes, es-
pecially in datasets with substantial noise. Such over-prediction by
GATK has also been noted in a recent study on Neandertals by
Priifer et al.,>* despite the comparatively high quality of NGS data in
the Neandertal. A similar behaviour was seen in AntCaller, where
only 65,004, or 13% of the calls in Oimyakon were unique, but in
M25, 102,820, 23.7% of the calls made were unique.

Another indication of over-prediction can be observed in the large
difference in the counts of nucleotide change type between
ARIADNA and GATK for the two mammoth genomes. ARIADNA
call sets were robust; we observed very little change in counts or pro-
portion of nucleotide substitution types in either Oimyakon or M25
mammoths (Fig. 2B and D). Conversely, there were large discrepan-
cies in the GATK predictions (>2.5-fold) in such counts between the
woolly mammoth genomes (Fig. 2D).

Further, we found that in the Oimyakon samples, nearly 99% of
the mutations identified using ARIADNA were shared in at least one
of the woolly mammoth samples, compared with 94% called by
GATK and 87% by AntCaller. This was even more starkly con-
trasted in the noisier M25 dataset, where 98% of variants
ARIADNA detected were common in all mammoths, unlike 77% for
GATK and 76 % for AntCaller. More surprisingly, in this noisy data-
set the use of GATK resulted in 23% of total calls being unique to
M25. When analysed with GATK and AntCaller, there was a large
increase in rate for unique calls between Oimyakon and M235; from
less than 6% to 23% using GATK and from 13% to 23% using
AntCaller (Fig. 2A). The difference in the rate of unique calls be-
tween Oimyakon and M2S5 using ARIADNA methods was only
1.1% (Fig. 2A). Such robustness in predicted mutation rate strongly
suggests that ARIADNA likely produced a more reliable call set in
aDNA than that of either GATK or AntCaller, with the latter two
producing the highest and the lowest variant counts in the noisy
M25 (Tables 2 and 3).

Finally, following an approach used to establish the high noise
levels in the mammoth NGS data,>” we tested the quality of calls pro-
duced by GATK, AntCaller, and ARIADNA by comparing the share
of reads supporting called SNVs in 20,000 randomly sampled calls
of Oimyakon and M25 samples. In both cases GATK and AntCaller
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Figure 2. Performance of ARIADNA, GATK, and AntCaller on the woolly mammoth genomes. (A) Proportion of shared (with at least one other sample) and
unique (sample-specific) calls among all calls are plotted for ARIADNA (solid), GATK (check pattern), and AntCaller (diagonal pattern) on contig_0 of the woolly
mammoth genomes, with total numbers of shared and unique calls plotted in (C). Spectra of nucleotide changes shown as proportions (B) and total numbers
(D) are plotted for ARIADNA (solid), GATK (check pattern), and AntCaller (diagonal pattern) on contig_0 of the woolly mammoth genomes. Oimyakon sample
(three leftmost bars on each x-axis position) is represented in blue and M25 (three rightmost bars on each x-axis position) are in red.

produced more calls with biased heterozygous read support and
from lower coverage regions than ARIADNA (Fig. 3). This difference
was noticeable in the Oimyakon sample (Fig. 3A, C and E), but it
was quite substantial in the noisy M25 sample, where ARITADNA
SNVs showed much higher read support versus those of GATK or
AntCaller (Fig. 3B, D and F). We found that in the M25 mammoth,
nearly 22% and 12% of the calls made by GATK and AntCaller, re-
spectively, were of lower quality, i.e. had either <30% of reads sup-
porting the call or originated from regions covered by <1/3 of the
median number of reads (Table 3). In contrast, ARIADNA was able
to filter out many heterozygous SNVs with biased read support in
noisy aDNA data.

We also tested all three algorithms on six simulated datasets
(changing read coverage from 5x to 30x) generated from the ge-
nome data of the closest relative of mammoths, an Asian elephant'®
using Gargammel.>® Over-prediction by both GATK and AntCaller
was observed in simulated datasets across all generated coverages
(Supplementary Fig. S1). The false discovery rate (FDR) of both
GATK and AntCaller increased dramatically with decreasing read
coverage, reaching or exceeding half of the total predictions at 5x
coverage. The FDR of ARIADNA remained consistently low (some
500-fold lower than for the other tools, the highest being 0.001 for
5x coverage). Thus, ARIADNA outperforms both GATK and
AntCaller not only in empirical datasets but also in simulated ones.

3.2 Neandertal genome

We then tested if our model could be applied to other genomes. We
used the same ML decision tree that was constructed with the woolly
mammoth training set to analyse the Altai Neandertal. As a first
benchmark, we used GATK calls on Altai Neandertal. As a second

benchmark, we used the call set produced on that genome by Priifer
et al. using snpAD.** All three methods utilized the identical bam
files produced by Priifer et al. We then compared call sets of GATK,
snpAD, and ARIADNA to the SNVs in two 1,000 Genomes Project
populations (European and East Asian).

Compared with these benchmarks of 379,115 GATK calls and
216,469 snpAD calls, ARTADNA made 272,990 calls, much closer
to the number of mutations found in the two modern populations,
279,007 (European) and 283,776 (East Asian). This observation for
all nucleotide changes also held true for each nucleotide change type,
where ARIADNA consistently produced call sets that were most sim-
ilar to the European and East Asian populations (Fig. 4).

Our results are consistent with the earlier observations®” that
GATK, being sensitive to aDNA noise and degradation, tends to
over-predict the aDNA mutations, producing more variants than any
other methodology. On the other hand, the approach utilizing
snpAD?? seems to overcompensate in stringency and therefore to
under-predict SNVs, reducing the amount of variation to less than
what is otherwise found in the modern human population. In con-
trast, ARTADNA reported nucleotide substitutions with almost the
same relative frequencies as other callers (Fig. 4A) but with absolute
numbers being much closer to the modern human variation
(Fig. 4B).

GATK made the greatest number of Neandertal SNV calls not
made in any of the other algorithms tested here, 77,902, far ahead of
snpAD, 3,374, or ARIADNA, 1,810. This was an expected result
due to the reports of GATK being excessively sensitive, including
noise-driven calls in its predictions.>? Neither ARIADNA nor snpAD
made any common calls that were not identified by GATK. Similar
to the behaviour in the woolly mammoth datasets, GATK had the
highest proportion of calls made with lower coverage and lower read
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Figure 3. Improvements in calling woolly mammoth variants with ARIADNA. A total of 20,000 randomly sampled calls from the Oimyakon (A, C, E) and M25 (B,
D, F) mammoth genomes, binned by read depth (x-axis) and by share of supporting reads (SSR, y-axis), are shown for AntCaller (A, B), GATK (C, D), and
ARIADNA (E, F). The size of each coloured point corresponds to the count of calls that were sampled with the given read depth/SSR combination. SSR y-axis
ranges are coloured as blue [0.9-1.0], green [0.6-0.8], yellow [0.3-0.5], and red [0-0.2], to provide visual representation of large proportions of SNVs with low
read evidence for SNV detected by AntCaller (A, B) and GATK (C, D), and much stronger read support for ARIADNA calls (E, F).

Table 2. Variant detection rate in basepairs per SNV (sum of
scaffold lengths divided by the total number of SNVs called) by
different callers in two woolly mammoth genomes

GATK AntCaller ARIADNA
Oimyakon woolly mammoth 157 157 214
M25 woolly mammoth 107 300 216

Table 3. High and low evidence calls made by different algorithms

support, nearly 12% (Table 3), further indicating its sensitivity to
aDNA noise, degradation, or contamination. Surprisingly, despite
the least number of total calls made by snpAD, 4.64% of them also
had low read coverage and low numbers of supporting reads, while
ARIADNA produced the least number of such low-quality calls,
0.75% (Table 3).

To further compare the quality of calls made by ARIADNA,
snpAD, and GATK, we analysed calls that were unique for each

M25 woolly mammoth All calls High evidence calls Low evidence calls % of low evidence calls
GATK 1,214,873 951,754 263,119 21.66
AntCaller 432,188 385,310 46,878 10.85
ARIADNA 599,847 596,199 3,648 0.61

Altai Neandertal

snpAD 216,469 206,433 10,036 4.64

GATK 379,115 334,491 44,624 11.77
ARIADNA 272,990 270,943 2,047 0.75

Low-evidence calls are defined as having either <30% of reads supporting each call or originating from regions with <1/3 of the median read coverage.
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Figure 4. Performance of GATK, snpAD, and ARIADNA on the Altai Neandertal genome (chromosome 1). Spectra of nucleotide changes in variant call sets are
plotted for GATK (dark blue, Altai Neandertal analysis of 2014, ref. 1), snpAD (light blue, Altai Neandertal analysis of 2017, ref. 32), European individuals (dark
grey, EUR), East Asian individuals (light grey, EAS) and ARIADNA (red). (A) Share and (B) total number of specific substitution calls.

algorithm in the Altai Neandertal genome in essential human
genes*! and catalogued potential effects using VEP** (Table 4,
shared calls not shown). GATK made by far the most unique calls in
such genes, including the greatest number of missense mutations,
stop loss, and stop gains. ARIADNA made the lowest number of
unique calls in essential genes, followed by snpAD, and neither of the
two methods produced unique missense, stop loss, or stop gain
variants.

And finally, we evaluated the performance of snpAD, AntCaller,
and ARTADNA in a large inbred region of chromosome 21 of the
Altai Neandertal, where GATK has been shown to make an excessive
number of heterozygous (and thus likely erroneous) calls, compared
with snpAD.>* Showing further improvement in call quality
(Table 5), ARIADNA made fewer heterozygous calls than snpAD or
AntCaller inside of the inbred region, both in total number and pro-
portionally, despite making a greater number of calls than either
snpAD or AntCaller overall. Additionally, outside of this inbred re-
gion, ARTIADNA identified a greater number of heterozygous calls,
both in total count and proportionally, than snpAD, and close to
that of AntCaller.

Taken together, these comparisons demonstrate that ARIADNA
trained on woolly mammoth genomes generated higher-quality SNV
call sets in the Neandertal genome, when judged using both technical
(read support and read depth) and biological criteria (fewest calls
made in essential human genes and fewest heterozygous calls in in-
bred regions, with overall variation closest to other human samples).
The ARIADNA model is intended for re-use and is available from
Open Science Framework, https://osf.io/5bph4/.

A combination of GROM and ARIADNA is also much faster
than GATK and AntCaller (snpAD has not been released and was
not available for testing). In a direct comparison,*> GROM was 12—
25 times faster than GATK on a single thread and more than 70
times faster on 24 threads. In our tests, AntCaller was 10-20 times
slower than GROM on a single thread, somewhat faster than
GATK, as in earlier AntCaller comparisons with GATK.>* Using the
output from GROM, ARIADNA classifier run took between 5.5 min
(Oimyakon genome) and 14.5 min (Neandertal genome) on a single
thread, a significant speedup compared with >60h of GATK run-
time (all timings were performed on an Intel Xeon E5-2690 v3 pro-
cessor, 2.60 GHz, with 24 threads and 128 GB RAM). A one-time
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Table 4. VEP-reported effects of algorithm-specific variants in
essential genes of Altai Neandertal

Algorithm-specific calls

ARIADNA  snpAD  GATK
Stop lost 0 0 3
Missense variant 0 0 101
Stop gained 0 0 8
Upstream gene variant 2 7 1,056
Non-coding transcript variant 2 11 1,091
Splice acceptor variant 0 0 3
3 prime UTR variant 0 0 171
Incomplete terminal codon variant 0 0 1
Synonymous variant 0 0 48
Non-coding transcript exon variant 1 0 205
Regulatory region variant 3 1 273
S prime UTR variant 1 0 22
Splice region variant 0 0 17
Coding sequence variant 0 0 1
Stop retained variant 0 0 1
Intron variant 8 17 2,772
Downstream gene variant 0 7 1,106
Splice donor variant 0 0 1
NMD transcript variant 7 9 1,063
TF binding site variant 0 0 6

Calls made by all three algorithms are not included in the counts.

Table 5. Homozygous and heterozygous calls made within and
outside of an inbred region of chromosome 21 of the Altai
Neandertal

Calls by algorithm

ARIADNA snpAD AntCaller

Total calls on chromosome 21 59,545 41,955 53,978
calls outside of inbred region

heterozygous 6,550 3,489 6,701
homozygous 23,071 16,618 19,581
Calls inside of inbred region

Heterozygous 424 701 2,215
Homozygous 29,500 21,147 25,481

ARIADNA training run took 4 h to generate a model, thus it can be
easily scaled as appropriate validated datasets become available.

4. Conclusion

ARIADNA utilizes a comprehensive feature set, incorporating sev-
eral features that are often used in ad hoc methods (Table 1). This
includes identifying the position of the SNV within reads, base qual-
ity and mapping quality, nucleotide mismatch counts, and nucleotide
change. We have also included novel features, such as accounting for
nearby SNVs, adjacent nucleotides, and repeat regions, to better de-
fine difficult mapping regions or potential mutation hot-spots. The
incorporation of several features as well as a decision tree ML model
allows a dynamic level of filtering to compensate for changing NGS
quality and read availability that is difficult to do with more static
algorithms.

In summary, ARIADNA yielded consistent proportions of shared
and unique mutations in the two woolly mammoth datasets com-
pared with GATK and AntCaller. The frequency of nucleotide substi-
tutions was also more stable using ARIADNA on the two woolly
mammoth genomes than that of either GATK or AntCaller. And
ARIADNA showed some 500-fold lower FDR compared with the
other two algorithms when tested on six simulated aDNA datasets
based on the genome of Asian elephant, the close relative of woolly
mammoth.

Utilizing modern human variation from the 1,000 Genomes Project
to compare results in the Altai Neandertal, we also found that the
SNV calls made by ARIADNA were more consistent and potentially
more relevant than calls of either GATK or snpAD. In the essential
genes, ARIADNA made fewer Neandertal variant calls than either
snpAD or GATK, and within an inbred region of the Altai Neandertal,
ARIADNA made the lowest number of heterozygous calls.

This testing suggests that the approach we used for ARIADNA is
superior for variant detection in ancient genome samples and has the
capability to build models that can be utilized with very fast runtimes
for improved variant finding across a range of species and read
coverages.

5. Data availability

Whole genome sequencing fasta files for the woolly mammoths M4
and M25 and for the elephant Parvathy are available from the
Sequence Read Archive (SRA), http:/www.ncbi.nlm.nih.gov/sra
(project accession number: PRINA281811).

Whole genome sequencing fasta files for the Wrangel and
Oimyakon woolly mammoths are available from the European
Nucleotide Archive (ENA), http://www.ebi.ac.uk/ena (accession
number: ERP008929).

Whole genome sequencing fasta files were mapped to the African
reference genome loxAfr3, is available from UCSC (https://genome.
ucsc.edu, http://hgdownload.soe.ucsc.edu/goldenPath/loxAfr3/
bigZips/).

BAM files for the Altai Neandertal are hosted at Max Planck
Institute for Evolutionary Anthropology (http://cdna.eva.mpg.de/
Neandertal/altai/).

Vcf files utilizing GATK from Priifer et al. 2014" are hosted at
Max Planck Institute for Evolutionary Anthropology (http:/cdna.
eva.mpg.de/Neandertal/altai/AltaiNeandertal/VCF/).

Vcf files utilizing snpAD from Priifer et al. 2017 are hosted at
Max Planck Institute for Evolutionary Anthropology (http://cdna.
eva.mpg.de/Neandertal/Vindija/VCF/).

1,000 Genomes variant information is available from the 1,000
Genomes  ftp  (ftp:/ftp.1000genomes.ebi.ac.uk/voll/ftp/release/
20130502/).

The ARIADNA model and associated wrapper are available on
Open Science Framework at https://osf.io/5bph4/.
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